Review on the PV Hosting Capacity in Distribution Networks
Abstract
:1. Introduction
2. Materials and Methods
3. Hosting Capacity Definitions
3.1. Peak Load
3.2. Transformer Rating
3.3. Customers Equipped with PVs
3.4. Energy Consumption, Roof-Space, Active Power
4. Limiting Factors
4.1. Voltage Level
Standards of Voltage Rise Limits across Countries
4.2. Ampacity
4.3. Unbalance
4.4. Harmonics
4.5. Flicker
5. Summary of Estimated Hosting Capacities of Present Networks
5.1. Estimated HC of Urban, Suburban, Rural Networks
5.2. HC Dependence on Network Topology, Load Modelling, Geographical Area and References
6. Hosting Capacity Improvement Methods
6.1. Voltage Control
6.1.1. Supply Transformer Tap Changer
6.1.2. Inverter Q Control: Oversizing
6.2. Battery Energy Storage System
6.3. Demand Response
6.4. Dynamic Network Configuration and Dynamic Loading of Components
6.5. Power Quality Compensation (Harmonics, Unbalance, Flicker)
7. Discussion
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
HC | Hosting Capacity |
DNOs | Distribution Network Operators |
RES | Renewable Energy Sources |
LV | Low Voltage |
MV | Medium Voltage |
PQ | Power Quality |
DG | Distributed Generation |
DR | Demand Response |
BESS | Battery Energy Storage System |
TF | Transformer |
APC | Active Power Curtailment |
SVCs | Secondary VAr Controllers |
VVC | Volt-VAR Control |
VWC | Volt-Watt Control |
LVDN | Low Voltage Distribution Network |
VUF | Voltage Unbalance Factor |
THD | Total Harmonic Distortion |
PF | Power Factor |
Plt | Long-term Flicker |
Pst | Short-term Flicker |
PI | Performance Index |
DSOs | Distribution System Operators |
RPC | Reactive Power Control |
R | Resistance |
X | Reactance |
DC | Direct Current |
GE | General Electric |
HVAC | Heating, Ventilation, and Air Conditioning |
EWH | Electric Water Heater |
NR | Network Reconfiguration |
References
- Etherden, N.; Bollen, M.H.J. Increasing the hosting capacity of distribution networks by curtailment of renewable energy resources. In Proceedings of the 2011 IEEE PES Trondheim PowerTech: The Power of Technology for a Sustainable Society, POWERTECH 2011, Trondheim, Norway, 19–23 June 2011; pp. 1–7. [Google Scholar]
- Liu, Y.J.; Tai, Y.H.; Huang, C.Y.; Su, H.J.; Lan, P.H.; Hsieh, M.K. Assessment of the PV hosting capacity for the medium-voltage 11.4 kV distribution feeder. In Proceedings of the 4th IEEE International Conference Applied System Innovation 2018, ICASI 2018, Tokyo, Japan, 13–17 April 2018; pp. 381–384. [Google Scholar]
- Kikuchi, S.; Machida, M.; Tamura, J.; Imanaka, M.; Baba, J.; Iioka, D.; Miura, K.; Takagi, M.; Asano, H. Hosting capacity analysis of many distributed photovoltaic systems in future distribution networks. In Proceedings of the 2017 IEEE Innovative Smart Grid Technologies–Asia Smart Grid Smart Community, ISGT-Asia 2017, Auckland, New Zealand, 4–7 December 2017; pp. 1–5. [Google Scholar]
- Bollen, M.H.J.; Rönnberg, S.K. Hosting capacity of the power grid for renewable electricity production and new large consumption equipment. Energies 2017, 10, 1325. [Google Scholar] [CrossRef] [Green Version]
- Rylander, M.; Smith, J.; Lewis, D.; Steffel, S. Voltage impacts from distributed photovoltaics on two distribution feeders. In Proceedings of the IEEE Power Energy Socoety General Meeting 2013, Vancouver, BC, Canada, 21–25 July 2013; pp. 2–6. [Google Scholar]
- Aziz, T.; Ketjoy, N. PV Penetration Limits in Low Voltage Networks and Voltage Variations. IEEE Access 2017, 5, 16784–16792. [Google Scholar] [CrossRef]
- Jain, A.K.; Horowitz, K.; Ding, F.; Gensollen, N.; Mather, B.; Palmintier, B. Quasi-Static Time-Series PV Hosting Capacity Methodology and Metrics. In Proceedings of the 2019 IEEE Power Energy Society Innovation Smart Grid Technology Conference ISGT 2019, Washington, WA, USA, 17–20 February 2019. [Google Scholar]
- Torquato, R.; Salles, D.; Pereira, C.O.; Meira, P.C.M.; Freitas, W. A Comprehensive Assessment of PV Hosting Capacity on Low-Voltage Distribution Systems. IEEE Trans. Power Deliv. 2018, 33, 1002–1012. [Google Scholar]
- Saber, A.Y.; Khandelwal, T.; Srivastava, A.K. Fast Feeder PV Hosting Capacity using Swarm Based Intelligent Distribution Node Selection. In Proceedings of the IEEE Power Energy Society Genery Meeting 2019, 2019-Augus, Atlanta, GA, USA, 4–8 August 2019. [Google Scholar]
- Asano, M.; Wong, F.; Ueda, R.; Moghe, R.; Rahimi, K.; Chun, H.; Tholomier, D. On the Interplay between SVCs and Smart Inverters for Managing Voltage on Distribution Networks. In Proceedings of the IEEE Power Energy Society Genery Meeting 2019, Atlanta, GA, USA, 4–8 August 2019; pp. 1–4. [Google Scholar]
- Jothibasu, S.; Santoso, S.; Dubey, A. Optimization Methods for Evaluating PV Hosting Capacity of Distribution Circuits. In Proceedings of the IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, 16–21 June 2019; pp. 887–891. [Google Scholar]
- Navarro, B.B.; Navarro, M.M. A comprehensive solar PV hosting capacity in MV and LV radial distribution networks. In Proceedings of the 2017 IEEE PES Innovation Smart Grid Technology Conference Europe ISGT-Europe 2017, Auckland, New Zealand, 4–7 December 2017; pp. 1–6. [Google Scholar]
- Singh, N.K.; Wanik, M.Z.C.; Jabbar, A.A.; Sanfilippo, A. Enhancing PV hosting Capacity of a Qatar Remote Farm Network using Inverters Ability to Regulate Reactive Power-a Case Study. In Proceedings of the 2019 IEEE PES Innovation Smart Grid Technology Conference Europe ISGT-Europe, Bucharest, Romania, 29 September–2 October 2019. [Google Scholar]
- Haghi, H.V.; Pecenak, Z.; Kleissl, J.; Peppanen, J.; Rylander, M.; Renjit, A.; Coley, S. Feeder Impact Assessment of Smart Inverter Settings to Support High PV Penetration in California. In Proceedings of the IEEE Power Energy Society Genery Meeting 2019, Atlanta, GA, USA, 4–8 August 2019; pp. 2–6. [Google Scholar]
- Stetz, T.; Marten, F.; Braun, M. Improved low voltage grid-integration of photovoltaic systems in Germany. IEEE Trans. Sustain. Energy 2013, 4, 534–542. [Google Scholar] [CrossRef]
- Arshad, A.; Püvi, V.; Lehtonen, M. Monte carlo-based comprehensive assessment of PV hosting capacity and energy storage impact in realistic finnish low-voltage networks. Energies 2018, 11, 1467. [Google Scholar] [CrossRef] [Green Version]
- Divan, D.; Moghe, R.; Chun, H. Managing distribution feeder voltage issues caused by high PV penetration. In Proceedings of the 2016 IEEE 7th International Symposium Power Electronics Distributed Generation Systems PEDG 2016, Vancouver, BC, Canada, 27–30 June 2016. [Google Scholar]
- Tonkoski, R.; Turcotte, D.; El-Fouly, T.H.M. Impact of high PV penetration on voltage profiles in residential neighborhoods. IEEE Trans. Sustain. Energy 2012, 3, 518–527. [Google Scholar] [CrossRef]
- Ding, F.; Horowitz, K.; Mather, B.; Palmintier, B. Sequential Mitigation Solutions to Enable Distributed PV Grid Integration. In Proceedings of the IEEE Power Energy Society General Meeting 2018, Portland, OR, USA, 5–9 August 2018; pp. 1–5. [Google Scholar]
- Ari, G.K.; Baghzouz, Y. Impact of high PV penetration on voltage regulation in electrical distribution systems. In Proceedings of the 3rd International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2011, Ischia, Italy, 14–16 June 2011; pp. 744–748. [Google Scholar]
- Falabretti, D.; Merlo, M.; Delfanti, M. Network reconfiguration and storage systems for the hosting capacity improvement. In Proceedings of the 22nd International Conference on Electricity Distribution, Stockholm, Sweden, 10–13 June 2013; pp. 10–13. [Google Scholar]
- Ferdowsi, F.; Mehraeen, S.; Upton, G.B. Assessing distribution network sensitivity to voltage rise and flicker under high penetration of behind-the-meter solar. Renew. Energy 2020, 152, 1227–1240. [Google Scholar] [CrossRef]
- Kitworawut, P.B.; Azuatalam, D.T.; Unigwe, O.C.; Collin, A.J. An investigation into the technical impacts of microgeneration on UK-type LV distribution networks. In Proceedings of the 2016 IEEE International Conference on Renewable Energy Research and Applications, ICRERA 2016, Birmingham, UK, 20–23 November 2016; pp. 124–129. [Google Scholar]
- Essackjee, I.A.; Ah King, R.T.F. Maximum rooftop photovoltaic hosting capacity with harmonics as limiting factor—Case study for Mauritius. In Proceedings of the icABCD 2019–2nd International Conference Advance Big Data, Computing Data Communication Systems, Winterton, South Africa, 5–6 August 2019. [Google Scholar]
- Sakar, S.; Balci, M.E.; Abdel Aleem, S.H.E.; Zobaa, A.F. Increasing PV hosting capacity in distorted distribution systems using passive harmonic filtering. Electr. Power Syst. Res. 2017, 148, 74–86. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.; Chandra, A.; Saad, M.; Lefebvre, S.; Asber, D.; Lenoir, L. Voltage Flicker Mitigation Employing Smart Loads With High Penetration of Renewable Energy in Distribution Systems. IEEE Trans. Sustain. Energy 2017, 8, 414–424. [Google Scholar] [CrossRef]
- Dubey, A. Impacts of voltage control methods on distribution circuit’s photovoltaic (PV) integration limits. Inventions 2017, 2, 28. [Google Scholar] [CrossRef] [Green Version]
- Arshad, A.; Lindner, M.; Lehtonen, M. An analysis of photo-voltaic hosting capacity in finnish low voltage distribution networks. Energies 2017, 10, 1702. [Google Scholar] [CrossRef] [Green Version]
- Arshad, A.; Lehtonen, M. A Stochastic Assessment of PV Hosting Capacity Enhancement in Distribution Network Utilizing Voltage Support Techniques. IEEE Access 2019, 7, 46461–46471. [Google Scholar] [CrossRef]
- Hu, J.; Marinelli, M.; Coppo, M.; Zecchino, A.; Bindner, H.W. Coordinated voltage control of a decoupled three-phase on-load tap changer transformer and photovoltaic inverters for managing unbalanced networks. Electr. Power Syst. Res. 2016, 131, 264–274. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Espinosa, A.; Ochoa, L.F. Increasing the PV hosting capacity of Lv networks: OLTC-fitted transformers vs. reinforcements. In Proceedings of the 2015 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2015, Washington, WA, USA, 17–20 February 2015; pp. 2011–2014. [Google Scholar]
- Lusis, P.; Andrew, L.L.H.; Liebman, A.; Tack, G.; Chakraborty, S. Reducing the unfairness of coordinated inverter dispatch in pv-rich distribution networks. In Proceedings of the 2019 IEEE Milan PowerTech, PowerTech 2019, Milan, Italy, 23–27 June 2019; p. 675318. [Google Scholar]
- Li, X.; Borsche, T.; Andersson, G. PV integration in Low-Voltage feeders with Demand Response. In Proceedings of the 2015 IEEE Eindhoven PowerTech, PowerTech 2015, Eindhoven, The Netherlands, 29 June–2 July 2015. [Google Scholar]
- Rahman, M.M.; Arefi, A.; Shafiullah, G.M.; Hettiwatte, S. A new approach to voltage management in unbalanced low voltage networks using demand response and OLTC considering consumer preference. Int. J. Electr. Power Energy Syst. 2018, 99, 11–27. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, C.; Meng, K.; Liu, B.; Dong, Z.Y.; Wong, P.K.C.; Ting, T.; Qi, Q. Improving Hosting Capacity of Unbalanced Distribution Networks via Battery Energy Storage Systems. In Proceedings of the Asia-Pacific Power Energy Engineering Conference APPEEC 2019, Macao, China, 1–4 December 2019; pp. 1–5. [Google Scholar]
- Hasanpor Divshali, P.; Soder, L. Improving Hosting Capacity of Rooftop PVs by Quadratic Control of an LV-Central BSS. IEEE Trans. Smart Grid 2019, 10, 919–927. [Google Scholar] [CrossRef]
- Verschueren, T.; Mets, K.; Meersman, B.; Strobbe, M.; Develder, C.; Vandevelde, L. Assessment and mitigation of voltage violations by solar panels in a residential distribution grid. In Proceedings of the 2011 IEEE International Conference on Smart Grid Communications, SmartGridComm 2011, Brussels, Belgium, 17–20 October 2011; pp. 540–545. [Google Scholar]
- Reno, M.J.; Broderick, R.J. Optimal Siting of PV on the Distribution System with Smart Inverters. In Proceedings of the 2018 IEEE 7th World Conference Photovoltaic Energy Conversion, WCPEC 2018—A Joint Conference of 45th IEEE PVSC, 28th PVSEC 34th EU PVSEC 2018, Waikoloa, HI, USA, 10–15 June 2018; pp. 1468–1470. [Google Scholar]
- Su, X.; Masoum, M.A.S.; Wolfs, P.J. Optimal PV inverter reactive power control and real power curtailment to improve performance of unbalanced four-wire LV distribution networks. IEEE Trans. Sustain. Energy 2014, 5, 967–977. [Google Scholar] [CrossRef]
- AlKaabi, S.S.; Khadkikar, V.; Zeineldin, H.H. Incorporating PV Inverter Control Schemes for Planning Active Distribution Networks. IEEE Trans. Sustain. Energy 2015, 6, 1224–1233. [Google Scholar] [CrossRef]
- Yan, R.; Saha, T.K. Investigation of voltage stability for residential customers due to high photovoltaic penetrations. IEEE Trans. Power Syst. 2012, 27, 651–662. [Google Scholar] [CrossRef]
- Xiong, Q.; Liu, F.; Lv, L.; Liu, Y.; Li, Y.; Zhu, C. Urban power grids dynamic control model with photovoltaic and electric vehicles. In Proceedings of the China International Conference on Electricity, Distribution CICED 2018, Tianjin, China, 17–19 September 2018; pp. 2462–2466. [Google Scholar]
- Weisshaupt, M.J.; Schlatter, B.; Korba, P.; Kaffe, E.; Kienzle, F. Evaluation of Measures to Operate Urban Low Voltage Grids Considering Future PV Expansion. IFAC-PapersOnLine 2016, 49, 336–341. [Google Scholar] [CrossRef]
- Atmaja, W.Y.; Sarjiya; Lesnanto, M.P.; Pramono, E.Y. Hosting Capacity Improvement Using Reactive Power Control Strategy of Rooftop PV Inverters. In Proceedings of the 2019 7th International Conference on Smart Energy Grid Engineering, SEGE 2019, Oshawa, ON, Canada, 12–14 August 2019; pp. 213–217. [Google Scholar]
- Tang, N.C.; Chang, G.W. A stochastic approach for determining PV hosting capacity of a distribution feeder considering voltage quality constraints. In Proceedings of the International Conference on Harmonics and Quality of Power, ICHQP 2018, Ljubljana, Slovenia, 13–16 May 2018; pp. 1–5. [Google Scholar]
- Martin, W.; Stauffer, Y.; Ballif, C.; Hutter, A.; Alet, P.J. Automated Quantification of PV Hosting Capacity in Distribution Networks under User-Defined Control and Optimisation Procedures. In Proceedings of the 2018 IEEE PES Innovation Smart Grid Technology Conference Europe, ISGT-Europe 2018, Sarajevo, Bosnia, 21–25 October 2018. [Google Scholar]
- Divshali, P.H.; Soder, L. Improving PV hosting capacity of distribution grids considering dynamic voltage characteristic. In Proceedings of the 20th Power Systems Computation Conference, PSCC 2018, Dublin, Ireland, 11–15 June 2018. [Google Scholar]
- Padullaparti, H.V.; Jothibasu, S.; Santoso, S.; Todeschini, G. Increasing Feeder PV Hosting Capacity by Regulating Secondary Circuit Voltages. In Proceedings of the IEEE Power Energy Society General Meeting 2018, Portland, OR, USA, 5–9 August 2018. [Google Scholar]
- Bruno, S.; Dellino, G.; La Scala, M.; Meloni, C. A microforecasting module for energy management in residential and tertiary buildings. Energies 2019, 12, 1006. [Google Scholar] [CrossRef] [Green Version]
- Bruno, S.; Dellino, G.; La Scala, M.; Meloni, C. A Microforecasting Module for Energy Consumption in Smart Grids. In Proceedings of the 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe EEEIC/I CPS Europe 2018, Palermo, Italy, 12–15 June 2018. [Google Scholar]
- Haque, M.M.; Wolfs, P. A review of high PV penetrations in LV distribution networks: Present status, impacts and mitigation measures. Renew. Sustain. Energy Rev. 2016, 62, 1195–1208. [Google Scholar] [CrossRef]
- Jenicek, D.; Inam, W.; Ilic, M. Locational dependence of maximum installable PV capacity in LV networks while maintaining voltage limits. In Proceedings of the NAPS 2011—43rd North American Power Symposium, Boston, MA, USA, 4–6 August 2011. [Google Scholar]
- Ding, F.; Mather, B.; Gotseff, P. Technologies to increase PV hosting capacity in distribution feeders. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Dallas, TX, USA, 3–5 May 2016; pp. 1–5. [Google Scholar]
- Ding, F.; Mather, B.; Ainsworth, N.; Gotseff, P.; Baker, K. Locational sensitivity investigation on PV hosting capacity and fast track PV screening. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, Dallas, TX, USA, 3–5 May 2016; pp. 1–5. [Google Scholar]
- Steyn, A.F.W.; Rix, A.J. Modelling the technical influence of randomly distributed solar PV uptake on electrical distribution networks. In Proceedings of the ICCEP 2019—7th International Conference on Clean Electrical Power: Renewable Energy Resources Impact 2019, Puglia, Italy, 2–4 July 2019; pp. 690–698. [Google Scholar]
- Ding, F.; Mather, B. On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement. IEEE Trans. Sustain. Energy 2017, 8, 1010–1020. [Google Scholar] [CrossRef]
- Seuss, J.; Reno, M.J.; Broderick, R.J.; Grijalva, S. Improving distribution network PV hosting capacity via smart inverter reactive power support. In Proceedings of the IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Mohammadi, P.; Mehraeen, S. Challenges of PV Integration in Low-Voltage Secondary Networks. IEEE Trans. Power Deliv. 2017, 32, 525–535. [Google Scholar]
- Hoke, A.; Butler, R.; Hambrick, J.; Kroposki, B. Steady-state analysis of maximum photovoltaic penetration levels on typical distribution feeders. IEEE Trans. Sustain. Energy 2013, 4, 350–357. [Google Scholar] [CrossRef]
- Gaunt, C.T.; Namanya, E.; Herman, R. Voltage modelling of LV feeders with dispersed generation: Limits of penetration of randomly connected photovoltaic generation. Electr. Power Syst. Res. 2017, 143, 1–6. [Google Scholar] [CrossRef]
- Armendariz, M.; Broden, D.; Honeth, N.; Nordström, L. A method to identify exposed nodes in low voltage distribution grids with High PV penetration. In Proceedings of the IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar]
- Lazzeroni, P.; Olivero, S.; Stirano, F.; Repetto, M. Impact of PV penetration in a distribution grid: A Middle-East study case. In Proceedings of the 2015 IEEE 1st International Forum on Research and Technologies for Society and Industry, RTSI 2015–Proceedings, Torino, Italy, 16–18 September 2015; pp. 353–358. [Google Scholar]
- Henein, S.; Zegers, A.; Übermasser, S. Gap analysis of future energy grids. In Proceedings of the International conference in Europe concerning energy markets, EEM 2015, Lisbon, Portugal, 19–22 May 2015; pp. 31–34. [Google Scholar]
- Coogan, K.; Reno, M.J.; Grijalva, S.; Broderick, R.J. Locational dependence of PV hosting capacity correlated with feeder load. In Proceedings of the IEEE Power Engineering Society Transmission Distribution Conference, Washington, WA, USA, 27–31 July 2014. [Google Scholar]
- Mawarni, D.E.; Ali, M.M.V.M.; Nguyen, P.H.; Kling, W.L.; Jerele, M. A case study of using OLTC to mitigate overvoltage in a rural european low voltage network. In Proceedings of the Universities Power Engineering Conference, Wollongong, Australia, 27–30 September 2015. [Google Scholar]
- Jothibasu, S.; Santoso, S.; Dubey, A. Determining PV hosting capacity without incurring grid integration cost. In Proceedings of the NAPS 2016—48th North American Power Symposium, Denver, CO, USA, 18–20 September 2016. [Google Scholar]
- Liu, X.; Aichhorn, A.; Liu, L.; Li, H. Coordinated control of distributed energy storage system with tap changer transformers for voltage rise mitigation under high photovoltaic penetration. IEEE Trans. Smart Grid 2012, 3, 897–906. [Google Scholar] [CrossRef]
- EPRI. Stochastic Analysis to Determine Feeder Hosting Capacity for Distributed Solar PV. EPRI Tech. Updat. 2012, 1026640, 1–50. [Google Scholar]
- Baldenko, N.; Behzadirafi, S. Determination of photovoltaic hosting capacity on radial electric distribution feeders. In Proceedings of the 2016 IEEE International Conference on Power System Technology–POWERCON, Wollongong, Australia, 28 September–1 October 2016; pp. 2–5. [Google Scholar]
- Nijhuis, M.; Gibescu, M.; Cobben, J.F.G. Incorporation of on-load tap changer transformers in low-voltage network planning. In Proceedings of the IEEE PES Innovation Smart Grid Technology Conference Europe, Ljubljana, Slovenia, 9–12 October 2016. [Google Scholar]
- Chathurangi, D.; Jayatunga, U.; Rathnayake, M.; Wickramasinghe, A.; Agalgaonkar, A.; Perera, S. Potential power quality impacts on LV distribution networks with high penetration levels of solar PV. In Proceedings of the International Conference on Harmonics and. Quality of Power, ICHQP 2018, Ljubljana, Slovenia, 13–16 May 2018; pp. 1–6. [Google Scholar]
- Pukhrem, S.; Basu, M.; Conlon, M.F.; Sunderland, K. Enhanced network voltage management techniques under the proliferation of rooftop solar PV installation in low-voltage distribution network. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 681–694. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shafiullah, A.A.; Arefi, A.; Pezeshki, H.; Hettiwatte, S. Improvement of voltage magnitude and unbalance in LV network by implementing residential demand response. In Proceedings of the IEEE Power Energy Society General Meeting 2018, Portland, OR, USA, 5–9 August 2018; pp. 1–5. [Google Scholar]
- Chathurangi, D.; Jayatunga, U.; Perera, S.; Agalgaonkar, A.; Siyambalapitiya, T.; Wickramasinghe, A. Connection of solar PV to LV networks: Considerations for maximum penetration level. In Proceedings of the Australasian Universities Power Engineering Conference, AUPEC 2018, Auckland, New Zealand, 27–30 November 2018. [Google Scholar]
- Procopiou, A.T.; Ochoa, L.F. Voltage Control in PV-Rich LV Networks Without Remote Monitoring. IEEE Trans. Power Syst. 2017, 32, 1224–1236. [Google Scholar]
- Long, C.; Ochoa, L.F. Voltage control of PV-rich LV networks: OLTC-fitted transformer and capacitor banks. IEEE Trans. Power Syst. 2016, 31, 4016–4025. [Google Scholar] [CrossRef]
- Hashemi, S.; Ostergaard, J.; Yang, G. Effect of reactive power management of PV inverters on need for energy storage. In Proceedings of the 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA, 16–21 June 2013; pp. 2304–2308. [Google Scholar]
- Navarro, A.; Ochoa, L.F.; Randles, D. Monte Carlo-based assessment of PV impacts on real UK low voltage networks. In Proceedings of the IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013; pp. 31–35. [Google Scholar]
- Sarmiento, D.A.; Vergara, P.P.; Da Silva, L.C.P.; De Almeida, M.C. Increasing the PV hosting capacity with OLTC technology and PV VAr absorption in a MV/LV rural Brazilian distribution system. In Proceedings of the International Conference on Harmonics and Quality of Power, ICHQP 2016, Belo Horizonte, Brazil, 16–19 October 2016; pp. 395–399. [Google Scholar]
- Ravikumar Pandi, V.; Zeineldin, H.H.; Xiao, W. Allowable DG penetration level considering harmonic distortions. In Proceedings of the IECON Proceedings (Industrial Electronnics Conference), Melbourne, Australia, 7–10 November 2011; pp. 814–818. [Google Scholar]
- Heinrich, C.; Fortenbacher, P.; Fuchs, A.; Andersson, G. PV-integration strategies for low voltage networks. In Proceedings of the 2016 IEEE International Energy Conference, ENERGYCON 2016, Leuven, Belgium, 4–8 April 2016; p. 2. [Google Scholar]
- Alam, M.J.E.; Muttaqi, K.M.; Sutanto, D. Distributed energy storage for mitigation of voltage-rise impact caused by rooftop solar PV. In Proceedings of the IEEE Power & Energy Society General Meeting, San Diego, CA, USA, 22–26 July 2012; pp. 1–8. [Google Scholar]
- Demirok, E.; Sera, D.; Teodorescu, R.; Rodriguez, P.; Borup, U. Clustered PV inverters in LV networks: An overview of impacts and comparison of voltage control strategies. In Proceedings of the 2009 IEEE Electrical Power and Energy Conference (EPEC), Montreal, QC, Canada, 22–23 October 2009; pp. 1–6. [Google Scholar]
- Alam, M.J.E.; Muttaqi, K.M.; Sutanto, D. Community Energy Storage for Neutral Voltage Rise Mitigation in Four-Wire Multigrounded LV Feeders with Unbalanced Solar PV Allocation. IEEE Trans. Smart Grid 2015, 6, 2845–2855. [Google Scholar] [CrossRef] [Green Version]
- Joshi, K.; Gokaraju, R.R. An Iterative Approach to Improve PV Hosting Capacity for a Remote Community. In Proceedings of the IEEE Power Energy Society General Meeting 2018, Portland, OR, USA, 5–9 August 2018. [Google Scholar]
- Dubey, A.; Santoso, S.; Maitra, A. Understanding photovoltaic hosting capacity of distribution circuits. In Proceedings of the IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar]
- Ceylan, O.; Paudyal, S.; Bhattarai, B.P.; Myers, K.S. Photovoltaic hosting capacity of feeders with reactive power control and tap changers. In Proceedings of the 2017 IEEE PES Innovation Smart Grid Technology Conference Europe ISGT-Europe 2017, Auckland, New Zealand, 4–7 December 2017; pp. 1–6. [Google Scholar]
- Patsalides, M.; Makrides, G.; Stavrou, A. Assessing the Photovoltaic (Pv) Hosting Capacity of Distribution Grids. In Proceedings of the IET Mediterranean Conference on Power Generation, Transmission, Distribution and Energy Conversion (MedPower 2016), Belgrade, Serbia, 6–9 November 2016; pp. 2–5. [Google Scholar]
- Niederhuemer, W.; Schwalbe, R. Increasing PV hosting capacity in LV grids with a probabilistic planning approach. In Proceedings of the 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST, Vienna, Austria, 8–11 September 2015; pp. 537–540. [Google Scholar]
- Ranaweera, I.; Midtgård, O.M.; Korpås, M. Distributed control scheme for residential battery energy storage units coupled with PV systems. Renew. Energy 2017, 113, 1099–1110. [Google Scholar] [CrossRef]
- Heslop, S.; MacGill, I.; Fletcher, J. Maximum PV generation estimation method for residential low voltage feeders. Sustain. Energy Grids Netw. 2016, 7, 58–69. [Google Scholar] [CrossRef]
- Solanki, S.K.; Ramachandran, V.; Solanki, J. Steady state analysis of high penetration PV on utility distribution feeder. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, San Diego, CA, USA, 22–26 July 2012; pp. 1–6. [Google Scholar]
- Ruf, H. Limitations for the feed-in power of residential photovoltaic systems in Germany–An overview of the regulatory framework. Sol. Energy 2018, 159, 588–600. [Google Scholar] [CrossRef]
- Kabiri, R.; Holmes, D.G.; McGrath, B.P. Voltage regulation of LV feeders with high penetration of PV distributed generation using electronic tap changing transformers. In Proceedings of the 2014 Australasian Universities Power Engineering Conference, AUPEC 2014, Perth, Australia, 28 September–1 October 2014; pp. 1–6. [Google Scholar]
- Rahman, F.F.S.; Adi, K.W.; Sarjiya; Putranto, L.M. Study on Photovoltaic Hosting in Yogyakarta Electric Distribution Network. In Proceedings of the 5th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE, Banten, Indonesia, 4–5 September 2018; pp. 240–244. [Google Scholar]
- Grabner, M.; Souvent, A.; Suljanović, N.; Košir, A.; Blažič, B. Probabilistic methodology for calculating PV hosting capacity in LV networks using actual building roof data. Energies 2019, 12, 4086. [Google Scholar] [CrossRef] [Green Version]
- Reno, M.J.; Broderick, R.J. Statistical analysis of feeder and locational PV hosting capacity for 216 feeders. In Proceedings of the IEEE Power & Energy Society General Meeting, Boston, MA, USA, 21 July 2016. [Google Scholar]
- Ballanti, A.; Ochoa, L.F. On the integrated PV hosting capacity of MV and LV distribution networks. In Proceedings of the 2015 IEEE PES Innovative Smart Grid Technologies Latin America, ISGT LATAM 2015, Montevideo, Uruguay, 5–7 October 2015; pp. 366–370. [Google Scholar]
- Jothibasu, S.; Dubey, A.; Santoso, S. Two-Stage Distribution Circuit Design Framework for High Levels of Photovoltaic Generation. IEEE Trans. Power Syst. 2019, 34, 5217–5226. [Google Scholar]
- Fu, Y.Y.; Chiang, H.D. Toward optimal multi-period network reconfiguration for increasing the hosting capacity of distribution networks. In Proceedings of the IEEE Power Energy Society General Meeting 2018, Portland, OR, USA, 5–9 August 2018; pp. 1–5. [Google Scholar]
- Liu, J.; Chiang, H.D. Maximizing Available Delivery Capability of Unbalanced Distribution Networks for High Penetration of Distributed Generators. IEEE Trans. Power Deliv. 2017, 32, 1196–1202. [Google Scholar] [CrossRef]
- Shayani, R.A.; De Oliveira, M.A.G. Photovoltaic generation penetration limits in radial distribution systems. IEEE Trans. Power Syst. 2011, 26, 1625–1631. [Google Scholar] [CrossRef]
- Data, S.M. Photovoltaic Integration in Smart City Power Distribution. In Proceedings of the IEEE 5th International Conference on Smart Cities and Green ICT Systems (SMARTGREENS), IEEE 2016, Rome, Italy, 23–25 April 2016; pp. 166–178. [Google Scholar]
- Shahnia, F.; Majumder, R.; Ghosh, A.; Ledwich, G.; Zare, F. Sensitivity analysis of voltage imbalance in distribution networks with rooftop PVs. In Proceedings of the IEEE PES General Meeting PES 2010, Minneapolis, MN, USA, 25–29 July 2010. [Google Scholar]
- Sakar, S.; Balci, M.E.; Aleem, S.H.E.A.; Zobaa, A.F. Hosting capacity assessment and improvement for photovoltaic-based distributed generation in distorted distribution networks. In Proceedings of the EEEIC 2016—International Conference on Environment and Electrical Engineering, Florence, Italy, 7–10 June 2016; pp. 2–7. [Google Scholar]
- Krata, J.; Saha, T.K.; Yan, R. Large scale photovoltaic system and its impact on distribution network in transient cloud conditions. In Proceedings of the IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 2–6. [Google Scholar]
- Rahman, S.; Moghaddami, M.; Sarwat, A.I.; Olowu, T.; Jafaritalarposhti, M. Flicker Estimation Associated with PV Integrated Distribution Network. In Proceedings of the IEEE SOUTHEASTCON 2018, Charlotte, NC, USA, 19–22 April 2018. [Google Scholar]
- Arshad, A.; Lehtonen, M. Instantaneous Active/Reactive Power Control Strategy for Flicker Mitigation under High PV Penetration. In Proceedings of the 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe, Sarajevo, Bosnia and Herzegovina, 21–25 October 2018. [Google Scholar]
- Chen, P.; Salcedo, R.; Zhu, Q.; Czarkowski, D.; Jiang, Z.; Spitsa, V.; Zabar, Z.; Uosef, R.E. Analysis of Voltage Pro fi le Problems Due to the Penetration of Distributed Generation in Low-Voltage. IEEE Trans. Power Deliv. 2012, 27, 2020–2028. [Google Scholar] [CrossRef]
- Seuss, J.; Harley, R.G. A low-cost distributed control strategy for rooftop PV with utility benefits. In Proceedings of the IEEE Power & Energy Society General Meeting, Vancouver, BC, Canada, 21–25 July 2013. [Google Scholar]
- Alharbi, B.; Jayaweera, D. Smart power system operation with dynamic thermal limits on critical transmission lines and integration of large PV systems. In Proceedings of the 8th International Conference on Renewable Energy Research and Applications, ICRERA 2019, Brasov, Romania, 3–6 November 2019; pp. 727–732. [Google Scholar]
- Dubey, A.; Santoso, S. On Estimation and Sensitivity Analysis of Distribution Circuit’s Photovoltaic Hosting Capacity. IEEE Trans. Power Syst. 2017, 32, 2779–2789. [Google Scholar] [CrossRef]
- Lakshmi, S.; Ganguly, S. Simultaneous optimisation of photovoltaic hosting capacity and energy loss of radial distribution networks with open unified power quality conditioner allocation. IET Renew. Power Gener. 2018, 12, 1382–1389. [Google Scholar] [CrossRef]
- Bletterie, B.; Le Baut, J.; Kadam, S.; Bolgaryn, R.; Abart, A. Hosting capacity of LV networks with extended voltage band. In Proceedings of the 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, Vienna, Austria, 8–11 September 2015; pp. 531–536. [Google Scholar]
- Xu, Z.; Wang, X.; Yang, J.; Zhang, F. A review on voltage control for distribution systems with large-scale distributed photovoltaic power integration. IOP Conf. Ser. Earth Environ. Sci. 2019, 371. [Google Scholar] [CrossRef]
- Demoulias, C. A new simple analytical method for calculating the optimum inverter size in grid-connected PV plants. Electr. Power Syst. Res. 2010, 80, 1197–1204. [Google Scholar] [CrossRef]
- Jamal, T.; Carter, C.; Schmidt, T.; Shafiullah, G.M.; Calais, M.; Urmee, T. An energy flow simulation tool for incorporating short-term PV forecasting in a diesel-PV-battery off-grid power supply system. Appl. Energy 2019, 254, 113718. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.; Østergaard, J. Efficient Control of Energy Storage for Increasing the PV Hosting Capacity of LV Grids. IEEE Trans. Smart Grid 2018, 9, 2295–2303. [Google Scholar]
- Chaudhary, P.; Rizwan, M. Voltage regulation mitigation techniques in distribution system with high PV penetration: A review. Renew. Sustain. Energy Rev. 2018, 82, 3279–3287. [Google Scholar] [CrossRef]
- Zillmann, M.; Yan, R.; Saha, T.K. Regulation of distribution network voltage using dispersed battery storage systems: A case study of a rural network. In Proceedings of the IEEE Power & Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]
- Dong, Y.; Xie, X.; Shi, W.; Zhou, B.; Jiang, Q. Demand-response-based distributed preventive control to improve short-term voltage stability. IEEE Trans. Smart Grid 2018, 9, 4785–4795. [Google Scholar] [CrossRef]
- Medina, J.; Muller, N.; Roytelman, I. Demand response and distribution grid operations: Opportunities and challenges. IEEE Trans. Smart Grid 2010, 1, 193–198. [Google Scholar] [CrossRef]
- Mahroo-Bakhtiari, R.; Izadi, M.; Safdarian, A.; Lehtonen, M. Distributed load management scheme to increase PV hosting capacity in LV feeders. IET Renew. Power Gener. 2020, 14, 125–133. [Google Scholar] [CrossRef]
- Capitanescu, F.; Ochoa, L.F.; Margossian, H.; Hatziargyriou, N.D. Assessing the potential of network reconfiguration to improve distributed generation hosting capacity in active distribution systems. IEEE Trans. Power Syst. 2015, 30, 346–356. [Google Scholar] [CrossRef]
- De Oliveira, T.E.C.; Carvalho, P.M.S.; Ribeiro, P.F.; Bonatto, B.D. PV hosting capacity dependence on harmonic voltage distortion in low-voltage grids: Model validation with experimental data. Energies 2018, 11, 465. [Google Scholar] [CrossRef] [Green Version]
- Turitsyn, K.; Šulc, P.; Backhaus, S.; Chertkov, M. Options for control of reactive power by distributed photovoltaic generators. Proc. IEEE 2011, 99, 1063–1073. [Google Scholar] [CrossRef] [Green Version]
- Kryonidis, G.C.; Kontis, E.O.; Chrysochos, A.I.; Demoulias, C.S.; Papagiannis, G.K. Coordinated phase-based voltage regulation in active unbalanced LV distribution networks. In Proceedings of the 51st International Universities Power Engineering Conference, UPEC 2016, Coimbra, Portugal, 6–9 September 2016; pp. 1–6. [Google Scholar]
- Chua, K.H.; Lim, Y.S.; Taylor, P.; Morris, S.; Wong, J. Energy storage system for mitigating voltage unbalance on low-voltage networks with photovoltaic systems. IEEE Trans. Power Deliv. 2012, 27, 1783–1790. [Google Scholar] [CrossRef]
- Gupta, T.N.; Murshid, S.; Singh, B. Power Quality Improvement of Single Phase Grid Connected Hybrid Solar PV and Wind System. In Proceedings of the 8th IEEE Power India International Conference-PIICON, Kurukshetra, India, 10–12 December 2018; pp. 1–5. [Google Scholar]
- Arshad, A.; Lehtonen, M. A comprehensive voltage control strategy with voltage flicker compensation for highly PV penetrated distribution networks. Electr. Power Syst. Res. 2019, 172, 105–113. [Google Scholar] [CrossRef]
- Mahmoud, K.; Lehtonen, M. Three-level control strategy for minimizing voltage deviation and flicker in PV-rich distribution systems. Int. J. Electr. Power Energy Syst. 2020, 120, 105997. [Google Scholar] [CrossRef]
Reference | HC Definition |
---|---|
Peak Load | The ratio of the maximum capacity of the PV installation to the peak load of the feeder. |
TF Rating | The ratio of total PV production to the transformer’s rated capacity. |
Customer PVs | The ratio of houses equipped with PVs to the total number of houses in the area under study. |
Active Power | The ratio of PV output to the active power of the load. |
Roof-space PVs | The roof space of the feeder-connected houses that potentially enable the connection and installation of solar PV panels. |
Energy Consumption | The ratio of total yearly energy generated by the PV systems to the overall energy consumption. |
Voltage Rise | Countries |
---|---|
1.1 p.u. | Australia [94], Italy [21], Finland [28], Cyprus [88], South Africa [60], UK [23] |
1.06 p.u. | Sri Lanka ([72,74]), Qatar [13] |
1.05 p.u. | USA [24], Denmark [77], Sweden [1], Indonesia ([44,95]), Philippines [12] |
1.03 p.u. | Germany [15], China [2], Switzerland [33] |
TF Overloading Limits | Cable Overloading Limits |
---|---|
100% of nominal rating in urban, Zurich [43] | 150% of rated power in suburban, Germany [15] |
187.5% of rated capacity in urban, Brazil [8] | 105% of nominal line current in urban, New Orleans [58] |
150% of rated power in suburban, Germany [15] | 100% of nominal rating in rural, Qatar [13] |
100% of the nominal rating in rural, Qatar [13] | 85% of line rating in urban, Zurich [43] |
3% Un | 2% Un | 1.3% Un | 1% Un |
---|---|---|---|
[8,45,54,86] | [30,34,71,90] | [23] | [35,39] |
Article-No. | PI | Limits Defined |
---|---|---|
[37,60,81,83,89] | PI1 1 | EN-50160; PI1 ≤ +10%Un (253 V) (0.9 p.u.–1.1 p.u.) |
[76] | PI1 | BS-EN50160 (−6/+10% Un, 0.94 p.u.–1.1 p.u.) |
[84,91] | PI1 | −6/+10% Un (216 V–253 V) |
[85] | PI1 | CSA, +/−6% of Un |
[7,9,41,56] | PI1 | ANSI C84.1 |
[11,48,67,77,87] | PI1 | ANSI C84.1; PI1≤ 1.05 p.u. (+/−5% Un) |
[33,61,79] | PI1 | 3% Un, 1.03 p.u. |
[28,62,88] | PI1, PI2, PI3 | EN-50160 |
[8] | PI1, PI3, PI4 | PI1 = 0.92 p.u.–1.05 p.u.; PI3 = 187.5% of TF capacity; PI4 = 3% |
[12] | PI1, PI2 | PI1 = 1.05 p.u.; PI2 = 100% of nominal loading |
[46] | PI1, PI2, PI3 | PI1 = EN-50160; PI2, PI3 = 100% of nominal rating |
[66] | PI1 | PI1 = 1.05 p.u. (ANSI C84.1 2011) |
[13] | PI1, PI2, PI3 | PI1 = ± 6% Un; PI2, PI3 = 100% nominal rating |
[15] | PI1, PI2, PI3 | PI1 = 1.03 p.u.; PI2, PI3 = 150% of rated power |
[64] | PI1, PI2 | PI1 = Range A ANSI C84.1; PI2 = 100% of nominal rating |
[54] | PI1, PI4 | PI1 = 1.05 p.u.; PI4 = 0.03 p.u. |
[38,97] | PI1, PI2, PI3 | PI1 = ANSI C84.1; PI2, PI3 = Ampere rating of component |
[86] | PI1, PI4 | PI1 = 1.05 p.u.; PI4 = 0.03 p.u.(ANSI) |
[19] | PI1, PI2, PI3,PI5 | PI1 = (ANSI C84.1); PI5 = Flicker as per tolerance level 3% |
[96] | PI1, PI2, PI3 | PI1 = EN-50160 (+/−10% Un); PI2 = 75% Sn; PI3 = 100% Sn |
[74] | PI1, PI2 | PI1 = 1.06 p.u.; PI2 = 100% of nominal rating |
[30] | PI1, PI4 | PI1 = ± 10% Un; PI4 = 2% VUF |
[44] | PI1, PF | PI1 = 1.05 p.u.; PF limit<0.85 |
[34] | PI1, PI4 | PI1 = 0.95 p.u–1.06 p.u.; PI4 = VUF < 2%; VUFzero < 5% |
[35] | PI1, PI4 | PI1 = 0. 95 p.u.–1.05 p.u.; PI4 = Negative sequence unbalance within 0.01 p.u.; |
[25] | PI1, PI2, PI6, PF | PI1 = 0.95 p.u.–1.05 p.u.; PI2 = 100% of nominal rating; PI6 = 5%; PF range 0.95–1.00. |
[21] | PI1, PI5 | PI1 = −4/+10% Un (96–110%); PI5 = 6% of rated value |
[24] | PI6 | 6.1% THD margin due to initial 1.9%THD |
[90] | PI1, PI4 | PI1 = EN50160 +/−10% Un; PI4 = 2% UVF |
[39] | PI1, PI4 | PI1 = ±3% Un; PI4 = 1% VUF |
[22] | PI1, PI5 | PI1 = ±5% Un ANSI C84.1; PI5 = 0.5 Plt upper limit |
[71] | PI1, PI4 | PI1 = 0.95 p.u.–1.06 p.u.; PI4 = VUF = 2%; VUFzero = 5% |
[23] | PI1, PI2, PI3, PI4, PI6 | PI1 = BS EN-50160 (−15/+10% Un); PI2, PI3 = 100% rated power; PI4 = 1.3% Un; PI6 = THDv as 5% |
[45] | PI1, PI4 | PI1 = 1.05 p.u.; PI4 = 3% |
[55] | PI1, PI2, PI3 | PI1 = 0.9 p.u.–1.1 p.u. (LV); 0.95 p.u.–1.05 p.u. (MV) as per NRS048-2, PI2, PI3 = 100% of rating |
[43] | PI1, PI2, PI3 | PI1 = 0.9 p.u.–1.1 p.u.; PI2 = 100% of line rating; PI3 = 100% of nominal apparent power |
[94] | PI1 | 0.89 p.u.–1.1 p.u. (205 V-253 V) (−11/+10% Un) |
[18] | PI1 | 0.917 p.u.–1.042 p.u. as per CAN3-C235 |
[58] | PI1, PI2, PI3 | PI2 = 105% of nominal rating; PI3 = 100% of nominal rating |
[103] | PI1, PI2, PI4 | PI1, PI4 = EN 50160; PI2 = IEC standards, DSO requirement |
[90] | PI1, PI4 | PI1 = EN50160 +/−10% Un; PI4 = 2% UVF |
[102] | PI1, PI2, PI3 | PI1 = 0.95 p.u.–1.05 p.u.; PI2, PI3 = Nominal rating |
[109] | PI1 | +/−5% Un (Normal operation), +/−10% Un (Contingency) |
No. | Test Network | Latitude | HC Reference | Estimated HC |
---|---|---|---|---|
[95] | Urban, Yogyakarta | 7.7956° S | Feeder Load | 100% (8.8 MW) |
[8] | Urban radial LV, Brazil | 14.2350° S | TF rating | 38.2% |
[37] | Residential, Belgium | 50.5039° N | Customer PVs | 50% |
[81] | Urban (Thermal violations) | - | Roof-space PVs | 45% |
[43] | Urban LV, Zurich | 47.3769° N | Energy Consumption | 43% (1.258 GWh) |
[73] | Urban LV | - | TF rating (500 KVA) | 35.65% |
[58] | Urban balanced, New Orleans | 29.9511° N | Peak load (33.69 MW) | 15–30% |
[109] | Urban, Manhattan (Best case) | 40.7831° N | Minimum Load | 95% |
[28] | Urban balanced, Finland | 61.9241° N | Peak load | 239.7% |
[10] | Urban Keolu, Hawaii USA | 19.8968° N | Peak Load (6.3 MW) | 77% (4.8 MW) |
[72] | Urban LV unbalanced, Kotte | 6.8868° N | TF rating | 40% |
[39] | Urban LV unbalanced, Perth | 31.9505° S | TF rating (200 KVA) | 31.9% (63.81 kW) |
[62] | Urban, Hebron Palestine | 31.5326° N | Peak Load (31.27 MW) | LV 120%, MV 70% |
[81] | Rural (Voltage violation) | - | Roof-space PVs | 13% |
[65] | Rural LV, European | 54.5260° N | Peak Load | 86% |
[28] | Rural balanced, Finland | 61.9241° N | Peak load | 198% |
[13] | Rural small farm, Qatar | 25.3548° N | TF rating (300 kVA) | 30% |
[24] | Rural LV, Quatre Cocos | 20.2016° S | Load capacity | 40% |
[28] | Suburban balanced, Finland | 61.9241° N | Peak load | 233.5% |
[34] | Suburban LV, Australia | 25.2744° S | TF rating (200 kVA) | 35% |
[80] | Suburban, Switzerland | 46.8182° N | Energy consumption | 28.57% |
[30] | LV, Denmark | 56.2639° N | Customer PVs | 40% |
[76] | LV, UK | 55.3781° N | Customer PVs | 30% |
[82] | LV unbalanced, Sydney | 33.8048° S | Active power of load | 111% |
[39] | LV unbalanced, Perth | 31.9505° S | TF rating (200 kVA) | 31.9% |
[44] | Distribution feeder | 0.7893° S | Peak Load | 16.48% (1349 kW) |
[47] | German distribution grid | 51.1657° N | Energy consumption | 88% |
[48] | Distribution grid, California | 36.7783° N | Peak load (16.88 MW) | 15.5% (2.6 MW) |
[14] | Distribution network | 36.7783° N | Peak load | 132% |
[55] | Distributed 3 phase Industrial | 33.9249° S | Peak load | 31% |
[55] | Residential, Cape town | 33.9249° S | Peak load | 82–150% |
[60] | Radial, South Africa | 30.5595° S | Feeder’s design load | 70% |
[7] | Real feeder, California | 36.7783° N | Peak load | 35% |
[2] | 11.4 kV MV, Taiwan, China | 23.6978° N | Total load (4.63 MW) | 86% |
[94] | LV, distributed PV | 25.2744° S | Load | 40% |
[23] | UK network | 55.3781° N | Customer PVs | 200% |
[59] | USA distribution feeders | 37.0902° N | Peak load | >30% |
[9] | Residential USA feeder | 37.0902° N | Peak load | 81% 1 |
[9] | Residential USA feeder | 37.0902° N | Peak load | 73% 2 |
No. | HC Increase Method | Reference | Initial HC | Final HC |
---|---|---|---|---|
[75] | OLTC (1-min control cycle) | Customer PV | 40% | 100% |
[76] | OLTC (Setting of ±8%) | Customer PV | 30% | 50% |
[28] | OLTC (Balanced feed-in case of rural and urban) | Peak load | HC increase by 17.5% and 43.5% for 0% and 5% MV change | |
[29] | OLTC (Rural LV region and OLTC tapping of ±10%) | TF rating | 105.266% | 113.03% |
[30] | OLTC + Reactive Power Support | Customer PV | 40% | 70% |
[45] | Tap changing transformers + Capacitors settings | Peak load | 38% | 64.4% |
[27] | LTC + Smart Inverters (0.995 and 0.98 lagging PF) | Peak load | 158% PV HC increase | |
[114] | OLTC (Voltage Band (VB) extension) | - | VB extension from 3–8.5% | |
[10] | OLTC setting+ 61 SVCs + 514 Smart Inverters | Peak load | 77% | 154% |
[31] | OLTC (±8%) + 235 V (1.02 p.u. fixed voltage target) | Customer PV | 40% | 60% |
[31] | OLTC (−4/+12%) + 240 V (1.04 p.u. fixed voltage target) | Customer PV | 40% | 100% |
[79] | OLTC (−12/+8%) + Local Control Approach | Customer PV | 100% PV HC increase | |
[87] | Tap changer + Reactive Power Support | - | 175% PV HC increase | |
[73] | RPC +APC (Urban distribution network) | TF rating | 35.65% | 66.7% |
[44] | Lagging PF settings of PV inverters | Peak load | 95.9% PV HC increase | |
[45] | Smart Inverter (Volt-VAR Control) | Peak load | 116.4% | 213.2% |
[85] | BESS + Voltage regulators | TF rating | 62% PV HC increase | |
[36] | Quadratic operation of BESS + Optimal converter sizing | Annual Energy | 14.33% | 29.5% |
Consumption | ||||
[34] | DR + OLTC (Independent phase tap control) | TF rating | 20%(40 kW) | 35%(65 kW) |
[33] | Demand Response | Energy | 28.57% | 52.78% |
Consumption | ||||
[42] | Network Reconfiguration (NR) of HVDN | - | 30–78% increase in PV HC | |
[21] | NR (Load modeling as P and Q buses + 0.9 PF lagging) | - | 0–20% increase in HC | |
[89] | APC + Inverter P(U) control (Probabilistic approach) | TF rating | 142 kWp (88% of TF rating) | |
[83] | APC (Single-phase load) | Energy | 59.72% of total generation | |
[48] | Static Compensator | Peak load | 15% | 100% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatima, S.; Püvi, V.; Lehtonen, M. Review on the PV Hosting Capacity in Distribution Networks. Energies 2020, 13, 4756. https://doi.org/10.3390/en13184756
Fatima S, Püvi V, Lehtonen M. Review on the PV Hosting Capacity in Distribution Networks. Energies. 2020; 13(18):4756. https://doi.org/10.3390/en13184756
Chicago/Turabian StyleFatima, Samar, Verner Püvi, and Matti Lehtonen. 2020. "Review on the PV Hosting Capacity in Distribution Networks" Energies 13, no. 18: 4756. https://doi.org/10.3390/en13184756
APA StyleFatima, S., Püvi, V., & Lehtonen, M. (2020). Review on the PV Hosting Capacity in Distribution Networks. Energies, 13(18), 4756. https://doi.org/10.3390/en13184756