Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shockley, W.; Queisser, H.J. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 1961, 32, 510–519. [Google Scholar] [CrossRef]
- Green, M.A. Third Generation Photovoltaics: Advanced Solar Energy Conversion; Springer: Berlin, Germany, 2003; pp. 35–66. [Google Scholar]
- Yamamoto, A.; Tsujino, M.; Ohkubo, M.; Hashimoto, A. Metalorganic chemical vapor deposition growth of InN for InN/Si tandem solar cell. Sol. Energy Mater. Sol. Cells 1994, 35, 53–60. [Google Scholar] [CrossRef]
- Lunardi, M.M.; Moore, S.; Alvarez-Gaitan, J.P.; Yan, C.; Hao, X.J.; Corkish, R. A comparative life cycle assessment of chalcogenide/Si tandem solar modules. Energy 2018, 145, 700–709. [Google Scholar] [CrossRef]
- Meillaud, F.; Shah, A.; Droz, C.; Vallat-Sauvain, E.; Miazza, C. Efficiency limits for single-junction and tandem solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 2952–2959. [Google Scholar] [CrossRef]
- Conibeer, G.; Green, M.; Cho, E.C.; Konig, D.; Cho, Y.H.; Fangsuwannarak, T.; Scardera, G.; Pink, E.; Huang, Y.D.; Puzzer, T.; et al. Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 2008, 516, 6748–6756. [Google Scholar]
- Baba, M.; Makita, K.; Mizuno, H.; Takato, H.; Sugaya, T.; Yamada, N. Effect of series resistances on conversion efficiency of GaAs/Si tandem solar cells with areal current-matching technique. IEEE J. Photovolt. 2018, 8, 654–660. [Google Scholar]
- Hajijafarassar, A.; Martinho, F.; Stulen, F.; Grini, S.; López-Mariño, S.; Espíndola-Rodríguez, M.; Döbeli, M.; Canulescu, S.; Stamate, E.; Gansukh, M.; et al. Monolithic thin-film chalcogenide-silicon tandem solar cells enabled by a diffusion barrier. Sol. Energy Mater. Sol. Cells 2020, 207, 110334. [Google Scholar] [CrossRef]
- Moritz, H.; Futscher, B.E. Efficiency limit of perovskite/Si tandem solar cells. ACS Energy Lett. 2016, 1, 863–868. [Google Scholar]
- Taguchi, H.; Soga, T.; Jimbo, T. Fabrication of GaAs/Si tandem solar cell by epitaxial lift-off technique. Jpn. J. Appl. Phys. 2003, 42, 1419–1421. [Google Scholar] [CrossRef]
- Kim, B.; Toprasertpong, K.; Paszuk, A.; Supplie, O.; Nakano, Y.; Hannappel, T.; Sugiyama, M. GaAsP/Si tandem solar cells: Realistic prediction of efficiency gain by applying strain-balanced multiple quantum wells. Sol. Energy Mater. Sol. Cells 2018, 180, 303–310. [Google Scholar]
- Essig, S.; Steiner, M.A.; Allebé, C.; Geisz, J.F.; Paviet-Salomon, B.; Ward, S.; Descoeudres, A.; LaSalvia, V.; Barraud, L.; Badel, N.; et al. Realization of GaInP/Si dual-junction solar cells with 29.8% 1-sun efficiency. IEEE J. Photovolt. 2016, 6, 1012–1019. [Google Scholar] [CrossRef]
- He, C.; Han, C.B.; Xu, Y.R.; Li, X.J. Photovoltaic effect of CdS/Si nanoheterojunction array. J. Appl. Phys. 2011, 110, 094316. [Google Scholar] [CrossRef]
- Carmody, M.; Mallick, S.; Margetis, J.; Kodama, R.; Biegala, T.; Xu, D.; Bechmann, P.; Garland, J.W.; Sivananthan, S. Single-crystal II-VI on Si single-junction and tandem solar cells. Appl. Phys. Lett. 2010, 96, 153502. [Google Scholar] [CrossRef]
- Leijtens, T.; Bush, K.A.; Prasanna, R.; McGehee, M.D. Opportunities and challenges for tandem solar cells using metal halide perovskite semiconductors. Nat. Energy 2018, 3, 828–838. [Google Scholar] [CrossRef]
- Qiu, Z.W.; Xu, Z.Q.; Li, N.X.; Zhou, N.; Chen, Y.H.; Wan, X.X.; Liu, J.L.; Li, N.; Hao, X.T.; Bi, P.Q.; et al. Monolithic perovskite/Si tandem solar cells exceeding 22% efficiency via optimizing top cell absorber. Nano Energy 2018, 53, 798–807. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Almansouri, I.; Huang, S.J.; Young, T.; Li, Y.; Peng, Y.; Hou, Q.C.; Spiccia, L.; Bach, U.; Cheng, Y.B.; et al. Optical analysis of perovskite/silicon tandem solar cells. J. Mater. Chem. C 2016, 4, 5679–5689. [Google Scholar] [CrossRef]
- Conibeer, G.; Perez-Wurfl, I.; Hao, X.J.; Di, D.W.; Lin, D. Si solid-state quantum dot-based materials for tandem solar cells. Nanoscale Res. Lett. 2012, 7, 193. [Google Scholar] [CrossRef]
- Cheng, Q.J.; Tam, E.; Xu, S.Y.; Ostrikov, K. Si quantum dots embedded in an amorphous SiC matrix: Nanophase control by non-equilibrium plasma hydrogenation. Nanoscale 2010, 2, 594–600. [Google Scholar] [CrossRef]
- Heitmann, J.; Muller, F.; Zacharias, M.; Gosele, U. Silicon nanocrystals: Size matters. Adv. Mater. 2005, 17, 795–803. [Google Scholar] [CrossRef]
- Uchida, G.; Yamamoto, K.; Sato, M.; Kawashima, Y.; Nakahara, K.; Kamataki, K.; Itagaki, N.; Koga, K.; Shiratani, M. Effect of nitridation of Si nanoparticles on the performance of quantum-dot sensitized solar cells. Jpn. J. Appl. Phys. 2012, 51, 01AD01. [Google Scholar] [CrossRef]
- Chang, G.R.; Ma, F.; Ma, D.Y.; Xu, K.W. Multi-band silicon quantum dots embedded in an amorphous matrix of silicon carbide. Nanotechnology 2010, 21, 465605. [Google Scholar] [PubMed]
- Cho, E.C.; Park, S.W.; Hao, X.J.; Song, D.Y.; Conibeer, G.; Park, S.C.; Green, M.A. Silicon quantum dot/crystalline silicon solar cells. Nanotechnology 2008, 19, 245201. [Google Scholar] [PubMed]
- Chen, X.B.; Yang, W.; Yang, P.Z.; Yuan, J.B.; Zhao, F.; Hao, J.B.; Tang, Y. Size-controlled Si quantum dots embedded in B-doped SiNx/Si3N4 superlatice for Si quantum dot solar cells. J. Mater. Sci. Mater. Electron. 2017, 28, 1322–1327. [Google Scholar]
- Cho, E.C.; Green, M.A.; Conibeer, G.; Song, D.Y.; Cho, Y.H.; Scardera, G.; Huang, S.J.; Park, S.W.; Hao, X.J.; Huang, Y.D.; et al. Silicon quantum dots in a dielectric matrix for all-silicon tandem solar cells. Adv. OptoElectron. 2007, 15, 69578. [Google Scholar]
- Song, D.Y.; Cho, E.C.; Conibeer, G.; Flynn, C.; Huang, Y.D.; Green, M.A. Structural, electrical and photovoltaic characterization of Si nanocrystals embedded SiC matrix and Si nanocrystals/c-Si heterojunction. Sol. Energy Mater. Sol. Cells 2008, 92, 474–481. [Google Scholar]
- Shao, W.Y.; Lu, P.; Li, W.; Xu, J.; Xu, L.; Chen, K.J. Simulation and experimental study on anti-reflection characteristics of nano-patterned Si structures for Si quantum dot-based light-emitting devices. Nanoscale Res. Lett. 2016, 11, 317. [Google Scholar]
- Tsu, R.; Gonzalez-Hernandez, J.; Chao, S.S.; Lee, S.C.; Tanaka, K. Critical volume fraction of crystallinity for conductivity percolation in phosphorus-doped Si:F:H alloys. Appl. Phys. Lett. 1982, 40, 534–535. [Google Scholar]
- Campbell, I.H.; Fauchet, P.M. The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 1986, 58, 739–741. [Google Scholar]
- Cao, Y.Q.; Xu, X.; Li, S.X.; Li, W.; Xu, J.; Chen, K.J. Improved photovoltaic properties of Si quantum dots/SiC multilayers-based heterojunction solar cells by reducing tunneling barrier thickness. Front. Optoelectron. 2013, 6, 228–233. [Google Scholar]
- Zhang, P.; Zhang, X.W.; Xu, J.; Mu, W.W.; Xu, J.; Li, W.; Chen, K.J. Tunable nonlinear optical properties in nanocrystalline Si/SiO2 multilayers under femtosecond excitation. Nanoscale Res. Lett. 2014, 9, 28. [Google Scholar]
- Wu, W.; Huang, X.F.; Chen, K.J.; Xu, J.B.; Gao, X.; Xu, J.; Li, W. Room temperaturevisible electroluminescence in silicon nanostructures. J. Vac. Sci. Technol. A 1999, 17, 159–163. [Google Scholar] [CrossRef]
- Rui, Y.J.; Li, S.X.; Cao, Y.Q.; Xu, J.; Li, W.; Chen, K.J. Structural and electroluminescent properties of Si quantum dots/SiC multilayers. Appl. Surf. Sci. 2013, 269, 37–40. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Rui, Y.J.; Li, S.X.; Xu, J.; Song, C.; Jiang, X.F.; Li, W.; Chen, K.J.; Wang, Q.M.; Zuo, Y.H. Size-dependent electroluminescence from Si quantum dots embedded in amorphous SiC matrix. J. Appl. Phys. 2011, 110, 064322. [Google Scholar] [CrossRef]
- Park, S.; Cho, E.C.; Song, D.Y.; Conibeer, G.; Green, M.A. n-Type silicon quantum dots and p-type crystalline silicon heteroface solar cells. Sol. Energy Mater. Sol. Cells 2009, 93, 684–690. [Google Scholar] [CrossRef]
- Boer, K. Survey of Semiconductor Physics; Van Nostrand Reinhold: New York, NY, USA, 1990; p. 244. [Google Scholar]
- Song, C.; Rui, Y.J.; Wang, Q.B.; Xu, J.; Li, W.; Chen, K.J.; Zuo, Y.H.; Wang, Q.M. Structural and electronic properties of Si nanocrystals embedded in amorphous SiC matrix. J. Alloy. Compd. 2011, 509, 3963–3966. [Google Scholar] [CrossRef]
- Li, S.X.; Cao, Y.Q.; Xu, J.; Rui, Y.J.; Li, W.; Chen, K.J. Hydrogenated amorphous silicon-carbide thin films with high photo-sensitivity prepared by layer-by-layer hydrogen annealing technique. Appl. Surf. Sci. 2013, 270, 287–291. [Google Scholar] [CrossRef]
- Cao, Y.Q.; Lu, P.; Zhang, X.W.; Xu, J.; Xu, L.; Chen, K.J. Enhanced photovoltaic property by forming p-i-n structures containing Si quantum dots/SiC multilayers. Nanoscale Res. Lett. 2014, 9, 634. [Google Scholar] [CrossRef]
- Tyagi, M.S.; Van Overstraeten, R. Minority carrier recombination in heavily-doped silicon. Solid-State Electron. 1983, 26, 577–597. [Google Scholar] [CrossRef]
- Zhu, J.; Hsu, C.M.; Yu, Z.F.; Fan, S.H.; Cui, Y. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett. 2010, 10, 1979–1984. [Google Scholar] [CrossRef]
- Xu, J.; Sun, S.H.; Cao, Y.Q.; Lu, P.; Li, W.; Chen, K.J. Light trapping and down-shifting effect of periodically nanopatterned Si-quantum-dot-based structures for enhanced photovoltaic properties. Part. Part. Syst. Charact. 2014, 31, 459–464. [Google Scholar] [CrossRef]
- Lu, P.; Xu, J.; Cao, Y.Q.; Lai, J.W.; Xu, L.; Chen, K.J. Preparation of nano-patterned Si structures for hetero-junction solar cells. Appl. Surf. Sci. 2015, 334, 123–128. [Google Scholar] [CrossRef]
Voc (mV) | Jsc (mA/cm2) | FF (%) | PCE (%) | |
---|---|---|---|---|
Si QDs(2 nm)/SiC(2 nm) MLs | 425 ± 10 | 25.02 ± 0.85 | 43.2 ± 1.3 | 4.59 ± 0.31 |
Si QDs(4 nm)/SiC(2 nm) MLs | 530 ± 9 | 24.66 ± 0.82 | 55.6 ± 1.5 | 7.27 ± 0.45 |
Si QDs(8 nm)/SiC(2 nm) MLs | 532 ± 9 | 21.75 ± 0.75 | 55.8 ± 1.7 | 6.45 ± 0.37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhu, P.; Li, D.; Zeng, X.; Shan, D. Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots. Energies 2020, 13, 4845. https://doi.org/10.3390/en13184845
Cao Y, Zhu P, Li D, Zeng X, Shan D. Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots. Energies. 2020; 13(18):4845. https://doi.org/10.3390/en13184845
Chicago/Turabian StyleCao, Yunqing, Ping Zhu, Dongke Li, Xianghua Zeng, and Dan Shan. 2020. "Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots" Energies 13, no. 18: 4845. https://doi.org/10.3390/en13184845
APA StyleCao, Y., Zhu, P., Li, D., Zeng, X., & Shan, D. (2020). Size-Dependent and Enhanced Photovoltaic Performance of Solar Cells Based on Si Quantum Dots. Energies, 13(18), 4845. https://doi.org/10.3390/en13184845