Origin and Biodegradation of Crude Oils from the Northernmost Fields in the Bolivar Coastal Complex (Zulia State, Venezuela)
Abstract
:1. Introduction
2. Geological Features
3. Materials and Methods
4. Results and Discussion
4.1. Bulk Data and SARA Composition
4.2. Carbon Isotope Signature
4.3. In-Reservoir Biodegradation
4.4. Thermal Maturity
4.5. Precursor Organic Material and Depositional Conditions
4.6. Geochemical Correlations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
1 C21-tricyclopolyprenane | 29 17α(H), 21β(H)-29-Bishomohopane 22R |
2 C23-tricyclopolyprenane | 30 17α(H), 21β(H)-29-Trishomohopane 22S |
3 C24-tricyclopolyprenane | 31 17α(H), 21β(H)-29-Trishomohopane 22R |
4 C25-tricyclopolyprenane 17R + 17S | 32 17α(H), 21β(H)-29-Tetrahomohopane 22S |
5 C26-tricyclopolyprenane 17R | 33 17α(H),21β(H)-29-Tetrahomohopane 22R |
6 C24-tricyclopolyprenane | 34 17α(H),21β(H)-29-Pentahomohopane 22S |
7 C26-tricyclopolyprenane 17S | 35 17α(H),21β(H)-29-Pentahomohopane 22R |
8 C28-tricyclopolyprenane 17R | 36 13β(H),17α(H)-Diacholestane 20S |
9 C28-tricyclopolyprenane 17S | 37 13β(H),17α(H)-Diacholestane 20R |
10 C29-tricyclopolyprenane 17R | 38 5α(H),14α(H),17α(H)-Cholestane 20S * |
11 C29-tricyclopolyprenane 17S | 39 5α(H),14β(H),17β(H)-Cholestane 20R * |
12 18α(H)-22,29,30-Trisnorneohopane | 40 5α(H),14 β(H),17β(H)-Cholestane 20S |
13 C30-Tricyclic terpane 17R | 41 5α(H),14α(H),17α(H)-Cholestane 20R |
14 17α(H)-22,29,30-Trisnorhopane | 42 5α(H),14α(H),17α(H)-Ergostane 20S |
15 C30-Tricyclic terpane 17S | 43 5α(H),14β(H),17β(H)-Ergostane 20R * |
16 18α(H)-24,28-Bisnoroleanane | 44 5α(H),14β(H),17β(H)-Ergostane 20S |
17 17α(H),21β(H)-30-Norhopane | 45 5α(H),14α(H),17α(H)-Ergostane 20R |
18 18α(H)-30-Norneohopane | 46 5α(H),14α(H),17α(H)-Stigmastane 20S |
19 18α(H)-28-Noroleanane | 47 5α(H),14β(H),17β(H)-Stigmastane 20R |
20 17β(H),21α(H)-30-Normoretane | 48 5α(H),14β(H),17β(H)-Stigmastane 20S |
21 18α(H)-Oleanane | 49 5α(H),14α(H),17α(H)-Stigmastane 20R |
22 17α(H),21β(H)-Hopane | 50 20-triaromatic steroid |
23 17β(H),21α(H)-Moretane | 51 21-triaromatic steroid |
24 17α(H),21β(H)-29-Homohopane 22S | 52 26-triaromatic steroid 20S |
25 17α(H),21β(H)-29-Homohopane 22R | 53 26 (20R) + 27 (20S)-triaromatic steroid * |
26 Gammacerane | 54 28-triaromatic steroid 20S |
27 17β(H),21α(H)-29-Homomoretane 22S + 22R | 55 27-triaromatic steroid 20R |
28 17α(H),21β(H)-29-Bishomohopane 22S | 56 28-triaromatic steroid 20R |
References
- Talukdar, S.; Gallango, O.; Chin-A-Lien, M. Generation and migration of hydrocarbons in the Maracaibo basin, Venezuela: An integrated basin study. Org. Geochem. 1986, 10, 261–279. [Google Scholar] [CrossRef]
- Tocco, R.; Gallango, O.; Parnaud, F. Geochemical modelling of the principal source rocks of the Barinas and Maracaibo basins, western Venezuela. Bull. Venez. Soc. Geol. 1997, 22, 17–28. [Google Scholar]
- Talukdar, S.; Marcano, F. Petroleum system of the Maracaibo Basin, Venezuela. In The Petroleum System—For Source to Trap; Magoon, L.B., Dow, W.G., Eds.; AAPG Memoir: Tulsa, OK, USA, 1994; Volume 60, pp. 463–481. [Google Scholar]
- Bockmeulen, H.; Barker, C.; Dickey, P.A. Geology and Geochemistry of Crude Oils, Bolivar Coastal Fields, Venezuela. AAPG Bull. 1983, 67, 242–270. [Google Scholar]
- Villalobos, C.K. Geoquímica de los crudos del Miembro B6 (Eoceno), campo Tía Juana Lago, Cuenca del Lago de Maracaibo. Master’s Thesis, University of Zulia, Maracaibo, Venezuela, 2012. [Google Scholar]
- Guerrero, B.R. Revisión del proceso de biodegradación del petróleo presente en las formaciones Lagunillas inferior, La Rosa e Icotea del campo Cabimas. Master’s Thesis, University of Zulia, Maracaibo, Venezuela, 2016. [Google Scholar]
- Rey, O.; Simo, J.; Lorente, M. A record of long- and short-term environmental and climatic change during OAE3: La Luna Formation, Late Cretaceous (Santonian–early Campanian), Venezuela. Sediment. Geol. 2004, 170, 85–105. [Google Scholar] [CrossRef]
- Lugo, J.; Mann, P. Jurassic-Eocene Tectonic evolution of Maracaibo basin, Venezuela. AAPG Mem. 1995, 62, 699–725. [Google Scholar]
- Parnaud, F.; Gou, Y.; Pascual, J.C.; Capello, M.A.; Truskowski, I.; Passalaqua, H. Stratigraphic synthesis of Western Venezuela. In Petroleum Basins of South America; Tankar, A.J., Suárez-Soruco, R., Welsink, H.J., Eds.; AAPG Memoir: Tulsa, OK, USA, 1995; Volume 62, pp. 681–698. [Google Scholar]
- Erlich, R.N.; Villamil, T.; Keen-Dumas, J. Controls on the deposition of Upper Cretaceous organic carbon-rich rocks from Costa Rica to Surinam. In The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation, and Plate Tectonics; Bartolini, C., Buffler, R., Blickwede, J., Eds.; AAPG Memoir: Tulsa, OK, USA, 2003; Volume 79, pp. 1–45. [Google Scholar]
- Galarraga, F.; Urbani, F.; Escobar, M.; Márquez, G.; Martínez, M.; Tocco, R. Main factors controlling the compositional variability of seepage oils from Trujillo State, Western Venezuela. J. Pet. Geol. 2010, 33, 255–268. [Google Scholar] [CrossRef]
- Erlich, R.N.; Macsotay, O.; Nederbragt, A.J.; Lorente, M.A. Palaeoecology, palaeogeography and depositional environments of Upper Cretaceous rocks of western Venezuela. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1999, 153, 203–238. [Google Scholar] [CrossRef]
- Sweeney, J.; Talukdar, S.; Burnham, A.; Vallejos, C. Pyrolysis kinetics applied to prediction of oil generation in the Maracaibo Basin, Venezuela. Org. Geochem. 1990, 16, 189–196. [Google Scholar] [CrossRef]
- Márquez, G.; Escobar, M.; Lorenzo, E.; Duno, L.; Esquinas, N.; Gallego, J.R. Intra- and inter- field compositional changes of oils from the Misoa B4 reservoir in the Ceuta Southeast Area (Lake Maracaibo, Venezuela). Fuel 2016, 167, 118–134. [Google Scholar] [CrossRef]
- Márquez, G.; Escobar, M.; Esquinas, N.; Duno, L.; Martín-Martín, J.D.; Permanyer, A. Characterization of tar-like material and producible oil in Misoa C2 and C3 reservoir sands of the Area 2 South (Ceuta field, Venezuela). Mar. Pet. Geol. 2017, 82, 118–133. [Google Scholar] [CrossRef]
- Head, I.M.; Jones, D.M.; Larter, S.R. Biological activity in the deep subsurface and the origin of heavy oil. Nature 2003, 426, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Wardlaw, G.D.; Nelson, R.K.; Reddy, C.M.; Valentine, D.L. Biodegradation preference for isomers of alkylated naphthalenes and benzothiophenes in marine sediment contaminated with crude oil. Org. Geochem. 2011, 42, 630–639. [Google Scholar] [CrossRef]
- Larter, S.R.; Wilhelms, A.; Head, I.M.; Koopmans, M.; Aplin, A.; di Primio, R.; Erdmann, M.; Telnaes, N. The controls on the composition of biodegraded oils in the deep subsurface—Part 1: Biodegradation rates in petroleum reservoirs. Org. Geochem. 2003, 34, 601–613. [Google Scholar] [CrossRef]
- Adams, J.J.; Riediger, C.; Fowler, M.; Larter, S.R. Thermal controls on biodegradation around the Peace River tar sands: Paleo-pasteurization to the west. J. Geochem. Expor. 2006, 89, 1–4. [Google Scholar] [CrossRef]
- Larter, S.R.; Gates, I.; Adams, J.; Bennet, B.; Huang, H.; Koksalan, T.; Fustic, M. Reservoir fluid characterization of tar sand and heavy oil reservoirs-impact of fluid heterogeneity on production characteristics. In Proceedings of the AAPG Annual Convention -Perfecting the Search- Delivering on Promises, Houston, TX, USA, 9–12 April 2006. [Google Scholar]
- Volkman, J.K.; Robert, A.; Robert, I.K.; Woodhouse, C.W. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochim. Cosmochim. Acta 1983, 47, 785–794. [Google Scholar] [CrossRef]
- Peters, K.E.; Moldowan, J. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments; Prentice Hall: Englewood Cliffs, NJ, USA; New York, NY, USA, 1993; p. 363. [Google Scholar]
- Wenger, L.M.; Davis, C.L.; Isaksen, G.J. Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reserv. Eval. Eng. 2002, 5, 375–383. [Google Scholar] [CrossRef]
- Larter, S.R.; Huang, H.; Adams, J.; Bennet, B.; Snowdon, L.R. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils. Org. Geochem. 2012, 45, 66–76. [Google Scholar] [CrossRef]
- Macellari, C.E. Cretaceous paleogeography and depositional cycles of western South America. J. S. Am. Earth Sci. 1988, 1, 373–418. [Google Scholar] [CrossRef]
- Mann, P. Caribbean sedimentary basins: Classification and tectonic setting from Jurassic to present. Caribbean Basins. Sediment. Basins World 1999, 4, 3–31. [Google Scholar]
- Castillo, M.; Mann, P. Cretaceous to Holocene structural stratigraphic development in south Lake Maracaibo, Venezuela, inferred from well and three-dimensional seismic data. AAPG Bull. 2006, 90, 529–565. [Google Scholar] [CrossRef]
- Escalona, A.; Mann, P. An overview of the petroleum system of Maracaibo Basin. AAPG Bull. 2006, 90, 653–674. [Google Scholar] [CrossRef]
- Mann, P.; Escalona, A.; Castillo, M. Regional geologic and tectonic setting of the Maracaibo supergiant basin, Western, Venezuela. AAPG Bull. 2006, 90, 445–477. [Google Scholar] [CrossRef]
- Wills, V.C. Modelo estático en 3D del Mioceno del área Cabimas, Campo Costanero Bolivar, Cuenca de Maracaibo. Master’s Thesis, Central University of Venezuela, Caracas, Venezuela, 2009. [Google Scholar]
- Márquez, L.C. Caracterización del campo Ambrosio para planes de desarrollo gasífero. Bachelor’s Thesis, Central University of Venezuela, Caracas, Venezuela, 2004. [Google Scholar]
- Walton, W.M. Contributions of the AVGMP Maracaibo Basin Eocene Nomenclature Comittee: The informal units of the subsurface Eocene. Asociación Venezolana de Geología, Minería y Petróleo. Boletín Inf. 1967, 10, 21–30. [Google Scholar]
- Rodríguez, I.; Navarro, A.; Ghosh, S. Nueva Frontera Exploratoria en la Cuenca Petrolífera del Lago de Maracaibo: Zulia Oriental, Venezuela Occidental. In Proceedings of the Memorias VI Simposio Bolivariano de Exploración de Cuencas Subandinas, Cartagena, Colombia; Asociación Colombiana de Geólogos y Geofísicos del Petróleo, Bogota, Colombia, 14–17 September 1997; pp. 565–581. [Google Scholar]
- Urbina, E.R. Determinación de registros psudo-sónicos a partir de registros de resistividad en los campos Barúa, Motatán y Tomopoto. Bachelor’s Thesis, Central University of Venezuela, Caracas, Venezuela, 2001. [Google Scholar]
- ASTM Standard Test Method for API Gravity of Crude Petroleum and Petroleum Products (Hydrometer Method); ASTM International: West Conshohocken, PA, USA, 2006.
- ASTM Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-ray Fluorescence Spectrometry; ASTM International: West Conshohocken, PA, USA, 2010.
- Speight, J.G. The Chemistry and Technology of Petroleum; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- De la Cruz, C.; Márquez, N.; Escobar, M.; Segovia, S. An improved chromatographic method for the separation of saturated hydrocarbons, aromatic hydrocarbons, resins and asphaltenes from heavy crude oils. In Proceedings of the 213th American Chemical Society National Meeting, San Francisco, CA, USA, 13–17 April 1997; pp. 416–418. [Google Scholar]
- Dahl, J.E.; Moldowan, J.M.; Peters, K.E.; Claypool, G.E.; Rooney, M.A.; Michael, G.E.; Mello, M.R.; Kohnen, M.L. Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 1999, 399, 54–57. [Google Scholar] [CrossRef]
- Pytlak, L.; Kowalski, A.; Gross, D.; Sachsenhofer, R.F. Composition of diamondoids in oil samples from the alpine foreland basin, austria: Potential as indices of source rock facies, maturity and biodegradation. J. Pet. Geol. 2017, 40, 153–171. [Google Scholar] [CrossRef]
- Summons, R.E.; Hope, J.M.; Swart, R.; Walter, M.R. Origin of Nama Basin bitumen seeps: Petroleum derived from a Permian lacustrine source rock traversing southwestern Gondwana. Org. Geochem. 2008, 39, 589–608. [Google Scholar] [CrossRef]
- Moldowan, J.M.; Dahl, J.; Zinniker, D.; Barbanti, S.M. Underutilized advanced geochemical technologies for oil and gas exploration and production-1. J. Pet. Sci. Eng. 2015, 126, 87–96. [Google Scholar] [CrossRef]
- Tissot, B.P.; Welte, D.H. Petroleum Formation and Occurrence; Springer: New York, NY, USA, 1984; p. 699. [Google Scholar]
- Hakimi, M.H.; Abdullaha, W.H.; Shalabya, M.R. Organic geochemical characteristics of crude oils from the Masila Basin, eastern Yemen. Org. Geochem. 2011, 42, 465–476. [Google Scholar] [CrossRef]
- Peters, K.E.; Walters, C.; Moldowan, J. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History; Cambridge University Press: Cambridge, UK, 2005; p. 1132. [Google Scholar]
- Sofer, Z. Stable Carbon Isotope composition of crude oils: Application to source depositional environments and petroleum alteration. AAPG Bull. 1984, 68, 31–49. [Google Scholar]
- Meckenstock, R.U.; Morasch, B.; Warthmann, R.; Schink, B.; Annweiler, E.; Michaelis, W.; Richnow, H.H. 13C/12C isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ. Microbiol. 1999, 1, 409–414. [Google Scholar] [CrossRef]
- Milner, C.D.W.; Rogers, M.A.; Evans, C.R. Petroleum transformations in reservoirs. J. Geochem. Explor. 1977, 7, 101–153. [Google Scholar] [CrossRef]
- Bennet, B.; Fustic, M.; Farrimond, P.; Huang, H.; Larter, S.R. 25-Norhopanes: Formation during biodegradation of petroleum in the subsurface. Org. Geochem. 2006, 37, 787–797. [Google Scholar] [CrossRef]
- Hunt, J.M. Petroleum Geochemistry and Geology; Freeman and Company: San Francisco, CA, USA, 1996; p. 617. [Google Scholar]
- Philp, R.P. Fossil Fuel Biomarkers: Applications and Spectra; Elsevier Science Publishers: New York, NY, USA, 1985; p. 294. [Google Scholar]
- Liao, Z.; Geng, A.; Gracia, A.; Creux, P.; Chrostowska, Y.; Zhang, Y. Saturated hydrocarbons occluded inside asphaltene structures and their geochemical significance, as exemplified by two Venezuelan oils. Org. Geochem. 2006, 37, 291–303. [Google Scholar] [CrossRef]
- Volkman, J.K.; Alexander, R.; Kagi, R.I.; Rowland, S.J.; Sheppard, P.N. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow Sub-basin of Western Australia. Org. Geochem. 1984, 6, 619–632. [Google Scholar] [CrossRef]
- Huang, H.P.; Bowler, B.F.J.; Oldenburg, T.B.P.; Larter, S.R. The effect of biodegradation on polycyclic aromatic hydrocarbons in reservoired oils from the Liaohe basin, NE China. Org. Geochem. 2004, 35, 1619–1634. [Google Scholar] [CrossRef]
- Sánchez, C.; Permanyer, A. Origin and alteration of oils and oil seeps from the Sinú-San Jacinto Basin, Colombia. Org. Geochem. 2006, 37, 1831–1845. [Google Scholar] [CrossRef]
- Escobar, M.; Márquez, G.; Inciarte, S.; Rojas, J.; Esteves, I.; Malandrino, G. The organic geochemistry of oil seeps from the Sierra de Perijá eastern foothills, Lake Maracaibo Basin, Venezuela. Org. Geochem. 2011, 42, 727–738. [Google Scholar] [CrossRef]
- Mackenzie, A.S. Applications of biological markers in petroleum geochemistry. In Advances in Petrological Geochemistry; Brooks, S.J., Welte, D., Eds.; Academic Press: London, UK, 1984; pp. 115–214. [Google Scholar]
- Radke, M.; Welte, D.H. The methylphenantrene index (MPI): A maturity parameter based on aromatic hydrocarbons. In Advances in Organic Geochemistry; Bjoroy, M., Albrecht, C., Cornford, C., de Groot, K., Eglinton, G., Galimov, E., Leythaeuser, D., Pelet, R., Rullkötter, J., Speers, G., Eds.; John Wiley and Sons: New York, NY, USA, 1983; pp. 504–512. [Google Scholar]
- Radke, M.; Leythaeuser, D.; Teichmüller, M. Relationship between rank and composition of aromatic hydrocarbons from coals of different origin. Org. Geochem. 1984, 6, 423–430. [Google Scholar] [CrossRef]
- Cassani, F.; Gallango, O.; Talukdar, S.; Vallejos, C.; Ehrmann, U. Methylphenanthrene maturity index of marine source rock extracts and crude oils from the Maracaibo Basin. Org. Geochem. 1988, 13, 73–80. [Google Scholar] [CrossRef]
- Bennett, B.; Larter, S. Biodegradation scales: Applications and limitations. Org. Geochem. 2008, 39, 1222–1228. [Google Scholar] [CrossRef]
- Radke, M.; Welte, D.H.; Willsch, H. Geochemical study on a well in the Western Canada Basin: Relation of the aromatic distribution pattern to maturity of organic matter. Geochim. Cosmochim. Acta 1982, 46, 1–10. [Google Scholar] [CrossRef]
- Radke, M.; Welte, D.H.; Willsch, H. Maturity parameters based on aromatic hydrocarbons: Influence of the organic matter type. Org. Geochem. 1986, 10, 51–63. [Google Scholar] [CrossRef]
- Kotarba, M.J.; Clayton, J.L. A stable carbon isotope and biological marker study of Polish bituminous coals and carbonaceous shales. Int. J. Coal. Geol. 2003, 55, 73–94. [Google Scholar] [CrossRef]
- Hughes, W.B.; Holba, A.G.; Dzou, L.I.P. The ratios of dibenzothiophene to phenanthrene and pristane to phytane as indicators of depositional environment and lithology of petroleum source rocks. Geochim. Cosmochim. Acta 1995, 59, 3581–3598. [Google Scholar] [CrossRef]
- Van Graas, G.W. Biomarker maturity parameters for high maturities: Calibration of the working range up to the oil/condensate threshold. Org. Geochem. 1990, 16, 1025–1032. [Google Scholar] [CrossRef]
- Palacas, J.G. Carbonate rocks as sources of petroleum: Geological and chemical characteristics and oil-source correlations. World Pet. Congr. 1983, 11, 31–33. [Google Scholar]
- Seifert, W.K.; Moldowan, J.M. Palaeoreconstruction by biological markers. Geochim. Cosmochim. Acta 1981, 45, 783–794. [Google Scholar] [CrossRef]
- Rullkötter, J.; Spiro, B.; Nissenbaum, A. Biological marker characteristics of oils and asphalts from carbonate source rocks in a rapidly subsiding graben, Dead Sea, Israel. Geochim. Cosmochim. Acta 1985, 49, 1357–1370. [Google Scholar] [CrossRef]
- Grantham, P.J.; Wakefield, L.L. Variations in the sterane carbon number distributions of marine source rocks derived crude oils through geological time. Org. Geochem. 1988, 12, 61–73. [Google Scholar] [CrossRef]
- Gallego, J.R.; Ortiz, J.E.; Sierra, C.; Torres, T.; Llamas, J.F. Multivariate study of trace element distribution in the geological record of Roñanzas peat bog (Asturias, North Spain): Paleoenvironmental evolution and human activities over the last 8000 ca yr BP. Sci. Total Environ. 2013, 454/455, 16–29. [Google Scholar] [CrossRef]
- Everitt, B.S. Cluster Analysis. In Multivariate Statistics; Edward, A., Ed.; Oxford University Press: London, UK, 1993; pp. 42–50. [Google Scholar]
- Grice, K.; Alexander, R.; Kagi, R.I. Diamondoid hydrocarbon ratios as indicators of biodegradation in Australian crude oils. Org. Geochem. 2000, 31, 67–73. [Google Scholar] [CrossRef]
- Jiang, W.M.; Li, Y.; Xiong, Y.Q. The effect of organic matter type on formation and evolution of diamondoids. Mar. Pet. Geol. 2018, 89, 714–720. [Google Scholar] [CrossRef]
Well | Depth | Interval | St | SAT | ARO | POL | °API | δ13CARO | δ13CSAT |
---|---|---|---|---|---|---|---|---|---|
R-070 | 505 | La Rosa | 1.68 | 40 | 30 | 30 | 25 | −26.15 | −27.14 |
R-278 | 652 | Icotea | 1.97 | 36 | 29 | 35 | 20 | −26.49 | −27.33 |
R-285 | 588 | La Rosa-Icotea | 1.79 | 40 | 30 | 30 | 23 | - | - |
R-300 | 661 | La Rosa-Icotea | 1.94 | 36 | 30 | 34 | 20 | −26.35 | −27.50 |
R-302 | 401 | Lagunillas-La Rosa | 2.20 | 34 | 28 | 38 | 16 | - | - |
R-311 | 434 | Lagunillas-La Rosa | 2.14 | 34 | 26 | 38 | 18 | - | - |
R-319 | 640 | Lagunillas-La Rosa | 2.15 | 37 | 29 | 34 | 20 | - | - |
R-331 | 478 | Lagunillas-La Rosa | 2.05 | 37 | 28 | 35 | 21 | - | - |
R-385 | 438 | La Rosa | 1.85 | 41 | 30 | 29 | 24 | −26.42 | −27.58 |
R-416 | 389 | La Rosa | 1.63 | 41 | 30 | 29 | 26 | - | - |
R-425 | 395 | La Rosa | 1.75 | 40 | 30 | 30 | 23 | −26.33 | −27.55 |
R-445 | 354 | La Rosa | 1.90 | 38 | 29 | 33 | 22 | - | - |
R-453 | 372 | La Rosa | 1.88 | 40 | 32 | 28 | 22 | - | - |
R-502 | 353 | Lagunillas-La Rosa | 2.03 | 36 | 29 | 35 | 19 | - | - |
R-566 | 535 | La Rosa-Icotea | 1.91 | 38 | 29 | 33 | 21 | - | - |
R-706 | 312 | Lagunillas | 2.22 | 34 | 30 | 36 | 17 | - | - |
R-778 | 324 | Lagunillas | 2.29 | 34 | 29 | 37 | 17 | −26.20 | −27.16 |
TJ-1323 | 1407 | Misoa B6 | 0.97 | 48 | 27 | 25 | 35 | −26.38 | −27.98 |
TJ-567 | 1547 | Misoa B6 | - | 37 | 29 | 34 | 23 | - | - |
TJ-872 | 1392 | Misoa B6 | 0.93 | 48 | 27 | 25 | 34 | −26.46 | −27.81 |
TJ-465 | 1206 | Misoa B6 | - | 40 | 29 | 31 | 26 | −26.37 | −27.72 |
LL-3597 | 1357 | Misoa B6 | - | 41 | 28 | 31 | 26 | - | - |
PB-686 | 1939 | Misoa B6 | 1.45 | 39 | 29 | 32 | 24 | - | - |
PB-689 | 1893 | Misoa B6 | - | 34 | 30 | 36 | 21 | - | - |
PB-254 | 1797 | Misoa B6 | 1.54 | 35 | 29 | 36 | 21 | −26.24 | −27.51 |
PB-605 | 1564 | Misoa B6 | - | 36 | 28 | 36 | 22 | - | - |
TJ-284 | 1713 | Misoa B6 | - | 34 | 28 | 38 | 21 | −26.41 | −27.67 |
LL-3530 | 1352 | Misoa B7 | 1.28 | 46 | 28 | 26 | 28 | - | - |
LL-1187 | 1275 | Misoa B7 | - | 45 | 28 | 27 | 29 | −26.38 | −27.78 |
LL-3595 | 1274 | Misoa B7 | - | 45 | 29 | 26 | 28 | −26.19 | −27.52 |
Sample | C1–C14 n-alk | C15+ n-alk | IsoP | Alkyl-tol | N + MN | DMN | UMN1 | PM |
---|---|---|---|---|---|---|---|---|
R-070 | Depleted | Affected | Near-intact | Near-intact | Near-intact | Intact | 9766413 | 2/6 |
R-278 | Absent | Absent | Depleted | Depleted | Depleted | Near-intact | 9771099 | 4/6 |
R-285 | Absent | Depleted | Near-intact | Near-intact | Depleted | Near-intact | 9770794 | 3/6 |
R-300 | Absent | Absent | Depleted | Depleted | Affected | Near-intact | 9770474 | 4/6 |
R-302 | Absent | Absent | Absent | Absent | Absent | Affected | 9774999 | 5/6 |
R-311 | Absent | Absent | Absent | Absent | Absent | Affected | 9774999 | 5/6 |
R-319 | Absent | Absent | Depleted | Depleted | Depleted | Near-intact | 9771099 | 4/6 |
R-331 | Absent | Absent | Depleted | Depleted | Depleted | Near-intact | 9771099 | 4/6 |
R-385 | Absent | Absent | Near-intact | Near-intact | Depleted | Near-intact | 9770799 | 3/6 |
R-416 | Depleted | Affected | Near-intact | Near-intact | Near-intact | Intact | 9766413 | 2/6 |
R-425 | Absent | Depleted | Near-intact | Near-intact | Depleted | Near-intact | 9770794 | 3/6 |
R-445 | Absent | Absent | Near-intact | Near-intact | Depleted | Near-intact | 9770799 | 3/6 |
R-453 | Absent | Depleted | Near-intact | Near-intact | Depleted | Near-intact | 9770794 | 3/6 |
R-502 | Absent | Absent | Depleted | Depleted | Depleted | Near-intact | 9771099 | 4/6 |
R-566 | Absent | Absent | Depleted | Depleted | Affected | Near-intact | 9770474 | 4/6 |
R-706 | Absent | Absent | Absent | Absent | Absent | Affected | 9774999 | 5/6 |
R-778 | Absent | Absent | Absent | Absent | Absent | Affected | 9774999 | 5/6 |
TJ-1323 | Near-intact | Intact | Intact | Intact | Intact | Intact | 9774287 | 1/6 |
TJ-567 | Affected | Near-intact | Intact | Intact | Intact | Intact | 9774349 | 2/6 |
TJ-872 | Near-intact | Intact | Intact | Intact | Intact | Intact | 9774288 | 1/6 |
TJ-465 | Affected | Near-intact | Intact | Intact | Intact | Intact | 9778099 | 2/6 |
LL-3597 | Affected | Near-Intact | Intact | Intact | Intact | Intact | 9778124 | 2/6 |
PB-686 | Near-intact | Intact | Intact | Intact | Intact | Intact | 9778124 | 1/6 |
PB-689 | Near-intact | Intact | Intact | Intact | Intact | Intact | 9778099 | 1/6 |
PB-254 | Near-intact | Intact | Intact | Intact | Intact | Intact | 9778099 | 1/6 |
PB-605 | Affected | Near-Intact | Intact | Intact | Intact | Intact | 9777413 | 2/6 |
TJ-284 | Near-intact | Intact | Intact | Intact | Intact | Intact | 9774287 | 1/6 |
LL-3530 | Affected | Near-Intact | Intact | Intact | Intact | Intact | 9774913 | 2/6 |
LL-1187 | Affected | Near-Intact | Intact | Intact | Intact | Intact | 9778069 | 2/6 |
LL-3595 | Affected | Near-Intact | Intact | Intact | Intact | Intact | 9778069 | 2/6 |
Sample | %27ST | %28ST | %29ST | Ts/Tm | Ph/nC18 | Pr/nC17 | Pr/Ph | 29/30H | 31R/30H | 26/25T | 24/23T | DBT/P | Dia/ST |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
R-070 | 37 | 32 | 31 | 0.51 | 0.78 | 0.68 | 0.61 | 0.93 | 0.42 | 0.86 | 0.47 | 0.90 | 0.20 |
R-278 | 36 | 33 | 31 | 0.49 | - | - | - | 0.84 | 0.39 | 0.90 | 0.43 | 0.92 | 0.22 |
R-285 | 38 | 32 | 30 | 0.52 | - | - | 0.62 | 0.86 | 0.41 | 0.89 | 0.45 | 0.94 | 0.21 |
R-300 | 37 | 33 | 30 | 0.48 | - | - | - | 0.82 | 0.42 | 0.91 | 0.44 | 0.91 | 0.22 |
R-302 | 37 | 32 | 31 | 0.50 | - | - | - | 0.90 | 0.38 | 0.85 | 0.43 | 0.89 | 0.20 |
R-311 | 35 | 33 | 32 | 0.52 | - | - | - | 0.83 | 0.40 | 0.88 | 0.48 | 0.95 | 0.23 |
R-319 | 35 | 33 | 32 | 0.49 | - | - | - | 0.91 | 0.41 | 0.87 | 0.49 | 0.90 | 0.21 |
R-331 | 39 | 32 | 29 | 0.53 | - | - | - | 0.85 | 0.38 | 0.85 | 0.49 | 0.93 | 0.20 |
R-385 | 36 | 33 | 31 | 0.47 | - | - | 0.63 | 0.87 | 0.40 | 0.90 | 0.47 | 0.95 | 0.23 |
R-416 | 37 | 32 | 31 | 0.50 | 0.75 | 0.66 | 0.67 | 0.93 | 0.39 | 0.86 | 0.44 | 0.94 | 0.21 |
R-425 | 35 | 33 | 32 | 0.52 | - | - | 0.64 | 0.79 | 0.37 | 0.89 | 0.45 | 0.96 | 0.20 |
R-445 | 36 | 33 | 31 | 0.48 | - | - | 0.66 | 0.90 | 0.41 | 0.92 | 0.46 | 0.88 | 0.21 |
R-453 | 37 | 32 | 31 | 0.53 | - | - | 0.65 | 0.88 | 0.43 | 0.89 | 0.48 | 0.92 | 0.22 |
R-502 | 35 | 33 | 32 | 0.49 | - | - | - | 0.92 | 0.36 | 0.86 | 0.44 | 0.94 | 0.22 |
R-566 | 38 | 32 | 30 | 0.51 | - | - | - | 0.80 | 0.39 | 0.91 | 0.43 | 0.91 | 0.22 |
R-706 | 37 | 33 | 30 | 0.48 | - | - | - | 0.91 | 0.42 | 0.83 | 0.41 | 0.98 | 0.23 |
R-778 | 36 | 33 | 31 | 0.51 | - | - | - | 0.85 | 0.42 | 0.84 | 0.42 | 0.93 | 0.21 |
TJ-1323 | 36 | 33 | 31 | 0.66 | 0.48 | 0.39 | 0.84 | 0.79 | 0.42 | 0.91 | 0.49 | 0.78 | 0.25 |
TJ-567 | 37 | 34 | 29 | 0.46 | 0.68 | 0.53 | 0.71 | 0.87 | 0.43 | 0.89 | 0.41 | 0.88 | 0.21 |
TJ-872 | 37 | 32 | 31 | 0.64 | 0.49 | 0.40 | 0.81 | 0.79 | 0.42 | 0.90 | 0.48 | 0.77 | 0.25 |
TJ-465 | 39 | 32 | 29 | 0.48 | 0.72 | 0.62 | 0.75 | 0.91 | 0.38 | 0.85 | 0.43 | 0.86 | 0.22 |
LL-3597 | 38 | 32 | 30 | 0.50 | 0.67 | 0.53 | 0.74 | 0.94 | 0.43 | 0.86 | 0.44 | 0.90 | 0.21 |
PB-686 | 37 | 33 | 30 | 0.46 | 0.59 | 0.41 | 0.68 | 0.92 | 0.41 | 0.92 | 0.43 | 0.91 | 0.21 |
PB-689 | 35 | 33 | 32 | 0.52 | 0.60 | 0.46 | 0.70 | 0.93 | 0.38 | 0.85 | 0.45 | 0.97 | 0.20 |
PB-254 | 38 | 33 | 29 | 0.48 | 0.59 | 0.48 | 0.71 | 0.83 | 0.39 | 0.86 | 0.46 | 0.92 | 0.20 |
PB-605 | 37 | 33 | 30 | 0.51 | 0.71 | 0.56 | 0.66 | 0.85 | 0.37 | 0.90 | 0.43 | 0.93 | 0.22 |
TJ-284 | 37 | 32 | 31 | 0.54 | 0.59 | 0.49 | 0.66 | 0.90 | 0.36 | 0.86 | 0.42 | 0.91 | 0.21 |
LL-3530 | 38 | 32 | 32 | 0.60 | 0.68 | 0.54 | 0.86 | 0.81 | 0.38 | 0.87 | 0.45 | 0.81 | 0.23 |
LL-1187 | 37 | 32 | 31 | 0.61 | 0.70 | 0.57 | 0.82 | 0.80 | 0.40 | 0.89 | 0.47 | 0.80 | 0.23 |
Sample | %20S | %ββ | Rc1 | TA | Rc2 | MPR | Rc33 | MPI-1 | Rc4 |
---|---|---|---|---|---|---|---|---|---|
R-070 | 55 | 58 | 0.78 | 0.29 | 0.75 | 1.11 | 0.98 | 0.75 | 0.85 |
R-278 | 57 | 56 | 0.76 | 0.27 | 0.74 | 1.15 | 1.00 | 0.76 | 0.85 |
R-285 | 56 | 59 | 0.79 | 0.28 | 0.74 | 1.20 | 1.02 | 0.76 | 0.85 |
R-300 | 57 | 59 | 0.79 | 0.26 | 0.73 | 1.14 | 0.99 | 0.79 | 0.87 |
R-302 | 55 | 57 | 0.77 | 0.26 | 0.73 | 1.17 | 1.01 | 0.79 | 0.87 |
R-311 | 56 | 57 | 0.77 | 0.27 | 0.74 | 1.24 | 1.03 | 0.78 | 0.87 |
R-319 | 58 | 56 | 0.76 | 0.28 | 0.74 | 1.22 | 1.02 | 0.75 | 0.85 |
R-331 | 56 | 58 | 0.78 | 0.29 | 0.75 | 1.14 | 0.99 | 0.82 | 0.89 |
R-385 | 58 | 59 | 0.79 | 0.27 | 0.74 | 1.13 | 0.99 | 0.80 | 0.88 |
R-416 | 56 | 57 | 0.76 | 0.28 | 0.74 | 1.15 | 1.00 | 0.76 | 0.85 |
R-425 | 58 | 57 | 0.76 | 0.27 | 0.74 | 1.18 | 1.01 | 0.77 | 0.86 |
R-445 | 57 | 58 | 0.78 | 0.29 | 0.75 | 1.16 | 1.00 | 0.75 | 0.85 |
R-453 | 56 | 56 | 0.76 | 0.26 | 0.73 | 1.21 | 1.02 | 0.81 | 0.88 |
R-502 | 57 | 57 | 0.77 | 0.25 | 0.72 | 1.19 | 1.01 | 0.77 | 0.86 |
R-566 | 56 | 58 | 0.78 | 0.28 | 0.74 | 1.12 | 0.99 | 0.78 | 0.87 |
R-706 | 55 | 57 | 0.77 | 0.29 | 0.75 | 1.16 | 1.01 | 0.80 | 0.88 |
R-778 | 56 | 59 | 0.79 | 0.27 | 0.74 | 1.15 | 1.00 | 0.75 | 0.85 |
TJ-1323 | 48 | 52 | 0.70 | - | - | 1.17 | 1.01 | 1.07 | 1.05 |
TJ-567 | 49 | 51 | 0.70 | 0.27 | 0.74 | 1.16 | 1.01 | 0.80 | 0.88 |
TJ-872 | 48 | 52 | 0.70 | - | - | 1.23 | 1.03 | 1.08 | 1.05 |
TJ-465 | 48 | 52 | 0.70 | 0.29 | 0.75 | 1.12 | 0.99 | 0.83 | 0.90 |
LL-3597 | 49 | 53 | 0.71 | 0.28 | 0.74 | 1.27 | 1.04 | 0.78 | 0.87 |
PB-686 | 48 | 52 | 0.70 | 0.28 | 0.74 | 1.21 | 1.02 | 0.79 | 0.87 |
PB-689 | 48 | 52 | 0.70 | 0.25 | 0.72 | 1.18 | 1.01 | 0.81 | 0.89 |
PB-254 | 48 | 51 | 0.69 | 0.28 | 0.74 | 1.15 | 1.00 | 0.76 | 0.85 |
PB-605 | 49 | 53 | 0.71 | 0.26 | 0.73 | 1.20 | 1.02 | 0.79 | 0.87 |
TJ-284 | 48 | 52 | 0.70 | 0.26 | 0.73 | 1.17 | 1.01 | 0.77 | 0.86 |
LL-3530 | 52 | 54 | 0.76 | 0.28 | 0.74 | 1.25 | 1.04 | 0.86 | 0.91 |
LL-1187 | 52 | 55 | 0.76 | 0.25 | 0.72 | 1.16 | 1.01 | 0.87 | 0.92 |
LL-3595 | 51 | 54 | 0.75 | 0.27 | 0.74 | 1.10 | 0.98 | 0.85 | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Escobar, M.; Márquez, G.; Guerrero, B.; Marín, P.; Boente, C.; Bernardo-Sánchez, A.; Romero, E.; Permanyer, A. Origin and Biodegradation of Crude Oils from the Northernmost Fields in the Bolivar Coastal Complex (Zulia State, Venezuela). Energies 2020, 13, 5615. https://doi.org/10.3390/en13215615
Escobar M, Márquez G, Guerrero B, Marín P, Boente C, Bernardo-Sánchez A, Romero E, Permanyer A. Origin and Biodegradation of Crude Oils from the Northernmost Fields in the Bolivar Coastal Complex (Zulia State, Venezuela). Energies. 2020; 13(21):5615. https://doi.org/10.3390/en13215615
Chicago/Turabian StyleEscobar, Marcos, Gonzalo Márquez, Blanca Guerrero, Patricia Marín, Carlos Boente, Antonio Bernardo-Sánchez, Emilio Romero, and Albert Permanyer. 2020. "Origin and Biodegradation of Crude Oils from the Northernmost Fields in the Bolivar Coastal Complex (Zulia State, Venezuela)" Energies 13, no. 21: 5615. https://doi.org/10.3390/en13215615
APA StyleEscobar, M., Márquez, G., Guerrero, B., Marín, P., Boente, C., Bernardo-Sánchez, A., Romero, E., & Permanyer, A. (2020). Origin and Biodegradation of Crude Oils from the Northernmost Fields in the Bolivar Coastal Complex (Zulia State, Venezuela). Energies, 13(21), 5615. https://doi.org/10.3390/en13215615