Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. State-Of-The-Art
2.1.1. Energy Systems Analysis
2.1.2. The Fundamentals of Life Cycle Assessment
2.1.3. The Integration of LCA-Based Indicators into Energy Systems Analysis
- Double counting,
- Imports and exports,
- Spatial differentiation,
- Temporal differentiation,
- Biomass emissions,
- Multifunctional processes, and
- Future performance of technologies.
- Matching energy system technologies with their corresponding Life Cycle Inventory (LCI) datasets
- Subdividing LCI datasets according to the life cycle phases
- Constructing a background LCI database without the energy system of the considered region(s)
- Calculating the cumulative LCI and conducting Life Cycle Impact Assessment (LCIA).
2.2. Adjustment of the Life Cycle Inventory for Flexible Integration into Environmental Systems Analysis
- The adoption of a consumption-based approach in ESA must be enabled (by extending the emission scope to indirect emissions from imported products used in the energy system).
- Double counting of direct emissions should be eliminated by alignment of the system boundaries in LCA to increase the accuracy of the results.
- No changes in the assumptions and methodology of ESA should be necessary.
- Modelling efforts in LCA should be kept at a feasible level to increase uptake.
- Discrete-time evaluation of LCA results by life cycle phases to obtain a temporal resolution of the ESA in order to account for the impact at the time of commissioning of the energy technology.
- 1.
- Identification of technology surrogate models
- 2.
- Matching energy system technologies with their corresponding Life Cycle Inventory (LCI) datasets
- 3.
- Subdividing LCI datasets according to the life cycle phases
- 4.
- Constructing a background LCI database without the energy system of the considered region(s)
- 5.
- Dynamisation of the background model
- 6.
- Calculating the cumulative LCI and conducting Life Cycle Impact Assessment (LCIA)
3. The Use Case of PERC Solar Technology—Description and Results
3.1. Description of the Use Case
3.1.1. Technology Description
3.1.2. Life Cycle Inventory
3.1.3. Assessed Scenarios
- Standard LCA: In this scenario, the system boundaries of the LCA study remain unchanged compared to conventional LCA and the idea of life cycle thinking. The model accounts for all impacts along the life cycle. Thus, the LCA model is not adjusted to avoid double counting when being integrated into ESA. The reference year is 2018 and the PV modules are produced in China, with all other parts being produced in Germany. This scenario represents realistic production assumptions (see Section 3.1.1).
- Production in China (including avoided double counting): This scenario is based on the status quo (see Section 3.1.1.), and thus module production in China is assessed including the energy inputs, but the other technology components are produced in Germany and thus without energy inputs to avoid double counting of the occurring emissions. The reference year is 2018.
- Production in Germany (including avoided double counting): This scenario is based on the hypothetical scenario where PV production is retransferred to Germany. All production, including the modules, takes place in Germany and thus the energy inputs are not part of the LCA model (Note: This includes the silicon production). The reference year is 2018.
- Production in China 2050 (including avoided double counting and including temporal dimension with the adjustment for future developments): Based on the scenario China, a future production in 2050 is assumed. Changes in the electricity mix are modelled according to the GaBi database [19]. The reference year is 2050. Production sites remain unchanged compared to the scenario China.
- Note: The decarbonisation of the material inputs was modelled for the inputs of steel, aluminium, copper, silicon and glass.
3.2. Results
4. Discussion
5. Conclusions
- Identification of technology surrogate models
- Matching energy system technologies with their corresponding Life-Cycle Inventory (LCI) datasets
- Subdividing LCI datasets according to the life cycle phases
- Constructing a background LCI database without the energy system of the considered region(s)
- Dynamisation of the background model
- Calculating the cumulative LCI and conducting Life Cycle Impact Assessment (LCIA).
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Process | Country | Year | GWP [kg CO2-Equiv./kWh] | Source |
---|---|---|---|---|
Electricity grid mix | Germany | 2016 | 0.575 | [19] |
Electricity grid mix | China | 2016 | 0.834 | [19] |
Electricity grid mix (2040) (significant improvements in sustainability policy) | China | 2040 | 0.201 | [19] |
References
- Pfluger, B.; Tersteegen, B.; Franke, B. Langfristszenarien für die Transformation des Energiesystems in Deutschland; Bundesministeriums für Wirtschaft und Energie: Aachen, Germany, 2017. [Google Scholar]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; Division for Sustainable Development Goals: New York, NY, USA, 2015. [Google Scholar]
- Capros, P.; Mantzos, L. Endogenous learning in European post-Kyoto scenarios: Results from applying the market equilibrium model PRIMES. Int. J. Glob. Energy Issues 2000, 14, 249–261. [Google Scholar] [CrossRef]
- Pfluger, B. Assessment of Least-Cost Pathways for Decarbonising Europe’s Power Supply. A Model-Based Long-Term Scenario Analysis Accounting for the Characteristics of Renewable Energies. Ph.D. Thesis, Karlsruher Institut für Technologie, Karlsruhe, Germany, 2013. [Google Scholar]
- Erlach, B.; Henning, H.-M.; Kost, C.; Palzer, A.; Stephanos, C. Optimierungsmodell REMod-D. Materialien zur Analyse »Sektorkopplung«—Untersuchungen und Überlegungen zur Entwicklung Eines Integrierten Energiesystems; acatech, Schriftenreihe Energiesysteme der Zukunft: Munich, Germany, 2018. [Google Scholar]
- Peter, M.; Bertschmann, D.; Lückge, H. Metastudie Nationale Energieszenarien und Deutsche Energiepolitik; Umweltbundesamt UBA: Dessau Roslau, Germany, 2017. [Google Scholar]
- Trutnevyte, E. Does cost optimization approximate the real-world energy transition? Energy 2016, 106, 182–193. [Google Scholar] [CrossRef]
- Astudillo, M.F.; Vaillancourt, K.; Pineau, P.-O.; Amor, B.M. Integrating Energy System Models in Life Cycle Management. In Designing Sustainable Technologies, Products and Policies; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 249–260. [Google Scholar]
- Bruckner, T.; Bashmakov, I.A.; Mulugetta, Y.; Chum, H.; Navarro, A.d.L.V.; Edmonds, J.; Faaij, A.; Fungtammasan, B.; Garg, A. Energy Systems. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O.R., Pichs-Madruga, Y., Sokona, E., Eds.; Cambridge University Press: New York, NY, USA, 2014. [Google Scholar]
- Ferguson, S.M.; Sanctuary, M. Why is carbon leakage for energy-intensive industry hard to find? Environ. Econ. Policy Stud. 2018, 21, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Fraunhofer Institute for Solar Energy Systems ISE. Energy Charts. Available online: https://www.energy-charts.de/power_inst_de.htm?year=all&period=annual&type=inc_dec (accessed on 1 June 2020).
- Umweltbundesamt UBA. Netto-Bilanz der Vermiedenen Treibhausgas-Emissionen Durch die Nutzung Erneuerbarer Energien. Available online: https://www.umweltbundesamt.de/bild/netto-bilanz-der-vermiedenen-treibhausgas (accessed on 1 June 2020).
- Arcos-Vargas, Á.; Riviere, L. Grid Parity and Carbon Footprint: An Analysis for Residential Solar Energy in the Mediterranean Area; Springer International Publishing: Cham, Switzerland, 2019. [Google Scholar]
- Kaldellis, J.; Apostolou, D. Life cycle energy and carbon footprint of offshore wind energy. Comparison with onshore counterpart. Renew. Energy 2017, 108, 72–84. [Google Scholar] [CrossRef]
- United Nations. Paris Agreement to the United Nations Framework Convention on Climate Change, No. 16-1104; United Nations: Paris, France, 2015. [Google Scholar]
- Fraunhofer Institute for Solar Energy Systems ISE. Recent Facts about Photovoltaics in Germany. Available online: https://www.ise.fraunhofer.de/en/publications/studies/recent-facts-about-pv-ingermany.html (accessed on 1 June 2020).
- Germany Trade and Invest. Photovoltaic. Available online: https://www.gtai.de/gtai-en/invest/industries/energy/photovoltaic (accessed on 1 June 2020).
- Umweltbundesamt UBA. Strom- und Wärmeversorgung in Zahlen. Available online: https://www.umweltbundesamt.de/themen/klima-energie/energieversorgung/strom-waermeversorgung-in-zahlen?sprungmarke=Strommix#Strommix (accessed on 22 June 2020).
- Sphera. GaBi Software and Databases, Version 9.2.168, Service Pack 40; Sphera Solutions GmbH: Leinfelden-Echterdingen, Germany, 2020. [Google Scholar]
- McDowall, W.; Solano, B.; Usubiaga, A. Is the optimal decarbonization pathway in fluenced by indirect emissions? Incorporating indirect life-cycle carbon dioxide emissions into a European TIMES model. J. Clean. Prod. 2018, 170, 260–268. [Google Scholar] [CrossRef]
- Volkart, K. Long-Term Technology-Based Multi-Criteria Sustainability Analysis of Energy Systems. Ph. D. Thesis, ETH Zurich, Zurich, Switzerland, 2017. [Google Scholar]
- Lund, H.; Arler, F.; Østergaard, P.A.; Hvelplund, F.; Connolly, D.; Mathiesen, B.V.; Karnøe, P. Simulation versus Optimisation: Theoretical Positions in Energy System Modelling. Energies 2017, 10, 840. [Google Scholar] [CrossRef]
- Cabal, H.; Lechon, Y.; Bustreo, C.; Gracceva, F.; Biberacher, M.; Ward, D.; Dongiovanni, D.N.; Grohnheit, P.E. Fusion power in a future low carbon global electricity system. Energy Strat. Rev. 2017, 15, 1–8. [Google Scholar] [CrossRef]
- OPAL-RT Technologies. Hypersim. Available online: https://www.opal-rt.com/systems-hypersim/ (accessed on 7 August 2020).
- Chassin, D.P.; Fuller, J.C.; Djilali, N. GridLAB-D: An Agent-Based Simulation Framework for Smart Grids. J. Appl. Math. 2014, 2014, 1–12. [Google Scholar] [CrossRef]
- Nikas, A.; Doukas, H.; Papandreou, A. A Detailed Overview and Consistent Classification of Climate-Economy Models. In Understanding Risks and Uncertainties. In Energy and Climate Policy; Doukas, H., Flamos, A., Lieu, J., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–54. [Google Scholar]
- Ringkjøb, H.-K.; Haugan, P.M.; Solbrekke, I.M. A review of modelling tools for energy and electricity systems with large shares of variable renewables. Renew. Sustain. Energy Rev. 2018, 96, 440–459. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Solar Energy Systems ISE. Power System Model for Expansion Planning and Unit-Commitment—ENTIGRIS. Available online: https://www.ise.fraunhofer.de/en/business-areas/power-electronics-grids-and-smart-systems/energy-system-analysis/energy-system-models-at-fraunhofer-ise/entigris.html (accessed on 7 August 2020).
- Fraunhofer Institute for Systems and Innovation Research ISI. The Enertile optimisation model. Available online: https://www.enertile.eu/enertile-en/methodology/optimisation.php (accessed on 7 August 2020).
- Kuhn, P.; Huber, M.; Dorfner, J.; Hamacher, T. Challenges and opportunities of power systems from smart homes to super-grids. Ambio 2016, 45, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Potsdam Institute for Climate Impact Research. LIMES—Long-Term Investment Model for the Electricity Sector. Available online: https://www.pik-potsdam.de/research/transformation-pathways/models/limes (accessed on 7 August 2020).
- Dedecca, J.G.; Hakvoort, R.A.; Herder, P. Transmission expansion simulation for the European Northern Seas offshore grid. Energy 2017, 125, 805–824. [Google Scholar] [CrossRef]
- Fraunhofer Institute for Solar Energy Systems ISE. National Energy System Model with Focus on Intersectoral System Development—REMod. Available online: https://www.ise.fraunhofer.de/en/business-areas/power-electronics-grids-and-smart-systems/energy-system-analysis/energy-system-models-at-fraunhofer-ise/remod.html (accessed on 7 August 2020).
- Bye, B.; Fæhn, T.; Rosnes, O. Residential Energy Efficiency and European Carbon Policies: A CGE-Analysis with Bottom-Up Information on Energy Efficiency Technologies; Statistics Norway Research Department Discussion Papers: Oslo, Norway, 2015. [Google Scholar]
- Enerdata. POLES Model: Global Energy Supply, Demand, Prices Forecasting Model. Available online: https://www.enerdata.net/solutions/poles-model.html (accessed on 6 August 2020).
- Zhou, Y.; Clarke, L.; Eom, J.; Kyle, P.; Patel, P.; Kim, S.H.; Dirks, J.; Jensen, E.; Liu, Y.; Rice, J.; et al. Modeling the effect of climate change on U.S. state-level buildings energy demands in an integrated assessment framework. Appl. Energy 2014, 113, 1077–1088. [Google Scholar] [CrossRef]
- Sterchele, P.; Brandes, J.; Heilig, J.; Wrede, D.; Kost, C.; Schlegl, T.; Bett, A.; Henning, H.-M. Wege zu Einem Klimaneutralen Energiesystem: Die Deutsche Energiewende im Kontext Gesellschaftlicher Verhaltensweisen. Available online: https://www.ise.fraunhofer.de/de/veroeffentlichungen/studien/wege-zu-einem-klimaneutralen-energiesystem.html (accessed on 7 August 2020).
- Spataru, C.; Drummond, P.; Zafeiratou, E.; Barrett, M. Long-term scenarios for reaching climate targets and energy security in UK. Sustain. Cities Soc. 2015, 17, 95–109. [Google Scholar] [CrossRef] [Green Version]
- Tilton, J.E. Global climate policy and the polluter pays principle: A different perspective. Resour. Policy 2016, 50, 117–118. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 14040:2006-Environmental Management—Life Cycle Assessment—Principles and Framework; International Organization for Standardization: Geneva, Switzerland, 2006. [Google Scholar]
- Ottelin, J.; Ala-Mantila, S.; Heinonen, J.; Wiedmann, T.; Clarke, J.; Junnila, S. What can we learn from consumption-based carbon footprints at different spatial scales? Review of policy implications. Environ. Res. Lett. 2019, 14, 093001. [Google Scholar] [CrossRef]
- Doust, M.; Jamieson, M.; Wang, M.; Miclea, C.; Wiedmann, T.; Chen, G.; Owen, A.; Barrett, J.; Steele, K.; Hurst, T.; et al. Consumption-Based GHG Emissions of C40 Cities. Available online: https://www.c40.org/researches/consumption-based-emissions (accessed on 22 June 2020).
- International Organization for Standardization. ISO 14044:2018-Environmental Management—Life Cycle Assessment—Requirements and Guidelines; International Organization for Standardization: Geneva, Switzerland, 2018. [Google Scholar]
- Blanco, H.; Codina, V.; Laurent, A.; Nijs, W.; Maréchal, F.; Faaij, A. Life cycle assessment integration into energy system models: An application for Power-to-Methane in the EU. Appl. Energy 2020, 259, 114160. [Google Scholar] [CrossRef]
- Iribarren, D.; Martín-Gamboa, M.; Iribarren, D.; Dufour, J. Prospective Analysis of Life-Cycle Indicators through Endogenous Integration into a National Power Generation Model. Resources 2016, 5, 39. [Google Scholar]
- Loughlin, D.; Ran, L.; Nolte, C. Considerations in Linking Energy Scenario Modeling and Life Cycle Analysis. Available online: https://cfpub.epa.gov/si/si_public_file_download.cfm?p_download_id=532737&Lab=NRMRL (accessed on 11 June 2020).
- Naegler, T.; Simon, S.; Buchgeister, J.; Saiger, M.; Junne, T. Life-cycle based ecologic sustainability assessment of energy scenarios. In Proceedings of the Annual Meeting of the Research Network Energy Analysis, Aachen, Germany, 23–24 May 2019. [Google Scholar]
- Rauner, S.; Budzinski, M. Holistic energy system modeling combining multi-objective optimization and life cycle assessment. Environ. Res. Lett. 2017, 12, 124005. [Google Scholar] [CrossRef]
- Volkart, K.; Mutel, C.; Panos, E. Integrating life cycle assessment and energy system modelling: Methodology and application to the world energy scenarios. Sustain. Prod. Consum. 2018, 16, 121–133. [Google Scholar] [CrossRef]
- Energy Technology Systems Analysis Program. Overview of TIMES Modelling Tool. Available online: https://iea-etsap.org/index.php/etsap-tools/model-generators/times (accessed on 1 June 2020).
- Eckle, P.; Burgherr, P.; Hirschberg, S. Final Report on Multi Criteria Decision Analysis (MCDA). Secur. Deliv. 2011, 6, 2. [Google Scholar]
- Strømman, A.H.; Peters, G.P.; Hertwich, E. Approaches to correct for double counting in tiered hybrid life cycle inventories. J. Clean. Prod. 2009, 17, 248–254. [Google Scholar] [CrossRef]
- Agez, M.; Majeau-Bettez, G.; Margni, M.; Strømman, A.H.; Samson, R. Lifting the veil on the correction of double counting incidents in hybrid life cycle assessment. J. Ind. Ecol. 2020, 24, 517–533. [Google Scholar] [CrossRef]
- Navas-Anguita, Z.; Iribarren, D.; Iribarren, D. Prospective Life Cycle Assessment of the Increased Electricity Demand Associated with the Penetration of Electric Vehicles in Spain. Energies 2018, 11, 1185. [Google Scholar] [CrossRef] [Green Version]
- Pichlmaier, S.; Regett, A.; Kigle, S. Dynamisation of Life Cycle Assessment through the Integration of Energy System Modelling to Assess Alternative Fuels. In Progress in Life Cycle Assessment; Teureberg, F., Schebeck, L., Hempel, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 75–86. [Google Scholar]
- Laurent, A.; Espinosa, N.; Hauschild, M.Z. LCA of Energy Systems. In Life Cycle Assessment–Theory and Practice; Hauschild, M.Z., Rosenbaum, R.K., Olsen, S.I., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 633–668. [Google Scholar]
- International Technology Roadmap for Photovoltaic (ITRPV), 10th ed.; Results 2018; In Cooperation with ITRPV and VDMA; ITRPV: Frankfurt am Main, Germany, 2019.
- Green, M.A.; Hishikawa, Y.; Dunlop, E.D.; Levi, D.H.; Hohl-Ebinger, J.; Yoshita, M.; Ho-Baillie, A. Solar cell efficiency tables (Version 53). Prog. Photovolt. Res. Appl. 2019, 27, 3–12. [Google Scholar] [CrossRef] [Green Version]
- Modanese, C.; Laine, H.S.; Pasanen, T.P.; Savin, H.; Pearce, J.M. Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing. Energies 2018, 11, 2337. [Google Scholar] [CrossRef] [Green Version]
- Blakers, A. Development of the PERC Solar Cell. IEEE J. Photovolt. 2019, 9, 629–635. [Google Scholar] [CrossRef]
- Padmanabhan, M.; Jhaveri, K.; Sharma, R.; Basu, P.K.; Raj, S.; Wong, J.; Li, J. Light-induced degradation and regeneration of multicrystalline silicon Al-BSF and PERC solar cells. Phys. Status Solidi RRL Rapid Res. Lett. 2016, 10, 874–881. [Google Scholar] [CrossRef]
- Herguth, A.; Horbelt, R.; Wilking, S.; Job, R.; Hahn, G. Comparison of BO Regeneration Dynamics in PERC and Al-BSF Solar Cells. Energy Procedia 2015, 77, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Jungbluth, N.; Stucki, M.; Flury, K.; Frischknecht, R.; Büsser, S. Life Cycle Inventories of Photovoltaic Systems. International Energy Agency, PVPS Task 12, Report T12-04:2015; ESU-Services Ltd.: Uster, Switzerland, 2012. [Google Scholar]
- Hsiao, P.-C.; Lennon, A. Electroplated and Light-Induced Plated Sn-Bi Alloys for Silicon Photovoltaic Applications. J. Electrochem. Soc. 2013, 160, D446–D452. [Google Scholar] [CrossRef]
- Environmental Footprint 3.0. Available online: https://eplca.jrc.ec.europa.eu/LCDN/developerEF.xhtml (accessed on 1 June 2020).
- InteRessE—Ressourcenbedarf für die Energiewende: Interdisziplinäre Bewertung von Szenarien für die Bereitstellung von Strom und Wärme. Available online: https://www.ise.fraunhofer.de/de/forschungsprojekte/interesse.html (accessed on 1 June 2020).
- Vadenbo, C.; Rørbech, J.; Haupt, M.; Frischknecht, R. Abiotic resources: New impact assessment approaches in view of resource efficiency and resource criticality—55th Discussion Forum on Life Cycle Asessment, Zurich, Switzerland, April 11, 2014. Int. J. Life Cycle Assess 2014, 19, 1686–1692. [Google Scholar] [CrossRef] [Green Version]
- Dandres, T.; Gaudreault, C.; Tirado-Seco, P.; Samson, R. Assessing non-marginal variations with consequential LCA: Application to European energy sector. Renew. Sustain. Energy Rev. 2011, 15, 3121–3132. [Google Scholar] [CrossRef]
- Böing, F.; Regett, A. Hourly CO2 Emission Factors and Marginal Costs of Energy Carriers in Future Multi-Energy Systems. Energies 2019, 12, 2260. [Google Scholar] [CrossRef] [Green Version]
Step | Details | Purpose |
---|---|---|
1. Surrogate Models | Identification of suitable technologies to represent the technology class in ESA | Ensuring feasibility of modelling |
2. LCI Matching | Modelling of the technology surrogate including changes over time | Consumption-based approach |
3. Subdivision | Enabling the time discrete assessment of environmental impacts | Discrete time evaluation |
4. Double Counting | Avoidance of overestimation of impacts from life cycle | Increasing consistency |
5. Dynamisation | Dynamisation of background datasets | Increasing accuracy |
6. LCIA Calculation (Optional) | - | Broadening the assessed impacts |
2018 | 2050 | |
---|---|---|
Module [kg/MW] | ||
Al—Aluminium | 184 | 130 |
Ag—Silver | 21 | 7 |
Cu—Copper | 946 | 670 |
Pb—Lead | 62 | 0 |
Bi—Bismuth | 0 | 47 |
Si—Silicon | 1441 | 826 |
Sn—Tin | 59 | 35 |
Glass | 44,881 | 31,791 |
Ethylenvinylacetate | 5058 | 3583 |
Polyphenylenether, polystyrol | 530 | 375 |
Polyethyleneterephthalate | 2333 | 1652 |
Polyvinylfluoride | 1063 | 753 |
Acrylic foam | 218 | 154 |
Frame [kg/MW] | ||
Al—Aluminium | 8768 | 0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Betten, T.; Shammugam, S.; Graf, R. Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis. Energies 2020, 13, 4437. https://doi.org/10.3390/en13174437
Betten T, Shammugam S, Graf R. Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis. Energies. 2020; 13(17):4437. https://doi.org/10.3390/en13174437
Chicago/Turabian StyleBetten, Thomas, Shivenes Shammugam, and Roberta Graf. 2020. "Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis" Energies 13, no. 17: 4437. https://doi.org/10.3390/en13174437
APA StyleBetten, T., Shammugam, S., & Graf, R. (2020). Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis. Energies, 13(17), 4437. https://doi.org/10.3390/en13174437