A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experiment
2.2. Plant Materials
2.3. Seed Quality Analysis
2.4. Economic Analysis
2.5. Energy Analysis
2.6. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Biomass Yield and the Harvest Index
3.3. Seed Quality
3.4. Economic Efficiency of Winter Rapeseed Production
3.5. Energy Efficiency of Winter Rapeseed Production
4. Discussion
4.1. Biomass Yield and the Harvest Index
4.2. Seed Quality
4.3. Economic Efficiency of Winter Rapeseed Production
4.4. Energy Efficiency of Winter Rapeseed Production
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Faostat, Food and Agriculture Organization Corporate Statistical Database. Available online: http://www.apps.fao.org (accessed on 10 May 2020).
- Hauska, D.; Oertel, C.; Alpmann, L.; Stelling, D.; Busch, H. Breeding progress towards high oil content in oilseed rape (Brassica napus L.)—Essential innovations to meet current and future market needs. In Proceedings of the 12th International Rapseed Congress, Wuhan, China, 26–30 March 2007; pp. 159–162. [Google Scholar]
- Stefansson, B.R.; Hougen, F.W.; Downey, R.K. Note on the isolation of rape plants with seed oil free from erucic acid. Can. J. Plant. Sci. 1961, 41, 218–219. [Google Scholar] [CrossRef]
- Krzymański, J. Variation in thioglucosides in rapeseed meal (Brassica napus). In Proceedings of the Meeting of the Associate Commitees of National Reseach Council on Plant Breeding, Winnipeg, MB, Canada, 20 February 1968. [Google Scholar]
- Devouge, V.; Rogniaux, H.; Nesi, N.; Tessier, D.; Gueguen, J.; Larre, C. Differential proteomic analysis of four near-isogenic Brassica napus varieties bred for their erucic acid and glucosinolate contents. J. Proteome Res. 2007, 6, 1342–1353. [Google Scholar] [CrossRef]
- Bocianowski, J.; Nowosad, K.; Liersch, A.; Popławska, W.; Łącka, A. Genotype-by-environment interaction for seed glucosinolate content in winter oilseed rape (Brassica napus L.) using an additive main effects and multiplicative interaction model. Biom. Lett. 2018, 55, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Pruvot, J.; Kraling, K.; Charne, D.; Tulsieram, L. Development of low glucosinolate restorer and OGU CMS winter rape hybrid. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999; pp. 270–273. [Google Scholar]
- Rathke, G.W.; Behrens, T.; Diepenbrock, W. Integrated nitrogen management strategies to improve seed yield, oil content and nitrogen efficiency of winter oilseed rape (Brassica napus L.): A review. Agric. Ecosyst. Environ. 2006, 117, 80–108. [Google Scholar] [CrossRef]
- Broniarz, J.; Paczocha, J. Preliminary Yield Values in Experiments Conducted After Cultivar Registration; COBORU: Słupia Wielka, Poland, 2019; pp. 1–9. (In Polish)
- Jankowski, K.J.; Budzyński, W.S.; Załuski, D.; Hulanicki, P.S.; Dubis, B. Using a fractional factorial design to evaluate the effect of the intensity of agronomic practices on the yield of different winter oilseed rape morphotypes. Field Crops Res. 2016, 188, 50–61. [Google Scholar] [CrossRef]
- Siger, A.; Michalak, M.; Cegielska-Taras, T.; Szała, L.; Lembicz, J.; Nogala-Kałucka, M. Genotype and environment effects on tocopherol and plastochromano l-8 contents of winter oilseed rape doubled haploid lines derived from F1 plants of the cross between yellow and black seeds. Ind. Crops Prod. 2015, 65, 134–141. [Google Scholar] [CrossRef]
- Gan, Y.; Malhi, S.S.; Brandt, S.A.; McDonald, C.L. Assessment of seed shattering resistance and yield loss in five oilseed crops. Can. J. Plant. Sci. 2008, 88, 267–270. [Google Scholar] [CrossRef]
- Abedi, T.; Pakniyat, H. Antioxidant enzymes changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.). Czech. J. Genet. Plant. Breed. 2010, 46, 27–34. [Google Scholar] [CrossRef]
- Faraji, A.; Latifi, N.; Soltani, A.; Rad, A.H.S. Seed yield and water use efficiency of canola (Brassica napus L.) as affected by high temperature stress and supplemental irrigation. Agric. Water Manag. 2009, 96, 132–140. [Google Scholar] [CrossRef]
- Waalen, W.M.; Tanino, K.K.; Olsen, J.E.; Eltun, R.; Rognli, O.A.; Gusta, L.V. Freezing tolerance of winter canola cultivars is best revealed by a prolonged freeze test. Crop. Sci. 2011, 51, 1988–1996. [Google Scholar] [CrossRef]
- Pace, R.; Benincasa, P. Effect of salinity and low osmotic potential on the germination and seedling growth of rapeseed cultivars with different stress tolerance. Ital. J. Agron. 2010, 5, 69–78. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Anwar, S.; Kuai, J.; Noman, A.; Shahid, M.; Din, M.; Ali, A.; Zhou, G. Alteration in yield and oil quality traits of winter rapeseed by lodging at different planting density and nitrogen rates. Sci. Rep. 2018, 8, 634. [Google Scholar] [CrossRef] [PubMed]
- Brazauskiene, I.; Petraitiene, E.; Brazauskas, G.; Ronis, A. Susceptibility of winter rape cultivars to fungal diseases and their response to fungicide application. Turk. J. Agric. For. 2013, 37, 699–710. [Google Scholar] [CrossRef]
- Hervé, M.R. Breeding for insect resistance in oilseed rape: Challenges, current knowledge and perspectives. Plant. Breed. 2018, 137, 27–34. [Google Scholar] [CrossRef]
- Slominski, B.A.; Jia, W.; Mikulski, D.; Rogiewicz, A.; Jankowski, J.; Rakow, G.; Jones, R.O.; Hickling, D. Chemical composition and nutritive value of low-fiber yellow-seeded B. napus and B. juncea canola for poultry. In Proceedings of the 13th International Rapeseed Congress, Prague, Czech Republic, 5–9 June 2011; pp. 443–445. [Google Scholar]
- Chiriac, G.; Lucian, R.A.; Coroi, I.G.; Gales, D.C.; Jitareanu, G. Effect of tillage and cultivar on winter oilseed rape (Brassica napus L.) yield and economic efficiency in Suceava Plateau. ProEnviron./Promediu 2013, 6, 130–135. [Google Scholar]
- Krček, V.; Baranyk, P.; Pulkrabek, J.; Urban, J.; Skerikova, M.; Brant, V.; Zabransky, Z. Influence of crop management on winter oilseed rape yield formation—Evaluation of first year of experiment. Mendelnet 2014, 2, 57–63. [Google Scholar]
- Miersch, S.; Gertz, A.; Breuer, F.; Schierholt, A.; Becker, H.C. Influence of the semi-dwarf growth type on seed yield and agronomic parameters at low and high nitrogen fertilization in winter oilseed rape. Crop. Sci. 2016, 56, 1573–1585. [Google Scholar] [CrossRef] [Green Version]
- Pinochet, X.; Renard, M. Rapeseed genetic progress and outlook for developments. OCL: Oilseeds and fats. Crops Lipids 2012, 19, 147–154. (In French) [Google Scholar]
- Grzebisz, W. Microelements in plant nutrition. In Crop Fertilization; Grzebisz, W., Ed.; PWRiL: Poznań, Poland, 2008; Volume 1, pp. 261–292. (In Polish) [Google Scholar]
- Litke, L.; Gaile, Z.; Ruža, A. Effect of nitrogen rate on nitrogen use efficiency in winter oilseed rape (Brassica napus). Res. Rural. Dev. 2019, 2, 43–49. [Google Scholar]
- Liao, J.; Liu, X.; Hu, A.; Song, H.; Chen, X.; Zhang, Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Lu, P.; Ren, T.; Liu, T.; Geilfus, C.M.; Lu, J. Improved nitrogen efficiency in winter oilseed rape hybrid compared with the parental lines under contrasting nitrogen supply. Ind. Crops Prod. 2020, 155, 112777. [Google Scholar] [CrossRef]
- Sylvester-Bradley, R.; Kindred, D.R. Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. J. Exp. Bot. 2009, 60, 1939–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessel, B.; Schierholt, A.; Becker, H.C. Nitrogen use efficiency in a genetically diverse set of winter oilseed rape (Brassica napus L.). Crop. Sci. 2012, 52, 2546–2554. [Google Scholar] [CrossRef]
- Haneklaus, S.; Paulsen, H.M.; Gupta, A.K.; Bloem, E.; Schnug, E. Influence of sulfur fertilization on yield and quality of oilseed rape and mustard. In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999; Volume 1, pp. 26–29. [Google Scholar]
- Scherer, H.W. Sulphur in crop production—Invited paper. Eur. J. Agron. 2001, 14, 81–111. [Google Scholar] [CrossRef]
- Tisdale, S.L.; Reneau, R.B.; Patou, J.S. Atlas of sulfur deficiencies. In Sulfur in Agriculture; Tabatabai, M.A., Ed.; Agronomy no. 27; American Society of Agronomy: Madison, WI, USA, 1986; pp. 295–322. [Google Scholar]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł.; Zając, T. Biomass quality of Brassica oilseed crops in response to sulfur fertilization. Agron. J. 2015, 107, 1377–1391. [Google Scholar] [CrossRef]
- Haneklaus, S.; Bloem, E.; Schnug, E. History of sulfur deficiency in crops. In Sulfur: A Missing Link between Soils. Crops, and Nutrition, 1st ed.; Jez, J., Ed.; Soil Science Society of America: Madison, WI, USA, 2008; pp. 45–58. [Google Scholar]
- Withers, P.J.A.; Evans, E.J.; Bilsborrow, P.E.; Milord, G.F.J.; McGrath, S.P.; Zhao, F.; Walter, K.C. Improving the prediction of sulphur deficiency in winter oilseed rape in the UK. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; Volume 1, pp. 277–279. [Google Scholar]
- Bilsborrow, P.E.; Evans, E.J.; Milford, G.F.J.; Fieldsend, M.J. The effects of S and N on the yield and quality of oilseed rape in the U.K. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; Volume 1, pp. 280–283. [Google Scholar]
- Šiaudinis, G.; Butkutė, B. Responses of spring oilseed rape seed yield and quality to nitrogen and sulfur fertilization. Commun. Soil Sci. Plant. Anal. 2013, 44, 145–157. [Google Scholar] [CrossRef]
- Schnug, E. Physiological functions and enviromental relevance of sulfur-containing secondary metabolites. In Sulfur Nutrition and Assimilation in Higher Plants; Regulatory Agricultural and Environmental Aspects; De Kok, L.J., Stulen, I., Rennenberg, H., Brunold, C., Rauser, W.E., Eds.; SPB Academic Publishing: Hague, The Netherlands, 1993; pp. 179–190. [Google Scholar]
- De Kok, L.J.; Castro, A.; Durenkamp, M.; Stuiver, C.E.E.; Westerman, S.; Yang, L.; Stulen, I. Sulphur in plant physiology. Fertil. Fertil. 2003, 5, 55–80. [Google Scholar]
- Fazili, I.S.; Masoodi, M.; Ahmad, S.; Jamal, A.; Khan, J.S.; Abdin, M.Z. Interactive effect of sulfur and nitrogen on growth and yield attributes of oilseed crops (Brassica campestris L. and Eruca sativa Mill.) differing in yield potential. J. Plant. Nutr. 2010, 33, 1216–1228. [Google Scholar] [CrossRef]
- Ma, B.L.; Zheng, Z.; Whalen, J.K.; Caldwell, C.; Vanasse, A.; Pageau, D.; Scott, P.; Earl, H.; Smith, D.L. Uptake and nutrient balance of nitrogen, sulfur, and boron for optimal canola production in eastern Canada. J. Plant. Nutr. Soil Sci. 2019, 182, 252–264. [Google Scholar] [CrossRef]
- McGrath, S.P.; Zhao, F.J. Sulphur uptake, yield responses and the interactions between nitrogen and sulphur in winter oilseed rape (Brassica napus). J. Agr. Sci. 1996, 126, 53–62. [Google Scholar] [CrossRef]
- Jankowski, K.J. The influence of environmental and agronomic factors on the production of winter rapeseed for food processing and energy generation. In Monographs and Scientific Dissertations; UWM: Olsztyn, Poland, 2007; pp. 1–174. (In Polish) [Google Scholar]
- Ahmad, G.; Jan, A.; Arif, M.; Jan, M.T.; Shah, H. Effect of nitrogen and sulfur fertilization on yield components, seed and oil yields of canola. J. Plant. Nutr. 2011, 34, 2069–2082. [Google Scholar] [CrossRef]
- Lucas, F.T.; Coutinho, E.L.M.; Paes, J.M.V.; Barbosa, J.C. Yield and quality of canola grains due to nitrogen and sulfur fertilization. Semin Cienc Agrar. 2013, 34, 3205–3218. [Google Scholar] [CrossRef]
- Filipek-Mazur, B.; Tabak, M.; Gorczyca, O.; Lisowska, A. Effect of sulfur-containing fertilizers on the quantity and quality of spring oilseed rape and winter wheat yield. J. Elem. 2019, 24, 1383–1394. [Google Scholar]
- Jiang, Y.; Caldwell, C.D.; Falk, K.C.; Lada, R.R.; MacDonald, D. Camelina yield and quality response to combined nitrogen and sulfur. Agron. J. 2013, 105, 1847–1852. [Google Scholar] [CrossRef]
- Wysocki, D.J.; Chastain, T.G.; Schillinger, W.F.; Guy, S.O.; Karow, R.S. Camelina: Seed yield response to applied nitrogen and sulfur. Field Crops Res. 2013, 145, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Sokólski, M.; Kordan, B. Camelina: Yield and quality response to nitrogen and sulfur fertilization in Poland. Ind. Crops Prod. 2019, 141, 111776. [Google Scholar] [CrossRef]
- Ahmad, A.; Abraham, G.; Gandotra, N.; Abrol, Y.P.; Abdin, M.Z. Interactive effect of nitrogen and sulphur on growth and yield of rape-seed-mustard (Brassica juncea L. Czern. and Coss. and Brassica campestris L.) genotypes. J. Agron. Crop Sci. 1998, 181, 193–199. [Google Scholar] [CrossRef]
- Kumar, S.; Verma, S.K.; Singh, T.K.; Shyambeer, S. Effect of nitrogen and sulphur on growth, yield and nutrient uptake by Indian mustard (Brassica juncea) under rainfed condition. Indian J. Agric. Sci. 2011, 81, 145–149. [Google Scholar]
- Kovács, A.B.; Kincses, I.; Vágó, I.; Loch, J.; Filep, T. Effect of application of nitrogen and different nitrogen-sulfur ratios on the quality and quantity of mustard seed. Commun. Soil Sci. Plan. 2009, 40, 453–461. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Załuski, D.; Sokólski, M. Canola-quality white mustard: Agronomic management and seed yield. Ind. Crops Prod. 2020, 145, 112138. [Google Scholar] [CrossRef]
- Fismes, J.; Vong, P.C.; Guckert, A.; Frossard, E. Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. Eur. J. Agron. 2000, 12, 127–141. [Google Scholar] [CrossRef]
- Egesel, C.Ö.; Gül, M.K.; Kahrıman, F. Changes in yield and seed quality traits in rapeseed genotypes by sulphur fertilization. Eur. Food Res. Technol. 2009, 229, 505–513. [Google Scholar] [CrossRef]
- Ijaz, M.; Honermeier, B. Effect of triazole and strobilurin fungicides on seed yield formation and grain quality of winter rapeseed (Brassica napus L.). Field Crops Res. 2012, 130, 80–86. [Google Scholar] [CrossRef]
- Verkerk, R.; Schreiner, M.; Krumbein, A.; Ciska, E.; Holst, B.; Rowland, I.; De Schrijver, R.; Hansen, M.; Gerhauser, C.; Mithen, R.; et al. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 2009, 53, 219–265. [Google Scholar] [CrossRef]
- Binkowski, M.; Broniarz, J.; Janiak, W.; Lenartowicz, T.; Osiecka, A.; Paczocha, J.; Piecuch, K.; Stuczyńska, E. Descriptive List of Agricultural Cultivars–Beetroots, Potatoes, Oilseed Crops, Forage Crops; COBORU: Słupia Wielka, Poland, 2019; pp. 1–172. (In Polish)
- Moreno, D.A.; Carvajal, M.; López-Berenguer, C.; García-Viguera, C. Chemical and biological characterisation of nutraceutical compounds of broccoli. J. Pharm. Biomed. Anal. 2006, 41, 1508–1522. [Google Scholar] [CrossRef]
- Narits, L. Effect of nitrogen rate and application time to yield and quality of winter oilseed rape (Brassica napus L. var. oleifera subvar. biennis). Agron. Res. 2010, 8, 671–686. [Google Scholar]
- Lošák, T.; Hlušek, J.; Martinec, J.; Vollmann, J.; Peterka, J.; Filipčík, R.; Varga, L.; Ducsay, L.; Martensson, A. Effect of combined nitrogen and sulphur fertilization on yield and qualitative parameters of Camelina sativa [L.] Crtz. (false flax). Acta Agric. Scand. Section B Soil Plant. Sci. 2011, 4, 313–321. [Google Scholar]
- Czarnik, M.; Jarecki, W.; Bobrecka-Jamro, D. The effects of varied plant density and nitrogen fertilization on quantity and quality yield of Camelina sativa L. Emir. J. Food Agric. 2017, 29, 988–993. [Google Scholar]
- Poisson, E.; Trouverie, J.; Brunel-Muguet, S.; Akmouche, Y.; Pontet, C.; Pinochet, X.; Avice, J.-C. Seed yield components and seed quality of oilseed rape are impacted by sulfur fertilization and its interactions with nitrogen fertilization. Front. Plant. Sci. 2019, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Öztürk, Ö. Effects of source and rate of nitrogen fertilizer on yield, yield components and quality of winter rapeseed (Brassica napus L.). Chil. J. Agr. Res. 2010, 70, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Cheema, M.A.; Saleem, M.F.; Muhammad, N.; Wahid, M.A.; Baber, B.H. Impact of rate and timing of nitrogen application on yield and quality of canola (Brassica napus L.). Pak. J. Bot. 2010, 42, 1723–1731. [Google Scholar]
- White, C.A.; Roques, S.E.; Berry, P.M. Effects of foliar-applied nitrogen fertilizer on oilseed rape (Brassica napus). J. Agr. Sci. 2015, 153, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Joshi, N.L.; Mali, P.C.; Saxena, A. Effect of nitrogen and sulphur application on yield and fatty acid composition of mustard (Brassica juncea L.) oil. J. Agron. Crop. Sci. 1998, 180, 59–63. [Google Scholar] [CrossRef]
- Brennan, R.F.; Mason, M.G.; Walton, G.H. Effect of nitrogen fertilizer on the concentrations of oil and protein in canola (Brassica napus) seed. J. Plant. Nutr. 2000, 23, 339–348. [Google Scholar] [CrossRef]
- Bilsborrow, P.E.; Evans, E.J.; Zhao, F.J. The influence of spring nitrogen on yield, yield components and glucosinolate content of autumn-sown oilseed rape (Brassica napus). J. Agr. Sci. 1993, 120, 219–224. [Google Scholar] [CrossRef]
- Thakral, S.K.; Singh, B.P.; Faroda, A.S.; Gupta, S.K. Effect of irrigation and fertility levels on the oil yield and quality of Brassica species. Ann. Agric. Res. 1996, 17, 416–418. [Google Scholar]
- Chen, X.J.; Zhu, Z.J.; Ni, X.L.; Qian, Q.Q. Effect of nitrogen and sulfur supply on glucosinolates in Brassica campestris ssp. chiensis. Agric. Sci. China 2006, 5, 603–608. [Google Scholar] [CrossRef]
- Omirou, M.D.; Papadopoulou, K.K.; Papastylianou, I.; Constantinou, M.; Karpouzas, D.G.; Asimakopoulos, I.; Ehaliotis, C. Impact on nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J. Agric. Food Chem. 2009, 57, 9408–9417. [Google Scholar] [CrossRef]
- Zhao, F.; Evans, E.J.; Bilsborrow, P.E.; Syers, J.K. Influence of nitrogen and sulphur on the glucosinolate profile of rapeseed (Brassica napus). J. Sci. Food Agric. 1994, 64, 295–304. [Google Scholar] [CrossRef]
- Grant, C.A.; Malhi, S.S.; Karamanos, R.E. Sulfur management for rapeseed. Field Crops Res. 2012, 128, 119–128. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Kijewski, Ł.; Groth, D.; Skwierawska, M.; Budzyński, W.S. The effect of sulfur fertilization on macronutrient concentrations in the post-harvest biomass of rapeseed (Brassica napus L. ssp. oleifera Metzg). J. Elem. 2015, 20, 585–597. [Google Scholar] [CrossRef] [Green Version]
- Jankowski, K.J.; Krzebietke, S.; Budzyński, W.S. The effect of sulphur fertilization on macronutrient concentrations in the post-harvest biomass of mustard. Plant. Soil Environ. 2015, 61, 266–272. [Google Scholar]
- Chahal, H.S.; Sing, A.; Malhi, G.S. Role of Sulphur nutrition in oilseed crop production—A review. J. Oilseeds Res. 2020, 11, 95–102. [Google Scholar]
- Szulc, P.M.; Drozdowska, L.; Kachlicki, P. Effect of sulphur on the yield and content of glucosinolates in spring oilseed rape seeds. EJPAU 2003, 6, 1–8. [Google Scholar]
- Ahmad, G.; Jan, A.; Arif, M.; Jan, M.T.; Khattak, R.A. Influence of nitrogen and sulfur fertilization on quality of canola (Brassica napus L.) under rainfed conditions. J. Zhejiang Univ. Sci. B 2007, 8, 731–737. [Google Scholar] [CrossRef]
- Bahmanyar, M.; Poshtmasari, H.K. Influence of nitrogen and sulfur on yield and seed quality of three canola cultivars. J. Plant. Nutr. 2010, 33, 953–965. [Google Scholar] [CrossRef]
- Sienkiewicz-Cholewa, U.; Kieloch, R. Effect of sulphur and micronutrients fertilization on yield and fat content in winter rape seeds (Brassica napus L.). Plant. Soil Environ. 2015, 61, 164–170. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S.; Szymanowski, A. Effect of sulfur on the quality of winter rape seeds. J. Elem. 2008, 13, 521–534. [Google Scholar]
- Ahmad, A.; Abdin, M.Z. Effect of sulphur application on lipid, RNA and fatty acid content in developing seeds of rapeseed (Brassica campestris L.). Plant. Science 2000, 150, 71–76. [Google Scholar] [CrossRef]
- Gaj, R.; Klikocka, H. Multifunctional sulphur effect in plants—From nutrition to protection. Prog. Plant. Prot. 2011, 1, 33–44. (In Polish) [Google Scholar]
- Hell, R.; Rennenberg, H. The plant sulphur cycle. In Sulphur in Agroecosystems, Part of the Series, Vol. 2: Nutrient in Ecosystems; Schnug, E., Ed.; Kluwer Academic Publishers: Dordrecth, The Netherlands, 1998; pp. 135–174. [Google Scholar]
- Zhao, F.J.; Withers, P.J.A.; Evans, E.J.; Monaghan, J.; Salmon, S.E.; Shewry, P.R.; McGrath, S.P. Sulphur nutrition: An important factor for the quality of wheat and rapeseed. Soil Sci. Plant. Nutr. 1997, 43, 1137–1142. [Google Scholar] [CrossRef]
- Malhi, S.S.; Gill, K.S. Effectiveness of sulphate-S fertilization at different growth stages for yield, seed quality and S uptake of canola. Can. J. Plant. Sci. 2002, 82, 665–674. [Google Scholar] [CrossRef]
- Nowak-Polakowska, H.; Czaplicki, S.; Tańska, M.; Jankowski, K.J. Chemical composition of white and sarepta mustard seeds as affected by differentiated conditions of nitrogen top-dressing at sowing-preceding fertilization with sulphur and magnesium. Pol. J. Nat. Sci. 2005, 18, 25–39. [Google Scholar]
- Hassan, F.U.; Manaf, A.; Quadir, G.; Basra, S.M.A. Effects of sulphur on seed yield, oil, protein and glucosinolates of canola cultivars. Int. J. Agri. Biol. 2007, 9, 504–508. [Google Scholar]
- Šiaudinis, G. The effect of nitrogen and sulphur fertilisation on the elemental composition and seed quality of spring oilseed rape. Žemdirbystė (Agriculture) 2010, 97, 47–56. [Google Scholar]
- Gerendás, J.; Podestát, J.; Stahl, T.; Kübler, K.; Brückner, H.; Mersch-Sundermann, V.; Mühling, K.H. Interactive effects of sulfur and nitrogen supply on the concentration of sinigrin and allyl isothiocyanate in Indian mustard (Brassica juncea L.). J. Agric. Food Chem. 2009, 57, 3837–3844. [Google Scholar] [CrossRef]
- Rehman, H.; Iqbal, Q.; Farooq, M.; Wahid, A.; Afzal, I.; Basra, S.M. Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiol. Plant. 2013, 35, 2999–3006. [Google Scholar] [CrossRef]
- Gugała, M.; Sikorska, A.; Zarzecka, K. The effect of fertilization with sulphur, boron, and amino acids on the content of glucosinolate in winter rape seeds. Agronomy 2020, 10, 519. [Google Scholar] [CrossRef] [Green Version]
- Wielebski, F. Sulphur fertilization of different types of winter oilseed rape varieties in various soil conditions. II. Effect on quality and chemical composition of seeds. Rośliny Oleiste: Oilseed Crops 2006, 27, 283–298. (In Polish) [Google Scholar]
- Wielebski, F. The effect of sulphur fertilization on the yield of different breeding forms of winter oilseed rape in the conditions of diverse nitrogen rates. Rośliny Oleiste: Oilseed Crops 2011, 32, 61–78. (In Polish) [Google Scholar]
- Merrien, A.; Ribaillier, D.; Agbo, P.; Davineau, J. Impact de la fertilisation soufre sur la teneur en glucosinolates des greins chez le colza: Consequences agronomiques. In Proceedings of the 7th International Congress Sur le Colza, Poznań, Poland, 10–14 May 1987; pp. 907–916. (In French). [Google Scholar]
- Dobele, A.; Pilvere, I.; Ruza, L.; Grigorjeva, R. Economic evaluation of rape production on the member farms of the cooperative LATRAPS. Econ. Sci. Rural Dev. 2011, 24, 21–29. [Google Scholar]
- Homolka, J.; Bubeníková, V. Economic evaluation of intensive growing of selected crops. Agris On-Line Pap. Econ. Inf. 2013, 5, 47–58. [Google Scholar]
- Dobek, T.K.; Sałagan, P. Influence of the production costs of winter rape seeds on the value of the produced biodiesel. Inż. Rol. 2011, 15, 21–28. (In Polish) [Google Scholar]
- Dobek, T.K.; Rynkiewicz, M.; Červinka, J.; Mareček, J. Energy and economic effectiveness of winter rape and winter wheat cultivation for liquid biofuel production. Acta Univ. Agric. Silivic. Mendel. Brun. 2013, 61, 1255–1259. [Google Scholar] [CrossRef] [Green Version]
- Jabłoński, K.; Skarżyńska, A.; Abramczuk, Ł. Determinants of income from wheat and rape production in projection for 2020 in Poland. Žemės Ūkio Mokslai 2015, 22, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Skarżyńska, A. Technical, economic and environmental efficiency of production of selected plant products in the agricultural Polish regions. Probl. Agric. Econ. 2017, 1, 117–137. [Google Scholar]
- Nilsson, C.; Buechs, W.; Klukowski, Z.; Luik, A.; Ulber, B.; Williams, I.H. Integrated crop and pest management of winter oilseed rape (Brassica napus L.). Žemdirbystė (Agriculture) 2015, 102, 325–334. [Google Scholar] [CrossRef]
- Skarżyńska, A. Cropping intensity vs. profitability of selected plant production activities in Poland. Stud. Agric. Econ. 2012, 114, 31–38. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Hoppe, S. Evaluation of hybrid and population cultivars on standard and high-input technology in winter oilseed rape. Acta Agric. Scand. 2018, 68, 678–689. [Google Scholar]
- Yue, D.; You, F.; Snyder, S.W. Biomass-to-bioenergy and biofuel supply chain optimization: Overview, key issues and challenges. Comput. Chem. Eng. 2014, 66, 36–56. [Google Scholar] [CrossRef]
- Budzyński, W.S.; Jankowski, K.J.; Jarocki, M. An analysis of the energy efficiency of winter rapeseed biomass under different farming technologies. A case study of a large-scale farm in Poland. Energy 2015, 90, 1272–1279. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Budzyński, W.S.; Kijewski, Ł. An analysis of energy efficiency in the production of oilseed crops of the family Brassicaceae in Poland. Energy 2015, 81, 674–681. [Google Scholar] [CrossRef]
- Jankowski, K.J.; Dubis, B.; Budzyński, W.S.; Bórawski, P.; Bułkowska, K. Energy efficiency of crops grown for biogas production in a large-scale farm in Poland. Energy 2016, 109, 277–286. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Kwiatkowski, J.; Tworkowski, J.; Szczukowski, S. Energy and economic efficiency of camelina and crambe biomass production on a large-scale farm in north-eastern Poland. Energy 2018, 150, 770–780. [Google Scholar] [CrossRef]
- Bielski, S.; Romaneckas, K.; Novikova, A.; Šarauskis, E. Are higher input levels to triticale growing technologies effective in biofuel production system? Sustainability 2019, 11, 5915. [Google Scholar] [CrossRef] [Green Version]
- Bórawski, P.; Bełdycka-Bórawska, A.; Szymańska, E.J.; Jankowski, K.J.; Dubis, B.; Dunn, J.W. Development of renewable energy sources market and biofuels in the European Union. J. Clean. Prod. 2019, 228, 467–484. [Google Scholar] [CrossRef]
- Dubis, B.; Jankowski, K.J.; Załuski, D.; Bórawski, P.; Szempliński, W. Biomass production and energy balance of Miscanthus over a period of 11 years: A case study in a large-scale farm in Poland. GCB Bioenergy 2019, 11, 1187–1201. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Krzyżaniak, M.; Tworkowski, J.; Załuski, D.; Kwiatkowski, J.; Szczukowski, S. Camelina and crambe production—Energy efficiency indices depending on nitrogen fertilizer application. Ind. Crops Prod. 2019, 137, 386–395. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Elbersen, H.W.; Cosentino, S.L.; Zatta, A.; Alexopoulou, E.; Monti, A. Agronomic aspects of future energy crops in Europe. Biofuels Bioprod. Bioref. 2010, 4, 674–691. [Google Scholar] [CrossRef]
- Kusek, G.; Ozturk, H.H.; Akdemir, S. An assessment of energy use of different cultivation methods for sustainable rapeseed production. J. Clean. Prod. 2016, 112, 2772–2783. [Google Scholar] [CrossRef]
- Meier, U. Growth stages of mono- and dicotyledonous plants. In BBCH Monograph; Julius Kühn-Institut: Quedlinburg, Germany, 2018; Available online: https://www.julius-kuehn.de/media/Veroeffentlichungen/bbch%20epaper%20en/page.pdf (accessed on 28 May 2020).
- IUSS Working Group WRB. World Reference Base for Soil Resources, 2nd ed.; World Soil Resources Reports No. 103; FAO: Rome, Italy, 2006; p. 132. [Google Scholar]
- Sokólski, M.; Jankowski, K.J.; Załuski, D.; Szatkowski, A. Productivity, energy and economic balance in the production of different cultivars of winter oilseed rape. A case study in north-eastern Poland. Agronomy 2020, 10, 508. [Google Scholar] [CrossRef] [Green Version]
- Panak, H. Agricultural Chemistry; ART: Olsztyn, Poland, 1997; 258p. (In Polish) [Google Scholar]
- Jankowski, K.J.; Sokólski, M.; Dubis, B.; Krzebietke, S.; Żarczyński, P.; Hulanicki, P.; Hulanicki, P.S. Yield and quality of winter oilseed rape (Brassica napus L.) seeds in response to foliar application of boron. Agr. Food Sci. 2016, 25, 164–176. [Google Scholar] [CrossRef]
- Pawlak, J. Organizational and Economic Aspects of Automated Plant Production Systems in Family Farms; PWRiL: Warszawa, Poland, 1989. (In Polish) [Google Scholar]
- Wójcicki, Z. Equipment, Materials and Energy Inputs in Growth-Oriented Farms; IBMER: Warszawa, Poland, 2000. (In Polish) [Google Scholar]
- Fore, S.R.; Porter, P.; Lazarus, W. Net energy balance of small-scale on-farm biodiesel production from canola and soybean. Biomass Bioenerg. 2011, 35, 2234–2244. [Google Scholar] [CrossRef]
- Statistica, Version 10.0, Data Analysis Software System; Statsoft Inc.: Tulsa, OK, USA, 2010.
- Korbas, M.; Jajor, E.; Budka, A. Clubroot (Plasmodiophora brassicae)—A threat for oilseed rape. J. Plant. Prot. Res. 2009, 49, 446–451. [Google Scholar] [CrossRef]
- Huang, S.; Gruber, S.; Claupein, W. Field history of imidazolinone-tolerant oilseed rape (Brassica napus) volunteers in following crops under six long-term tillage systems. Field Crops Res. 2016, 185, 51–58. [Google Scholar] [CrossRef]
- Ratajczak, K.; Sulewska, H.; Szymańska, G. New winter oilseed rape varieties—seed quality and morphological traits depending on sowing date and rate. Plant. Prod. Sci. 2017, 20, 262–272. [Google Scholar] [CrossRef]
- Clarke, S.M.; Berry, P.M.; Roques, S.; Draye, X.; Foulkes, J.; Hawkesford, M. A comparison of semi-dwarf and standard height oilseed rape varieties on N use efficiency and its components. Aspects Appl. Biol. 2010, 105, 115–123. [Google Scholar]
- Wielebski, F.; Wójtowicz, M. Effect of date and density of sowing and weather conditions on seed yield and yield components of winter oilseed rape morfotypes with traditional and semi-draft type of growth. Fragm. Agron. 2018, 35, 133–145. (In Polish) [Google Scholar]
- Sieling, K.; Kage, H. The potential of semi-dwarf oilseed rape genotypes to reduce the risk of N leaching. J. Agric. Sci. 2008, 146, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Gugała, M.; Sikorska, A.; Findura, P.; Kapela, K.; Malaga-Tobola, U.; Zarzecka, K.; Domanski, L. Effect of selected plant preparations containing biologically active compounds on winter rape (Brassica napus L.) yielding. Appl. Ecol. Environ. Res. 2019, 17, 2779–2789. [Google Scholar] [CrossRef]
- Wielebski, F. Response of different types of winter oilseed rape varieties to sowing date and to various plant density in the field. Prosperující olejniny 2014, 48–52, (In Czech with English abstract). [Google Scholar]
- Dresbøll, D.B.; Rasmussen, I.S.; Thorup-Kristensen, K. The significance of litter loss and root growth on nitrogen efficiency in normal and semi-dwarf winter oilseed rape genotypes. Field Crops Res. 2016, 186, 166–178. [Google Scholar] [CrossRef]
- Schuster, C.; Rathke, G.W. Nitrogen fertilisation of transgenic winter oilseed rape. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems through Basic and Applied Research; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Kluwer Academic Publishers: Berlin, Germany, 2001; pp. 798–799. [Google Scholar]
- Barłóg, P.; Grzebisz, W. Effect of timing and nitrogen fertilizer application on winter oilseed rape (Brassica napus L.). II. Nitrogen uptake dynamics and fertilizer efficiency. J. Agron. Crop. Sci. 2004, 190, 314–323. [Google Scholar] [CrossRef]
- Boelcke, B.; Léon, J.; Schulz, R.R.; Schröder, G.; Diepenbrock, W. Yield stability of winter oil-seed rape (Brassica napus L.) as affected by stand establishment and nitrogen fertilization. J. Agron. Crop. Sci. 1991, 167, 241–248. [Google Scholar] [CrossRef]
- Zhao, F.; Evans, E.J.; Bilsborrow, P.E.; Syers, J.K. Influence of sulphur and nitrogen on seed yield and quality of low glucosinolate oilseed rape (Brassica napus L.). J. Sci. Food Agric. 1993, 63, 29–37. [Google Scholar] [CrossRef]
- Yusuf, R.I.; Bullock, D.G. Effect of several production factors on two varieties of rapeseed in the central United States. J. Plant. Nutr. 1993, 16, 1279–1288. [Google Scholar] [CrossRef]
- Wojnowska, T.; Panak, H.; Sienkiewicz, S. The responses of winter rapeseed to increasing rates of nitrogen fertilization on black soils in Kętrzyn. Rośliny Oleiste–Oilseed Crops 1995, 1, 173–180. (In Polish) [Google Scholar]
- Shepherd, M.A.; Sylvester-Bradley, R. Effect of nitrogen fertilizer applied to winter oilseed rape (Brassica napus) on soil mineral nitrogen after harvest and on the response of a succeeding crop of winter wheat to nitrogen fertilizer. J. Agr. Sci. 1996, 126, 63–74. [Google Scholar] [CrossRef]
- Barszczak, Z.; Barszczak, T.; Górczyński, J. The influence of periodic drought and soil salinity on the yield of winter rapeseed supplied with different rates of N fertilizer. Post. Nauk Roln. 1993, 6, 15–23. (In Polish) [Google Scholar]
- Kessel, B.; Becker, H.C. Genetic variation of nitrogen-efficiency in field experiments with oilseed rape (Brassica napus L.). In Plant Nutrition–Molecular Biology and Genetics; Gissel-Nielsen, G., Jensen, A., Eds.; Springer: Dodrecht, The Netherlands, 1999; pp. 391–395. [Google Scholar]
- Wójtowicz, M. The influence of environmental and agronomic factors on seed yield and yield quality of winter rapeseed (Brassica napus L.). Monogr. Sci. Diss. 2013, 45, 1–111. (In Polish) [Google Scholar]
- Frick, J.; Nielsen, S.S.; Mitchell, C.A. Yield and seed oil content response of dwarf, rapid-cycling Brassica to nitrogen treatments, planting density, and carbon dioxide enrichment. J. Am. Soc. Hortic. Sci. 1994, 119, 1137–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheema, M.A.; Saleem, M.; Malik, M.A.A. Effect of row spacing and nitrogen management of agronomic traits and oil quality of canola (Brassica napus L.). Pak. J. Agric. Sci. 2001, 38, 15–18. [Google Scholar]
- Schnug, E.; Haneklaus, S. Sulphur deficiency in oilseed rape flowers–symptomatology, biochemistry and ecological impacts. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; Volume 1, pp. 296–298. [Google Scholar]
- Zhao, F.J.; Wood, A.P.; McGrath, S.P. Effects of sulphur nutrition on growth and nitrogen fixation of pea (Pisum sativum L.). Plant. Soil 1999, 212, 207–217. [Google Scholar] [CrossRef]
- Budzyński, W.S.; Ojczyk, T. Influence of sulphur fertilization on seed yield and seed quality of double low oilseed rape. In Proceedings of the 9th International Rapeseed Congress, Cambridge, UK, 4–7 July 1995; Volume 1, pp. 284–286. [Google Scholar]
- Malhi, S.S.; Gan, Y.; Raney, J.P. Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agron. J. 2007, 99, 570–577. [Google Scholar] [CrossRef]
- Zukalová, H.; Matula, J.; Vasak, J. Effect of sulphur fertilization upon biomass dry matter production dynamics and glucosinolate biosynthesis in three types of winter oilseed rape (Brassica napus L.). Rośliny Oleiste–Oilseed Crops 2001, 22, 273–284. (In Polish) [Google Scholar]
- Wielebski, F.; Wójtowicz, M. Effect of spring sulphur fertilization on yield and glucosinolate content in seeds of winter oilseed rape composite hybrids. Rośliny Oleiste–Oilseed Crops 2003, 24, 109–119. (In Polish) [Google Scholar]
- Rice, P. Sulphur mustard. Medicine 2007, 35, 578–579. [Google Scholar] [CrossRef]
- Ahmad, A.; Khan, I.; Anjum, N.A.M.; Diva, I.; Abdin, M.Z.; Iqbal, M. Effect of timing of sulfur fertilizer application on growth and yield of rapeseed. J. Plant. Nutr. 2005, 28, 1049–1059. [Google Scholar] [CrossRef]
- Piri, I. Study of yield and yield components of black mustard (Brassica nigra) in condition of sulphur application and water stress. Ann. Biol. Res. 2012, 3, 2074–2077. [Google Scholar]
- Zukalová, H.; Bečka, D.; Cihlář, P.; Mikšík, V.; Vašák, J. Quality of three types of winter rapeseed varieties. Prosperující olejniny 2014, 1, 93–97, (In Czech with English abstract). [Google Scholar]
- Różyło, K.; Pałys, E. New oilseed rape (Brassica napus L.) varieties—Canopy development, yield components, and plant density. Acta Agr. Scand. B. -S. P. 2014, 64, 260–266. [Google Scholar]
- Sikorska, A.; Gugała, M.; Zarzecka, K.; Kapela, K. The effect of biostimulants on the glucosinolate content in winter oilseed rape (Brassica napus L.) seeds. Plant. Soil Environ. 2018, 64, 7–12. [Google Scholar]
- Forster, H. Influence of N and K fertilizers on the quality and yield of oil from old and new varieties of rapeseed. In Proceedings of the 13th Colloquium of the International Potash Institute, York, UK, 1977; pp. 305–310. [Google Scholar]
- Zanetti, F.; Vamerali, T.; Mosca, G. Yield and oil variability in modern varieties of high-erucic winter oilseed rape (Brassica napus L. var. oleifera) and Ethiopian mustard (Brassica carinata A. Braun) under reduced agricultural inputs. Ind. Crops. Prod. 2009, 30, 265–270. [Google Scholar]
- Wójtowicz, M.; Wielebski, F.; Czernik-Kołodziej, K. Effect of spring nitrogen fertilization on agronomical and commercial plant characters of new breeding forms of winter oilseed rape. Rośliny Oleiste: Oilseed Crops 2002, 23, 337–350. (In Polish) [Google Scholar]
- Wójtowicz, M. Effect of nitrogen fertilization and environment conditions on biological and commercial characters of oilseed rape composite hybrids Kaszub and Mazur. Rośliny Oleiste: Oilseed Crops 2004, 25, 109–123. (In Polish) [Google Scholar]
- Wielebski, F.; Muśnicki, C. The influence of increasing sulfur rates and sulfur application methods on the seed yield and glucosinolate content of two winter rapeseed cultivars in field experiments. Rocz. AR Poznań 1998, 303, 149–167. (In Polish) [Google Scholar]
- Singh, M.; Kumar, M. Effect of nitrogen and sulphur levels on seed yield and some other characters in mustard (Brassica juncea (L.) Czern and Coss). Int. J. Agric. 2014, 10, 449–452. [Google Scholar]
- Barczak, B.; Klikocka, H. Effect of sulphur fertilization on aminoacid and fraction composition of protein of white mustard seeds. J. Agr. Sci. Tech. 2018, 20, 1443–1453. [Google Scholar]
- Nuttall, W.F.; Ukrainetz, H.; Stewart, J.W.B.; Spurr, D.T. The effect of nitrogen, sulphur and boron on yield and quality of rapeseed (Brassica napus L. and B. campestris L.). Can. J. Soil Sci. 1987, 67, 545–559. [Google Scholar] [CrossRef]
- Čeh, B.; Hrastar, R.; Tajnšek, A.; Košir, I.J. Impact of source and application time of sulphur on the yield, oil content and protein content in winter oilseed rape. Acta Agric. Slov. 2008, 91, 5–14. [Google Scholar] [CrossRef]
- Sardana, V.; Atwal, A.K. Influence of nitrogen and sulphur on seed yield and quality of hybrid canola. In Proceedings of the 12th International Rapseed Congress, Wuhan, China, 26–30 March 2007; Volume 1, pp. 243–245. [Google Scholar]
- Liu, X.; Yang, Y.; Deng, X.; Li, M.; Zhang, W.; Zhao, Z. Effects of sulfur and sulfate on selenium uptake and quality of seeds in rapeseed (Brassica napus L.) treated with selenite and selenate. Envrion. Exp. Bot. 2017, 135, 13–20. [Google Scholar] [CrossRef]
- Zukalová, H.; Matula, J.; Kuchtová, P.; Miksik, V. Influence of sulphur on the yield and quality of winter oilseed rape. Rośliny Oleiste: Oilseed Crops 2001, 22, 587–596. (In Polish) [Google Scholar]
- Wielebski, F.; Wójtowicz, M.; Krzymański, J. Influence of sulphur fertilization on glucosinolate quality and quantity in seed of two double low oilseed rape varieties (Brassica napus L.). In Proceedings of the 10th International Rapeseed Congress, Canberra, Australia, 26–29 September 1999; pp. 301–316. [Google Scholar]
- Vermorel, M.; Heaney, R.K.; Fenwick, R. Nutritive value of rapeseed meal: Effects of individual glucosinolates. J. Sci. Food Agric. 1986, 37, 1197–1202. [Google Scholar] [CrossRef]
- Wielebski, F. Influence of sulphur fertilization and foliar application with magnesium and boron on the spring oilseed rape yield and glucosinolates content in seeds. Rośliny Oleiste: Oilseed Crops 1997, 18, 179–186. (In Polish) [Google Scholar]
- Rotkiewicz, D.; Ojczyk, T.; Konopka, I. The influence of sulfur fertilization on the quality and processing suitability of winter rapeseed. Rośliny Oleiste: Oilseed Crops 1996, 17, 257–264. (In Polish) [Google Scholar]
- Cardone, M.; Mazzoncini, M.; Menini, S.; Rocco, V.; Senatore, A.; Seggiani, M.; Vitolo, S. Brassica carinata as an alternative oil crop for the production of biodiesel in Italy: Agronomic evaluation, fuel production by transesterification and characterization. Biomass Bioenerg. 2003, 25, 623–636. [Google Scholar] [CrossRef]
- Venturi, P.; Venturi, G. Analysis of energy comparison for crops in European agricultural systems. Biomass Bioenergy 2003, 25, 235–255. [Google Scholar] [CrossRef]
- Stephenson, A.L.; Dennis, J.S.; Scott, S.A. Improving the sustainability of the production of biodiesel from oilseed rape in the UK. Process. Saf. Environ. Prot. 2008, 86, 427–440. [Google Scholar] [CrossRef]
- Unakitan, G.; Hurma, H.; Yilmaz, F. An analysis of energy use efficiency of canola production in Turkey. Energy 2010, 35, 3623–3627. [Google Scholar] [CrossRef]
- Mousavi-Avval, S.H.; Rafiee, S.; Jafari, A.; Mohammadi, A. Energy flow modeling and sensitivity analysis of inputs for canola production in Iran. J. Clean. Prod. 2011, 19, 1464–1470. [Google Scholar] [CrossRef]
- Filipović, D.; Krička, T. An energy analysis of rapeseed production for biodiesel in Croatia. J. Mech. Eng. 2006, 52, 680–692. [Google Scholar]
- Gemtos, T.A.; Cavalaris, C.; Karamoutis, C.; Tagarakis, A.; Fountas, S. Energy analysis of three energy crops in Greece. Agric. Eng. Int. CIGR J. 2013, 15, 52–66. [Google Scholar]
- Firrisa, M.T.; Van Duren, I.; Voinov, A. Energy efficiency for rapeseed biodiesel production in different farming systems. Energ. Effic. 2014, 7, 79–95. [Google Scholar] [CrossRef]
- Bielski, S.; Jankowski, K.J.; Budzyński, W.S. The energy efficiency of oil seed crops production and their biomass conversion into liquid fuels. Przem. Chem. 2014, 93, 2270–2273. (In Polish) [Google Scholar]
Years | pH | Corg (g kg−1) | Available Macronutrients (mg kg−1) | |||
---|---|---|---|---|---|---|
P | K | Mg | ||||
2011/2012 | 5.9 | 9.0 | 21.3 | 59.3 | 52.0 | 9.2 |
2012/2013 | 5.7 | 8.9 | 20.4 | 57.9 | 49.0 | 7.8 |
2013/2014 | 6.3 | 9.9 | 26.2 | 82.7 | 68.0 | 12.5 |
Farming Operations | Engine Power of Self-Propelled Machine (kW) a | Parameters of Accompanying Machine | Service Life (h) | Weight (kg) | Performance of Self-Propelled Machine and Accompanying Machine (ha h−1) f | Fuel Consumption (l h−1) f | ||
---|---|---|---|---|---|---|---|---|
Self-Propelled Machine | Accompanying Machine | Self-Propelled Machine | Accompanying Machine | |||||
Tillage (5–8 cm) | 130 | 4.25 b | 10,000 | 1500 | 7105 | 5100 | 3.0 | 18.0 |
Pre-sowing plowing (18–20 cm) | 130 | 5 c | 10,000 | 1400 | 7105 | 2370 | 1.8 | 26.0 |
Sowing | 184 | 4.0 b | 10,000 | 1800 | 10,980 | 5600 | 3.5 | 29.5 |
Mineral fertilization | 130 | 24.0 b | 10,000 | 2000 | 7105 | 685 | 13.5 | 8.7 |
Chemical crop protection | 94 | 24.0 b | 10,000 | 3000 | 5166 | 5600 | 10.0 | 7.6 |
Seed harvest | 370 | 10.5 b | 2800 | - | 20,000 | - | 2.8-3.5 g | 45.0–50.0 g |
Seed transport | 130 | 10 d | 10,000 | 1400 | 7105 | 2600 | - | 8.0 |
Loading | 55 | 2500 e | 10,000 | - | 4920 | - | - | 4.0 |
Trait | Y | Cv. | N | S | Y × Cv. | Y × N | Y × S | Cv. × N | Cv. × S | N × S | Y × Cv. × N | Y × Cv. × S | Y × N × S | Cv. × N × S | Y × Cv. × N × S |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Seed yield (Mg ha−1 DM) | 2.49 ns | 226.67 ** | 122.90 ** | 5.47 * | 122.96 ** | 8.50 ** | 0.46 ns | 1.39 ns | 1.63 ns | 0.75 ns | 1.32 ns | 1.72 ns | 0.41 ns | 0.49 ns | 0.39 ns |
NUE (kg seed per 1 kg N) | 1.57 ns | 171.31 ** | 1629.93 ** | 2.97 ns | 89.01 ** | 1.90 ns | 0.40 ns | 12.99 ** | 0.89 ns | 0.26 ns | 0.44 ns | 0.16 ns | 0.28 ns | 0.29 ns | 0.51 ns |
Straw yield (Mg ha−1 DM) | 111.44 ** | 73.57 ** | 16.65 ** | 0.08 ns | 7.80 ** | 3.71 * | 1.49 ns | 0.83 ns | 0.17 ns | 0.17 ns | 1.45 ns | 0.71 ns | 0.75 ns | 0.78 ns | 0.56 ns |
Harvest index | 142.64 ** | 44.62 ** | 22.62 ** | 2.99 ns | 1.28 ns | 2.82 * | 1.05 ns | 2.20 * | 0.41 ns | 0.82 ns | 1.26 ns | 0.59 ns | 1.18 ns | 1.44 ns | 0.82 ns |
Crude fat content (g kg−1 DM) | 75.93 ** | 27.97 ** | 33.62 ** | 1.35 ns | 1.72 ns | 3.16 ** | 0.43 ns | 3.87 ** | 0.86 ns | 1.38 ns | 1.67 ns | 0.53 ns | 0.09 ns | 1.32 ns | 0.27 ns |
C18:1 (%) | 3.73 * | 199.78 ** | 5.69 ** | 0.60 ns | 0.03 ns | 0.02 ns | 0.05 ns | 1.31 ns | 1.18 ns | 1.69 ns | 0.04 ns | 0.02 ns | 0.01 ns | 1.36 ns | 0.07 ns |
C18:2 (%) | 3.41 * | 244.11 ** | 5.20 ** | 0.11 ns | 0.04 ns | 0.01 ns | 0.01 ns | 0.97 ns | 1.07 ns | 1.12 ns | 0.01 ns | 0.01 ns | 0.03 ns | 1.71 ns | 0.01 ns |
C18:3 (%) | 2.68 ns | 66.66 ** | 2.95 * | 1.72 ns | 0.07 ns | 0.04 ns | 0.23 ns | 0.61 ns | 2.24 ns | 1.33 ns | 0.10 ns | 0.07 ns | 0.05 ns | 0.38 ns | 0.20 ns |
Total protein content (g kg−1 DM) | 18.85 ** | 15.43 ** | 21.86 ** | 1.07 ns | 0.33 ns | 1.15 ns | 0.06 ns | 3.14 ** | 3.18 ** | 0.77 ns | 0.84 ns | 0.57 ns | 0.61 ns | 1.63 ns | 0.47 ns |
Total GLS content (μM g−1 DM) | 16.26 ** | 720.66 ** | 17.32 ** | 378.79 ** | 0.02 ns | 0.03 ns | 0.01 ns | 8.73 ** | 24.28 ** | 7.94 ** | 0.02 ns | 0.02 ns | 0.07 ns | 1.47 ns | 0.04 ns |
Alkenyl GLS content (μM g−1 DM) | 12.77 ** | 2875.77 ** | 34.48 ** | 1036.14 ** | 0.03 ns | 0.05 ns | 0.02 ns | 17.53 ** | 71.52 ** | 20.73 ** | 0.03 ns | 0.03 ns | 0.12 ns | 0.91 ns | 0.06 ns |
LHV (MJ kg−1) | 26.48 ** | 7.63 ** | 0.14 ns | 1.31 ns | 2.14 ns | 1.61 ns | 1.23 ns | 0.33 ns | 0.67 ns | 0.51 ns | 0.98 ns | 1.12 ns | 0.96 ns | 1.41 ns | 1.35 ns |
Month | Year | 1981–2015 | |||
---|---|---|---|---|---|
2011 | 2012 | 2013 | 2014 | ||
Total Monthly Rainfall (mm) | |||||
January | 30 | 88 | 35 | 44 | 32 |
February | 21 | 25 | 21 | 11 | 22 |
March | 9 | 21 | 14 | 56 | 30 |
April | 34 | 45 | 23 | 26 | 30 |
May | 42 | 43 | 46 | 35 | 59 |
June | 56 | 107 | 45 | 72 | 72 |
July | 172 | 112 | 164 | 20 | 85 |
August | 84 | 26 | 25 | 59 | 66 |
September | 39 | 41 | 69 | 31 | 55 |
October | 30 | 58 | 15 | 21 | 48 |
November | 10 | 49 | 23 | 21 | 45 |
December | 46 | 15 | 34 | 57 | 43 |
∑ | 570 | 628 | 515 | 454 | 588 |
Mean Daily Temperature (°C) | |||||
January | −1.5 | −1.9 | −4.4 | −3.3 | −2.4 |
February | −6.6 | −7.2 | −0.8 | 2.0 | −1.8 |
March | 2.0 | 3.4 | −4.0 | 5.4 | 1.9 |
April | 9.7 | 8.4 | 6.3 | 9.5 | 7.8 |
May | 13.5 | 13.8 | 15.0 | 13.1 | 13.3 |
June | 17.5 | 15.2 | 17.4 | 14.8 | 15.9 |
July | 18.0 | 19.0 | 17.9 | 21.0 | 18.3 |
August | 18.0 | 17.9 | 18.1 | 18.0 | 17.9 |
September | 14.6 | 14.0 | 11.5 | 14.5 | 13.1 |
October | 8.7 | 8.0 | 9.3 | 9.6 | 8.2 |
November | 3.1 | 4.9 | 4.9 | 4.4 | 3.0 |
December | 2.4 | −3.4 | 2.3 | −0.5 | −0.7 |
8.3 | 7.7 | 7.8 | 9.0 | 7.9 |
Parameter | Seed Yield (Mg ha−1 DM) | NUE (kg Seeds per 1 kg N) | Straw Yield (Mg ha−1 DM) | Harvest Index |
---|---|---|---|---|
Growing Season | ||||
2011/2013 | 6.36 | 45.68 | 10.91 b | 0.333 b |
2012/2013 | 6.27 | 46.35 | 9.71 c | 0.362 a |
2013/2014 | 6.22 | 45.44 | 11.86 a | 0.313 c |
Cultivar | ||||
Adriana | 5.70 c | 41.20 c | 10.54 b | 0.321 c |
Artoga | 6.97 a | 50.95 a | 11.80 a | 0.339 b |
PRD06 | 6.18 b | 45.32 b | 10.12 c | 0.347 a |
Nitrogen Rate (kg ha−1), across Years | ||||
80 | 5.55 c | 69.42 a | 10.11 b | 0.324 b |
130 | 6.20 b | 47.66 b | 10.99 a | 0.330 b |
180 | 6.63 a | 36.82 c | 11.00 a | 0.346 a |
230 | 6.76 a | 29.39 d | 11.18 a | 0.346 a |
Sulfur Rate (kg ha−1), across Years | ||||
0 | 6.21 b | 45.45 | 10.85 | 0.333 |
40 | 6.40 a | 46.57 | 10.83 | 0.340 |
80 | 6.25 b | 45.46 | 10.79 | 0.337 |
Parameter | Crude Fat (g kg−1 DM) | FAs (%) | Total Protein (g kg−1 DM) | GLS (μM g−1 DM) | LHV (MJ kg−1) | |||
---|---|---|---|---|---|---|---|---|
C18:1 | C18:2 | C18:3 | Total | Alkenyl | ||||
Growing Season | ||||||||
2011/2013 | 503.6 b | 62.1 ab | 20.8 ab | 10.4 | 178.5 b | 11.8 a | 8.3 a | 25.2 b |
2012/2013 | 513.6 a | 62.4 a | 20.6 b | 10.3 | 173.4 c | 12.0 a | 8.4 a | 25.7 a |
2013/2014 | 493.6 c | 61.8 b | 20.9 a | 10.6 | 184.0 a | 11.4 b | 8.1 b | 25.7 a |
Cultivar | ||||||||
Adriana | 505.5 a | 63.2 b | 20.4 b | 9.8 c | 180.8 a | 12.6 b | 9.3 b | 25.6 a |
Artoga | 496.8 b | 59.5 c | 22.5 a | 11.4 a | 182.0 a | 13.1 a | 9.8 a | 25.4 b |
PRD06 | 508.5 a | 63.7 a | 19.4 c | 10.2 b | 173.2 b | 9.4 c | 5.6 c | 25.6 a |
Nitrogen Rate (kg ha−1), across Years | ||||||||
80 | 513.2 a | 62.4 ab | 20.7 b | 10.2 b | 171.6 b | 12.1 a | 8.6 a | 25.6 |
130 | 503.6 b | 62.6 a | 20.5 b | 10.3 b | 174.9 b | 11.6 b | 8.1 c | 25.5 |
180 | 503.2 b | 61.7 c | 21.1 a | 10.6 a | 182.6 a | 11.2 c | 7.9 d | 25.5 |
230 | 494.3 c | 61.8 bc | 20.8 ab | 10.7 a | 185.7 a | 11.9 ab | 8.4 b | 25.5 |
Sulfur Rate (kg ha−1), across Years | ||||||||
0 | 505.0 | 62.1 | 20.8 | 10.4 | 177.9 | 10.1 c | 6.7 c | 25.5 |
40 | 502.3 | 62.2 | 20.8 | 10.4 | 178.0 | 12.0 b | 8.6 b | 25.5 |
80 | 503.5 | 62.0 | 20.8 | 10.6 | 180.1 | 13.0 a | 9.4 a | 25.6 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Production costs (€ ha−1), including: | 542 | 553 | 561 | 580 | 591 | 599 | 619 | 629 | 637 | 652 | 664 | 672 |
Tillage | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Sowing | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 | 70 |
Mineral fertilizers | 201 | 211 | 219 | 235 | 245 | 253 | 272 | 282 | 290 | 306 | 316 | 324 |
Weed control | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
Pest control | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Harvest and transport | 46 | 47 | 47 | 50 | 51 | 51 | 52 | 52 | 52 | 51 | 52 | 53 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur Rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Production costs (€ ha−1), including: | 569 | 581 | 586 | 605 | 616 | 624 | 645 | 655 | 663 | 679 | 689 | 697 |
Tillage | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Sowing | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 | 90 |
Mineral fertilizers | 201 | 211 | 219 | 235 | 245 | 253 | 272 | 282 | 290 | 306 | 316 | 324 |
Weed control | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
Pest control | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Harvest and transport | 53 | 54 | 52 | 54 | 55 | 55 | 57 | 57 | 57 | 57 | 57 | 57 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur Rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Production costs (€ ha−1), including: | 567 | 576 | 584 | 603 | 614 | 621 | 642 | 652 | 660 | 677 | 688 | 694 |
Tillage | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Sowing | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 | 91 |
Mineral fertilizers | 201 | 211 | 219 | 235 | 245 | 253 | 272 | 282 | 290 | 306 | 316 | 324 |
Weed control | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 | 75 |
Pest control | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 | 50 |
Harvest and transport | 49 | 48 | 48 | 52 | 52 | 52 | 53 | 53 | 53 | 54 | 55 | 53 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur Rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Cv. Adriana | ||||||||||||
Production value (€ ha−1) | 1749 | 1782 | 1753 | 1974 | 2065 | 2043 | 2148 | 2254 | 2239 | 2141 | 2344 | 2341 |
Revenue (€ ha−1) | 1207 | 1229 | 1192 | 1394 | 1474 | 1444 | 1529 | 1624 | 1602 | 1489 | 1681 | 1668 |
Profitability index (%) | 323 | 322 | 313 | 341 | 349 | 341 | 347 | 358 | 351 | 328 | 353 | 348 |
Cv. Artoga | ||||||||||||
Production value (€ ha−1) | 2265 | 2301 | 2192 | 2490 | 2580 | 2468 | 2682 | 2682 | 2609 | 2686 | 2700 | 2693 |
Revenue (€ ha−1) | 1695 | 1720 | 1605 | 1885 | 1964 | 1844 | 2037 | 2027 | 1946 | 2007 | 2011 | 1996 |
Profitability index (%) | 398 | 396 | 374 | 412 | 419 | 396 | 416 | 409 | 394 | 396 | 392 | 386 |
Cv. PR44 D06 | ||||||||||||
Production value (€ ha−1) | 2032 | 2029 | 2036 | 2228 | 2225 | 2163 | 2326 | 2399 | 2312 | 2323 | 2493 | 2359 |
Revenue (€ ha−1) | 1466 | 1453 | 1452 | 1625 | 1611 | 1541 | 1685 | 1747 | 1652 | 1646 | 1805 | 1665 |
Profitability index (%) | 359 | 352 | 349 | 369 | 362 | 348 | 363 | 368 | 351 | 343 | 362 | 340 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur Rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Energy inputs (MJ ha−1), including: | 14,480 | 14,896 | 15,252 | 18,411 | 18,834 | 19,190 | 22,352 | 22,751 | 23,107 | 26,178 | 26,601 | 26,981 |
Tillage | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 |
Sowing | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 | 247 |
Mineral fertilizers | 10,955 | 11,353 | 11,709 | 14,805 | 15,203 | 15,559 | 18,697 | 19,095 | 19,451 | 22,547 | 22,945 | 23,301 |
Weed control | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 |
Pest control | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 |
Harvest and transport | 957 | 975 | 975 | 1038 | 1063 | 1063 | 1087 | 1087 | 1087 | 1063 | 1087 | 1112 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur Rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Energy inputs (MJ ha−1), including: | 14,602 | 15,025 | 15,337 | 18,477 | 18,900 | 19,256 | 22,439 | 22,837 | 23,193 | 26,289 | 26,687 | 27,043 |
Tillage | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 |
Sowing | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 |
Mineral fertilizers | 10,955 | 11,353 | 11,709 | 14,805 | 15,203 | 15,559 | 18,697 | 19,095 | 19,451 | 22,547 | 22,945 | 23,301 |
Weed control | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 |
Pest control | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 |
Harvest and transport | 1107 | 1132 | 1087 | 1132 | 1157 | 1157 | 1201 | 1201 | 1201 | 1201 | 1201 | 1201 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur Rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Energy inputs (MJ ha−1), including: | 14,526 | 14,900 | 15,256 | 18,433 | 18,831 | 19,187 | 22,350 | 22,748 | 23,104 | 26,219 | 26,642 | 26,954 |
Tillage | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 | 1623 |
Sowing | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 | 220 |
Mineral fertilizers | 10,955 | 11,353 | 11,709 | 14,805 | 15,203 | 15,559 | 18,697 | 19,095 | 19,451 | 22,547 | 22,945 | 23,301 |
Weed control | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 | 373 |
Pest control | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 | 324 |
Harvest and transport | 1031 | 1007 | 1007 | 1087 | 1087 | 1087 | 1112 | 1112 | 1112 | 1132 | 1157 | 1112 |
Parameter | Nitrogen Rate (kg ha−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
80 | 130 | 180 | 230 | |||||||||
Sulfur Rate (kg ha−1) | ||||||||||||
0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | 0 | 40 | 80 | |
Cv. Adriana | ||||||||||||
Energy output (GJ ha−1) | 113.1 | 114.1 | 114.8 | 128.7 | 133.9 | 132.4 | 139.3 | 145.6 | 145.4 | 139.4 | 152.6 | 151.7 |
Energy gain (GJ ha−1) | 98.5 | 99.2 | 99.5 | 110.3 | 115.0 | 113.2 | 117.0 | 122.8 | 122.3 | 113.2 | 126.0 | 124.7 |
Energy efficiency ratio | 7.79 | 7.66 | 7.53 | 6.99 | 7.11 | 6.90 | 6.23 | 6.40 | 6.29 | 5.33 | 5.74 | 5.62 |
Cv. Artoga | ||||||||||||
Energy output (GJ ha−1) | 148.1 | 147.9 | 140.6 | 159.9 | 165.7 | 158.8 | 171.5 | 171.6 | 169.1 | 172.6 | 172.0 | 173.2 |
Energy gain (GJ ha−1) | 133.5 | 132.9 | 125.3 | 141.4 | 146.8 | 139.5 | 149.0 | 148.8 | 145.9 | 146.3 | 145.3 | 146.2 |
Energy efficiency ratio | 10.14 | 9.84 | 9.17 | 8.65 | 8.77 | 8.24 | 7.64 | 7.51 | 7.29 | 6.57 | 6.45 | 6.40 |
Cv. PR44 D06 | ||||||||||||
Energy output (GJ ha−1) | 132.1 | 131.9 | 132.9 | 144.1 | 142.4 | 141.1 | 150.4 | 156.2 | 150.7 | 151.2 | 161.4 | 153.1 |
Energy gain (GJ ha−1) | 117.5 | 117.0 | 117.7 | 125.7 | 123.6 | 121.9 | 128.0 | 133.4 | 127.6 | 125.0 | 134.8 | 126.2 |
Energy efficiency ratio | 9.09 | 8.85 | 8.71 | 7.82 | 7.56 | 7.35 | 6.73 | 6.87 | 6.52 | 5.77 | 6.06 | 5.68 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Groth, D.A.; Sokólski, M.; Jankowski, K.J. A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance. Energies 2020, 13, 4654. https://doi.org/10.3390/en13184654
Groth DA, Sokólski M, Jankowski KJ. A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance. Energies. 2020; 13(18):4654. https://doi.org/10.3390/en13184654
Chicago/Turabian StyleGroth, Dariusz Antoni, Mateusz Sokólski, and Krzysztof Józef Jankowski. 2020. "A Multi-Criteria Evaluation of the Effectiveness of Nitrogen and Sulfur Fertilization in Different Cultivars of Winter Rapeseed—Productivity, Economic and Energy Balance" Energies 13, no. 18: 4654. https://doi.org/10.3390/en13184654