Load Control by Demand Side Management to Support Grid Stability in Building Clusters †
Abstract
:1. Introduction
2. SmartStability Methodology
2.1. Overview
- (1)
- All PV production offers are accepted because direct use of locally produced electricity has highest priority.
- (2)
- If the optimization function continues to signal a too-large deviation (e.g., the substation’s utilization is outside its limits) the remaining offers from the buildings are ranked, whereby fixed amounts like heat pumps or electrical DHW boilers come first, battery offers are last.
- Increase of consumption: 1. boiler on, 2. Heat pump on 3. Battery charging
- Decrease consumption: 1 battery discharging, 2 boiler off, 3. Heat pump off.
2.2. Building Clusters and Scenarios
2.2.1. Cluster Characteristics
2.2.2. Load Profiles
- Type C: 3506 kWh/y and unit
- Type E/F: 2174 kWh/y and unit
- Type G: 1517 kWh/y and unit
3. Results
3.1. Building Cluster Type C
- Today, only grid draw occurs. Feed-in doesn’t exist, the low amount of PV yield is completely used within the cluster. The substation is underutilized.
- Upgrading of PV systems to 80% penetration leads to feed-in overload of the substation.
- The penetration of 50% or 100% heat pumps increases the grid draw. The limit is slightly exceeded with 50% heat pumps and strongly with 100% heat pumps. In both cases the substation limits are violated in regard to the grid draw limit.
- Batteries of the assumed capacity can’t reduce the peak utilizations. The substation remains overloaded at both feed-in and draw limits.
- The trading of flexibility reduces the utilization of grid draw. In case of 50% heat pump penetration, the limit can be met due to trading. In case of 100% heat pump penetration the achieved reduction is not enough to avoid violation of the draw limit.
3.2. Building Cluster Type E/F
3.3. Building Cluster Type G
4. Conclusions, Limitations and Further Work
4.1. Conclusions
4.2. Limitations and Further Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency IEA, “Electricity”. 2019. Available online: https://www.iea.org/weo2018/electricity/ (accessed on 21 June 2019).
- Eurostat, “Energy Consumption in Housholds”. 2019. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Energy_consumption_in_households#Energy_consumption_in_households_by_type_of_end-use (accessed on 21 June 2019).
- Reynders, G.; Amaral Lopes, R.; Marszal-Pomianowska, A.; Aelenei, D.; Martins, J.; Saelens, D. Energy flexible buildings: An evaluation of definitions and quantification methodologies applied to thermal storage. Energy Build. 2018, 166, 372–390. [Google Scholar] [CrossRef]
- Müller, D.; Monti, A.; Stinner, S.; Schlösser, T.; Schütz, T.; Matthes, P.; Wolisz, H.; Molitor, C.; Harb, H.; Streblow, R. Demand side management for city districts. Build. Environ. 2015, 91, 283–293. [Google Scholar] [CrossRef]
- D’hulst, R.; Labeeuw, W.; Beusen, B.; Claessens, S.; Deconinck, G.; Vanthournout, K. Demand response flexibility and flexibility potential of residential smart appliances: Experiences from large pilot test in Belgium. Appl. Energy 2015, 155, 79–90. [Google Scholar] [CrossRef]
- Arteconi, A.; Hewitt, N.J.; Polonara, F. State of the art of thermal storage for demand-side management. Appl. Energy 2012, 93, 371–389. [Google Scholar] [CrossRef]
- Hall, M.; Dorusch, F.; Geissler, A. Optimierung des Eigenverbrauchs, der Eigendeckungsrate und der Netzbelastung von einem Mehrfamiliengebäude mit Elektromobilität. Bauphysik 2014, 36, 117–129. [Google Scholar] [CrossRef]
- Yin, R.; Kara, E.C.; Li, Y.; DeForest, N.; Wang, K.; Yong, T.; Stadler, M. Quantifying flexibility of commercial and residential loads for demand response using setpoint changes. Appl. Energy 2016, 177, 149–164. [Google Scholar] [CrossRef] [Green Version]
- Stinner, S.; Huchtemann, K.; Müller, D. Quantifying the operational flexibility of building energy systems with thermal energy storages. Appl. Energy 2016, 181, 140–154. [Google Scholar] [CrossRef]
- Hoffmann, C.; Hall, M.; Geissler, A. Quantifying Thermal Flexibility of Multi-Family and Office Buildings. In Proceedings of the Building Simulation and Optimiziation BSO, Cambridge, UK, 11–12 September 2018; pp. 230–236. [Google Scholar]
- Johra, H.; Heiselberg, P.; Le, J. Energy & Buildings Influence of envelope, structural thermal mass and indoor content on the building heating energy flexibility R. Energy Build. 2019, 183, 325–339. [Google Scholar]
- Aduda, K.O.; Labeodan, T.; Zeiler, W.; Boxem, G.; Zhao, Y. Demand side flexibility: Potentials and building performance implications. Sustain. Cities Soc. 2016, 22, 146–163. [Google Scholar] [CrossRef]
- Klein, K.; Herkel, S.; Henning, H.-M.; Felsmann, C. Load shifting using the heating and cooling system of an office building: Quantitative potential evaluation for different flexibility and storage options. Appl. Energy 2017, 203, 917–937. [Google Scholar] [CrossRef]
- Dar, U.I.; Sartori, I.; Georges, L.; Novakovic, V. Advanced control of heat pumps for improved flexibility of Net-ZEB towards the grid. Energy Build. 2014, 69, 74–84. [Google Scholar] [CrossRef]
- Le Dréau, J.; Heiselberg, P. Energy flexibility of residential buildings using short term heat storage in the thermal mass. Energy 2016, 111, 991–1002. [Google Scholar] [CrossRef]
- Weiss, T.; Rüdisser, D.; Reynders, G. Tool to Evaluate the Energy Flexibility in Builings—A Short Manual 2019; Tobias Weiß, AEE INTEC: Gleisdorf, Austria, 2019. [Google Scholar]
- Junker, R.G.; Azar, A.G.; Lopes, R.A.; Lindberg, K.B.; Reynders, G.; Relan, R.; Madsen, H. Characterizing the energy flexibility of buildings and districts. Appl. Energy 2018, 225, 175–182. [Google Scholar] [CrossRef]
- Vigna, I.; Pernetti, R.; Pasut, W.; Lollini, R. New domain for promoting energy efficiency: Energy Flexible Building Cluster. Sustain. Cities Soc. 2018, 38, 526–533. [Google Scholar] [CrossRef]
- Wang, A.; Li, R.; You, S. Development of a data driven approach to explore the energy flexibility potential of building clusters. Appl. Energy 2018, 232, 89–100. [Google Scholar] [CrossRef]
- Participants of IEA ECB Annex 67. Examples of Energy Flexibility in Buildings; Jensen, S.Ø., Parker, J., Engelmann, P., Marszal, A.J., Eds.; Danish Technological Institute: Taastrup, Denmark, 2019; Available online: www.annex67.org (accessed on 17 July 2020).
- Cai, J.; Kim, D.; Jaramillo, R.; Braun, J.E.; Hu, J. A general multi-agent control approach for building energy system. Energy Build. 2016, 127, 337–351. [Google Scholar] [CrossRef] [Green Version]
- Karfopoulos, E.; Tena, L.; Torres, A.; Salas, P.; Joan, J.G.; Dimeas, A.; Hatzuargyrioi, N. A multi-agent system providing demand response services from residental consumers. Electr. Power Syst. Res. 2015, 120, 163–176. [Google Scholar] [CrossRef]
- Merabet, G.H.; Talei, H.; Abid, M.; Khalil, N.; Madkour, M.; Benhaddou, D. Applications of Multi-Agent Systems in Smart Grids: A survey. In Proceedings of the International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, 14–16 May 2014; pp. 1088–1094. [Google Scholar]
- JADE Java Agent Development Framework. Available online: http://jade.tilab.com (accessed on 28 September 2020).
- Schulz, N.; Bichsel, J.; Wache, H.; Atisam, F.A.; Hoffmann, C.; Lammel, B.; Mettler, F. Smart Stability—Market-Economic Interaction of Smart Homes for Improved Power Network Stability. In Proceedings of the CISBAT Conference, Lausanne, Switzerland, 9–11 September 2015; pp. 487–492. [Google Scholar]
- Bichsel, J.; Eichin, H.; Farooq, A.; Hoffmann, C.; Lammel, B.; Schulz, N.; Wache, H. SmartStability—Smart Homes Improvimg Power Network Stability; Abschlussbericht Strategische Initiative “SmartStability”, Fachhochschule Nordwestschweiz: Muttenz/Olten/Windisch, Switzerland, 2015; Available online: www.fhnw.ch (accessed on 28 September 2020).
- Hall, M.; Geissler, A.; Wache, H. Multi-agent based simulation of smart building cluster for electric grid stabilization. J. Phys. Conf. Ser. 2019, 1343, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Scheffler, J. Bestimmung der Maximal Zulässigen Netzanschlussleistung Photovoltaischer Energiewandlungsanlagen in Wohnsiedlungsgebieten. Ph.D. Thesis, Technische Universität Chemnitz, Chemnitz, Germany, 2002. [Google Scholar]
- Privathaushalte und Wohnbevölkerung nach Haushaltstyp; Statistisches Amt des Kantons Basel-Stadt: Basel, Switzerland; Available online: www.statistik.bs.ch (accessed on 28 September 2020).
- Pflugradt, N. LoadprofileGenerator. Available online: www.loadprofilegenerator.de (accessed on 16 June 2015).
- Nipkow, J. Elektrische Wassererwärmung in der Schweiz; Schlussbericht BFE SI /400951-01; ARENA Arbeitsgemeinschaft Energie-Alternativen: Zürich, Switzerland, 2013; Available online: https://ubdb.bfe.admin.ch (accessed on 28 September 2020).
- Siegrist, A.; Schnabl, P.; Burkart, S.; de Haan, P.; Bianchetti, R. Elektromobilität—Studie Ladeinfrastruktur Region. Basel; Amt für Umwelt und Energie: Basel, Switzerland, 2014. [Google Scholar]
- Hall, M.; Geissler, A. SmartStability: Netzdienliche Quartiere mit Stromspeicher; FHNW Institut Energie am Bau: Muttenz, Switzerland, 2019. [Google Scholar]
Device | Tradable Good | Priority Value (-) |
---|---|---|
battery | charging | 20 |
discharging | 7 | |
boiler for domestic hot water | switch “on” | 10 |
switch “off” | 10 | |
heat pump for heating | switch “on” | 15 |
switch “off” | 15 |
Building Type | No. Flats | No. Units | No. Buildings | Total Heated Area (m2) | |
Terraced houses | 1 | 109 | 109 | 15,260 | |
2 | 18 | 9 | 2250 | ||
Single family houses | 1 | 24 | 24 | 6000 | |
2 | 14 | 14 | 1750 | ||
Multi-family houses | 3 | 24 | 8 | 3000 | |
Total | 189 | 157 | 28,260 |
Building Type | No. Flats | No. Units | No. Buildings | Total Heated Area (m2) | |
Terraced single-family houses | 1 | 116 | 116 | 13,920 | |
2 | 76 | 38 | 8360 | ||
Terraced multifamily houses | 4 | 4 | 1 | 375 | |
5 | 60 | 12 | 6840 | ||
6 | 102 | 17 | 9690 | ||
8 | 72 | 9 | 6840 | ||
Total | 430 | 193 | 46,025 |
Building Type | No. Flats | No. Units | No. Buildings | Total Heated Area (m2) | |
Block development | 30 | 30 | 1 | 1900 | |
33 | 33 | 1 | 2500 | ||
50 | 50 | 1 | 3600 | ||
High rise multifamily houses | 130 | 260 | 2 | 21,600 | |
Total | 373 | 5 | 29,600 |
Type C | Type E/F | Type G | ||||
---|---|---|---|---|---|---|
Today | 2035 | Today | 2035 | Today | 2035 | |
el. DHW boiler, penetration | 26% | - | 26% | - | 0% | - |
heat pump hp, penetration | 6% | 50%/100% | 6% | 50%/100% | 0% | 60%/100% |
PV peak, penetration | 50 kWp, 6% | 694 kWp, 80% | 215 kWp, 6% | 684 kWp, 80% | 0 kWp, 0% | 255 kWp, 100% |
battery (use), penetration | - | 437 kWh, 50% | - | 548 kWh, 50% | - | 157 kWh, 60% |
el. vehicles | 8 kWh/unit | 243 kWh/unit | 8 kWh/unit | 243 kWh/unit | 8 kWh/unit | 243 kWh/unit |
PV yield | 53 MWh/y | 731 MWh/y | 182 MWh/y | 610 MWh/y | 53 MWh/y | 206 MWh/y |
total consumption | 823 MWh/y | 884 MWh/y/ 1000 MWh/y | 1298 MWh/y | 1′308 MWh/y/ 1777 MWh/y | 730 MWh/y | 850 MWh/y/ 1300 MWh/y |
PV yield/total consumption | 6% | 83%/73% | 14% | 47%/34% | 7% | 24% / 16% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, M.; Geissler, A. Load Control by Demand Side Management to Support Grid Stability in Building Clusters. Energies 2020, 13, 5112. https://doi.org/10.3390/en13195112
Hall M, Geissler A. Load Control by Demand Side Management to Support Grid Stability in Building Clusters. Energies. 2020; 13(19):5112. https://doi.org/10.3390/en13195112
Chicago/Turabian StyleHall, Monika, and Achim Geissler. 2020. "Load Control by Demand Side Management to Support Grid Stability in Building Clusters" Energies 13, no. 19: 5112. https://doi.org/10.3390/en13195112
APA StyleHall, M., & Geissler, A. (2020). Load Control by Demand Side Management to Support Grid Stability in Building Clusters. Energies, 13(19), 5112. https://doi.org/10.3390/en13195112