Development of a Eulerian MultiFluid Solver for Dense Spray Applications in OpenFOAM
Abstract
:1. Introduction
2. Formulation of the Mathematical Model
2.1. PhaseIntensive Momentum Equation
2.2. Phase Continuity Equation
2.3. WAVE Breakup Model
3. Numerical Model
Algorithm 1 Solution algorithm per each time step. 

3.1. Implementation of the WAVE Breakup Model and Phase Continuity Equations
3.2. Numerical Procedure
4. Results
4.1. Verification
4.2. Sensitivity to the Selected Number of Droplet Classes
4.3. Validation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
 Kalghatgi, G.T. Developments in internal combustion engines and implications for combustion science and future transport fuels. Proc. Combust. Inst. 2015, 35, 101–115. [Google Scholar] [CrossRef]
 Manente, V.; Johansson, B.; Cannella, W. Gasoline partially premixed combustion, the future of internal combustion engines? Int. J. Engine Res. 2011, 12, 194–208. [Google Scholar] [CrossRef]
 Badock, C.; Wirth, R.; Fath, A.; Leipertz, A. Investigation of cavitation in real size diesel injection nozzles. Int. J. Heat Fluid Flow 1999, 20, 538–544. [Google Scholar] [CrossRef]
 Desantes, J.M.; Payri, R.; Salvador, F.J.; De La Morena, J. Influence of cavitation phenomenon on primary breakup and spray behavior at stationary conditions. Fuel 2010, 89, 3033–3041. [Google Scholar] [CrossRef]
 Weigand, A.; Atzler, F.; Kastner, O.; Rotondi, R.; Schwarte, A. The Effect of Closely Coupled Pilot Injections on Diesel Engine Emissions; Woodhead Publishing: Cambridge, UK, 2011; pp. 111–124. [Google Scholar] [CrossRef]
 Johnson, J.E.; Yoon, S.; Naber, J.; Lee, S.; Hunter, G.; Truemner, R.; Harcombe, T. Characteristics of 3000 bar Diesel Spray Injection under NonVaporizing and Vaporizing Conditions. In Proceedings of the ICLASS 2012, 12th Triennial International Conference on Liquid Atomization and Spray Systems, Heidelberg, Germany, 2–6 September 2012. [Google Scholar]
 Badra, J.A.; Sim, J.; Elwardany, A.; Jaasim, M.; Viollet, Y.; Chang, J.; Amer, A.; Im, H.G. Numerical Simulations of HollowCone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels. J. Energy Resour. Technol. 2016, 138, 052202. [Google Scholar] [CrossRef]
 Sivasankaralingam, V.; Raman, V.; Mubarak Ali, M.J.; Alfazazi, A.; Lu, T.; Im, H.; Sarathy, S.M.; Dibble, R. Experimental and Numerical Investigation of Ethanol/Diethyl Ether Mixtures in a CI Engine; SAE International: Warren Dale, PA, USA, 2016; Volume 1. [Google Scholar] [CrossRef] [Green Version]
 Sarathy, S.M.; Kukkadapu, G.; Mehl, M.; Javed, T.; Ahmed, A.; Naser, N.; Tekawade, A.; Kosiba, G.; AlAbbad, M.; Singh, E.; et al. Compositional effects on the ignition of FACE gasolines. Combust. Flame 2016, 169, 171–193. [Google Scholar] [CrossRef] [Green Version]
 Elwardany, A.E.; Sazhin, S.S.; Im, H.G. A new formulation of physical surrogates of FACE A gasoline fuel based on heating and evaporation characteristics. Fuel 2016, 176, 56–62. [Google Scholar] [CrossRef]
 Elbaz, A.M.; Gani, A.; Hourani, N.; Emwas, A.H.; Sarathy, S.M.; Roberts, W.L. TG/DTG, FTICR Mass Spectrometry, and NMR Spectroscopy Study of Heavy Fuel Oil. Energy Fuels 2015, 29, 7825–7835. [Google Scholar] [CrossRef] [Green Version]
 Ningegowda, B.M.; Rahantamialisoa, F.; Zembi, J.; Pandal, A.; Im, H.G.; Battistoni, M. Large Eddy Simulations of Supercritical and Transcritical Jet Flows Using Real Fluid Thermophysical Properties; SAE International: Warren Dale, PA, USA, 2020. [Google Scholar] [CrossRef]
 Manin, J.; Bardi, M.; Pickett, L.M.; Dahms, R.N.; Oefelein, J.C. Microscopic investigation of the atomization and mixing processes of diesel sprays injected into high pressure and temperature environments. Fuel 2014, 134, 531–543. [Google Scholar] [CrossRef]
 Dahms, R.N.; Oefelein, J.C. Liquid jet breakup regimes at supercritical pressures. Combust. Flame 2014, 162. [Google Scholar] [CrossRef] [Green Version]
 Chehroudi, B. Recent experimental efforts on highpressure supercritical injection for liquid rockets and their implications. Int. J. Aerosp. Eng. 2012. [Google Scholar] [CrossRef]
 Gopal, J.M.; Tretola, G.; Morgan, R.; de Sercey, G.; Atkins, A.; Vogiatzaki, K. Understanding Sub and Supercritical Cryogenic Fluid Dynamics in Conditions Relevant to Novel Ultra Low Emission Engines. Energies 2020, 13, 3038. [Google Scholar] [CrossRef]
 Hoyas, S.; Gil, A.; Margot, X.; KhuongAnh, D.; Ravet, F. Evaluation of the EulerianLagrangian Spray Atomization (ELSA) model in spray simulations: 2D cases. Math. Comput. Model. 2013, 57, 1686–1693. [Google Scholar] [CrossRef]
 Shinjo, J. Recent Advances in Computational Modeling of Primary Atomization of Liquid Fuel Sprays. Energies 2018, 11, 2971. [Google Scholar] [CrossRef] [Green Version]
 Vukcevic, V.; Keser, R.; Jasak, H.; Battistoni, M.; Im, H.; Roenby, J. Development of a CFD Solver for Primary Diesel Jet Atomization in FOAMExtend; SAE International: Warren Dale, PA, USA, 2019. [Google Scholar] [CrossRef]
 Holz, S.; Braun, S.; Chaussonnet, G.; Koch, R.; Bauer, H.J. Close Nozzle Spray Characteristics of a Prefilming Airblast Atomizer. Energies 2019, 12, 2835. [Google Scholar] [CrossRef] [Green Version]
 Ries, F.; Li, Y.; Klingenberg, D.; Nishad, K.; Janicka, J.; Sadiki, A. NearWall Thermal Processes in an Inclined Impinging Jet: Analysis of Heat Transport and Entropy Generation Mechanisms. Energies 2018, 11, 1354. [Google Scholar] [CrossRef] [Green Version]
 Crowe, C.; Schwarzkopf, J.; Sommerfeld, M.; Tsuji, Y. Multiphase Flows with Droplets and Particles, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar] [CrossRef]
 Hill, D.P. The Computer Simulation of Dispersed TwoPhase Flows. Ph.D. Thesis, Imperial College London, London, UK, 1998. [Google Scholar]
 Zembi, J.; Battistoni, M.; Ranuzzi, F.; Cavina, N.; De Cesare, M. CFD Analysis of Port Water Injection in a GDI Engine under Incipient Knock Conditions. Energies 2019, 12, 3409. [Google Scholar] [CrossRef] [Green Version]
 Sparacino, S.; Berni, F.; D’Adamo, A.; Krastev, V.K.; Cavicchi, A.; Postrioti, L. Impact of the Primary BreakUp Strategy on the Morphology of GDI Sprays in 3DCFD Simulations of MultiHole Injectors. Energies 2019, 12, 2890. [Google Scholar] [CrossRef] [Green Version]
 Gadalla, M.; Kannan, J.; Tekgül, B.; Karimkashi, S.; Kaario, O.; Vuorinen, V. LargeEddy Simulation of ECN Spray A: Sensitivity Study on Modeling Assumptions. Energies 2020, 13, 3360. [Google Scholar] [CrossRef]
 Ishak, M.; Ismail, F.; Che Mat, S.; Abdullah, M.; Abdul Aziz, M.; Idroas, M. Numerical Analysis of Nozzle Flow and Spray Characteristics from Different Nozzles Using Diesel and Biofuel Blends. Energies 2019, 12, 281. [Google Scholar] [CrossRef] [Green Version]
 Petranović, Z.; Edelbauer, W.; Vujanović, M.; Duić, N. Modelling of spray and combustion processes by using the Eulerian multiphase approach and detailed chemical kinetics. Fuel 2017, 191, 25–35. [Google Scholar] [CrossRef] [Green Version]
 Vujanović, M.; Petranović, Z.; Edelbauer, W.; Baleta, J.; Duić, N. Numerical modeling of diesel spray using the Eulerian multiphase approach. Energy Convers. Manag. 2015, 104, 160–169. [Google Scholar] [CrossRef] [Green Version]
 Ganti, H.; Kamin, M.; Khare, P. Design Space Exploration of Turbulent Multiphase Flows Using Machine LearningBased Surrogate Model. Energies 2020, 13, 4565. [Google Scholar] [CrossRef]
 Dauch, T.F.; Ates, C.; Rapp, T.; Keller, M.C.; Chaussonnet, G.; Kaden, J.; Okraschevski, M.; Koch, R.; Dachsbacher, C.; Bauer, H.J. Analyzing the Interaction of Vortex and Gas–Liquid Interface Dynamics in Fuel Spray Nozzles by Means of LagrangianCoherent Structures (2D). Energies 2019, 12, 2552. [Google Scholar] [CrossRef] [Green Version]
 Reitz, R.D. Atomization and Other Breakup Regimes of a Liquid Jet. Ph.D. Thesis, Princeton University, Princeton, NJ, USA, 1978. [Google Scholar]
 Reitz, R.D.; Bracco, F.V. Mechanism of atomization of a liquid jet. Phys. Fluids 1982, 25, 1730–1742. [Google Scholar] [CrossRef]
 Reitz, R.D.; Bracco, F.V. Mechanisms of Breakup of Round Liquid Jets. In The Encyclopedia of Fluid Mechanics; Gulf Publishing Company: Houston, TX, USA, 1986; Volume 3, pp. 223–249. [Google Scholar]
 Rusche, H. Computational Fluid Dynamics of Dispersed TwoPhase Flows at High Phase Fractions. Ph.D. Thesis, Imperial College London, London, UK, 2002. [Google Scholar]
 Weller, H.G. Derivation Modelling and Solution of the Conditionally Averaged TwoPhase Flow Equations; Technical Report Tech. Rep.; Nabla Ltd.: Bangkok, Thailand, 2002. [Google Scholar]
 Ishii, M.; Hibiki, T. ThermoFluid Dynamics of TwoPhase Flow; Springer: New York, NY, USA, 2006; pp. 1–462. [Google Scholar] [CrossRef]
 Drew, J.; Passman, S.L. Theory of Multicomponent Fluids; Springer: New York, NY, USA, 1998. [Google Scholar] [CrossRef]
 Keser, R.; Vukčević, V.; Battistoni, M.; Im, H.; Jasak, H. Implicitly coupled phase fraction equations for the Eulerian multifluid model. Comput. Fluids 2019. [Google Scholar] [CrossRef]
 Marchisio, D.L.; Fox, R.O. Computational Models for Polydisperse Particulate and Multiphase Systems; Cambridge University Press: Cambridge, UK, 2013; p. 498. [Google Scholar] [CrossRef] [Green Version]
 Lo, S. Application of Population Balance to CFD Modeling of Bubbly Flow Via the MUSIG Model; AEAT1096; AEA Technology: Carlsbad, CA, USA, 1996. [Google Scholar]
 Moukalled, F.; Darwish, M. Mixing and evaporation of liquid droplets injected into an air stream flowing at all speeds. Phys. Fluids 2008, 20. [Google Scholar] [CrossRef] [Green Version]
 Duan, X.; Cheung, S.; Yeoh, G.; Tu, J.; Krepper, E.; Lucas, D. Gas–liquid flows in medium and large vertical pipes. Chem. Eng. Sci. 2011, 66, 872–883. [Google Scholar] [CrossRef]
 Gosman, A.D.; Lekakou, C.; Politis, S.; Issa, R.I.; Looney, M.K. Multidimensional modeling of turbulent twophase flows in stirred vessels. AIChE J. 1992, 38, 1946–1956. [Google Scholar] [CrossRef]
 Reeks, M.W. On the continuum equations for dispersed particles in nonuniform flows. Phys. Fluids A Fluid Dyn. 1992, 4, 1290–1303. [Google Scholar] [CrossRef]
 Lopez de Bertodano, M.A. Two fluid model for twophase turbulent jets. Nucl. Eng. Des. 1998, 179, 65–74. [Google Scholar] [CrossRef]
 Liu, A.B.; Mather, D.; Reitz, R.D. Modeling the Effects of Drop Drag and Breakup on Fuel Sprays; SAE Technical Paper; SAE International: Warren Dale, PA, USA, 1993. [Google Scholar] [CrossRef] [Green Version]
 O’Rourke, P.J.; Amsden, A.A. The Tab Method for Numerical Calculation of Spray Droplet Breakup; SAE International: Warren Dale, PA, USA, 1987. [Google Scholar] [CrossRef] [Green Version]
 O’Rourke, P.J.; Bracco, F.V. Modeling of drop interactions in thick sprays and a comparison with experiments. Proc. Inst. Mech. Eng. 1980, 404, 101–116. [Google Scholar] [CrossRef]
 Silva, L.F.; Lage, P.L. Development and implementation of a polydispersed multiphase flow model in OpenFOAM. Comput. Chem. Eng. 2011, 35, 2653–2666. [Google Scholar] [CrossRef]
 Kissling, K.; Springer, J.; Jasak, H.; Schütz, S.; Urban, K.; Piesche, M. A coupled pressure based solution algorithm based on the volumeoffluid approach for two or more immiscible fluids. In Proceedings of the European Conference on Computational Fluid Dynamics 2010, Lisbon, Portugal, 14–17 June 2010; pp. 14–17. [Google Scholar]
 Stiesch, G. Modeling Engine Spray and Combustion Processes; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar] [CrossRef]
 Reitz, R.D. Modeling atomization processes in highpressure vaporizing sprays. At. Spray Technol. 1987, 3, 309–337. [Google Scholar]
 Vujanović, M. Numerical Modelling of Multiphase Flow in Combustion of Liquid Fuel. Ph.D. Thesis, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia, 2010. [Google Scholar]
 Jasak, H. Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows. Ph.D. Thesis, Imperial College London, London, UK, 1996. [Google Scholar]
 Ferziger, J.H.; Peric, M.; Leonard, A. Computational Methods for Fluid Dynamics. Phys. Today 1997. [Google Scholar] [CrossRef]
 Issa, R.I. Solution of the implicitly discretized fluid flow equations by operatorsplitting. J. Comput. Phys. 1986, 62, 40–65. [Google Scholar] [CrossRef]
 Saad, Y. Iterative Methods for Sparse Linear Systems, 2nd ed.; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2003. [Google Scholar]
 Uroić, T.; Jasak, H. Parallelisation of selective algebraic multigrid for block–pressure–velocity system in OpenFOAM. Comput. Phys. Commun. 2021, 258, 107529. [Google Scholar] [CrossRef]
 Uroić, T.; Jasak, H. Blockselective algebraic multigrid for implicitly coupled pressurevelocity system. Comput. Fluids 2018, 167, 100–110. [Google Scholar] [CrossRef]
 OpenCFD. OpenFOAM: User Guide v1906; OpenCFD: Bracknell, UK, 2019. [Google Scholar]
 Jasak, H.; Weller, H.G.; Gosman, A.D. High resolution NVD differencing scheme for arbitrarily unstructured meshes. Int. J. Numer. Methods Fluids 1999, 31, 431–449. [Google Scholar] [CrossRef]
 Petranović, Z. Numerical Modelling of Spray and Combustion Processes Using the Euler Eulerian Multiphase Approach. Ph.D. Thesis, Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Zagreb, Croatia, 2016. [Google Scholar]
 Kadocsa, A. Modeling of Spray Formation in Diesel Engines. Ph.D. Thesis, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary, 2007. [Google Scholar]
 Nagaoka, M.; Ueda, R.; Masuda, R.; von Berg, E.; Tatschl, R. Modeling of diesel spray atomization linked with internal nozzle flow. In Proceedings of the 2008 Conference on Thermo and Dynamic Processes in Diesel Engines, Valencia, Spain, 16–19 September 2008. [Google Scholar]
 Eça, L.; Hoekstra, M. A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies. J. Comput. Phys. 2014, 262, 104–130. [Google Scholar] [CrossRef]
 ReFRESCO. A Community Based OpenUsage and OpenSource CFD Code for the Maritime World; ReFRESCO: Rotterdam, The Netherlands, 2018. [Google Scholar]
Property  Value 

Liquid dynamic viscosity  $0.00338\phantom{\rule{0.166667em}{0ex}}\mathrm{Pas}$ 
Liquid density  $810\phantom{\rule{0.166667em}{0ex}}{\mathrm{kg}/\mathrm{m}}^{3}$ 
Gas dynamic viscosity  $15\times {10}^{6}\phantom{\rule{0.166667em}{0ex}}\mathrm{Pas}$ 
Gas density  $43.3\phantom{\rule{0.166667em}{0ex}}{\mathrm{kg}/\mathrm{m}}^{3}$ 
Surface tension  $0.027\phantom{\rule{0.166667em}{0ex}}\mathrm{N}/\mathrm{m}$ 
Number of Cells  Time Step Size [s]  

$8\times {10}^{8}$  $10\times {10}^{8}$  $16\times {10}^{8}$  $22\times {10}^{8}$  
3780  22.800  22.795  22.778  22.772 
8160  22.608  22.581  22.100  21.795 
15,525  22.401       
21,465  21.776       
38,064  22.489       
Item  ${\mathit{\varphi}}_{0}$  ${\mathit{\varphi}}_{1}$  ${\mathit{U}}_{\mathit{\varphi}}$  p  q 

Spray tip penetration  $22.4$  $22.5$  $0.9\%$  $2.00$  $2.00$ 
Experimental  CFD Results  Deviation 

${21.1}^{\xb0}$  ${22.0}^{\xb0}$  $4.2\%$ 
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keser, R.; Ceschin, A.; Battistoni, M.; Im, H.G.; Jasak, H. Development of a Eulerian MultiFluid Solver for Dense Spray Applications in OpenFOAM. Energies 2020, 13, 4740. https://doi.org/10.3390/en13184740
Keser R, Ceschin A, Battistoni M, Im HG, Jasak H. Development of a Eulerian MultiFluid Solver for Dense Spray Applications in OpenFOAM. Energies. 2020; 13(18):4740. https://doi.org/10.3390/en13184740
Chicago/Turabian StyleKeser, Robert, Alberto Ceschin, Michele Battistoni, Hong G. Im, and Hrvoje Jasak. 2020. "Development of a Eulerian MultiFluid Solver for Dense Spray Applications in OpenFOAM" Energies 13, no. 18: 4740. https://doi.org/10.3390/en13184740