Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid
Abstract
:1. Introduction
2. Revamping Project Overview
3. Components Modeling and Control Strategies
3.1. Battery Energy Storage Systems and DC-DC Converters
3.2. AC-DC and DC-AC Three Phase Converters
Converter Control Loops
3.3. Propulsion Plant Dynamic
4. Ship Automation
5. Implementation on Real-Time Simulation Platform
6. Simulation Results
6.1. DC Bus Regulation
6.2. AC Bus Regulation
6.3. Ship Mission
6.4. Observations on the Ship Management Strategies
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variable Description | Value | Variable Description | Value |
---|---|---|---|
Diesel Genset | |||
Nominal power | 596 kW | Inertia time constant | |
Nominal voltage | 480 | AVR (gain , time const. ) | 600 , |
Nominal speed, freq. | 1800 , 60 | DEGOV1 (gain K, droop ) | 8 , |
Propulsion motor PMSM | |||
Nominal power | 270 kW | Nominal, maximum torque | , |
Nominal voltage | 480 | Nominal speed | 450 |
Nominal speed | Nominal stator current | 347 A | |
Speed PI regulator | 10 , 15 | ||
AC-DC Active rectifier | |||
Nominal power | 596 kW | Current PI regulator | 1 , 7 |
Nominal AC voltage | 480 | DC voltage PI reg. | , |
Nominal DC voltage | 750 | Reactive power PI reg. | , |
Switching frequency | 1620 | DC, AC volt. droop | , |
LCL Filter | , , | ||
Battery Energy Storage System | |||
Nominal capacity | 128 | Switching frequency | 5000 |
Nominal voltage | 440 | DC voltage droop | |
DC-DC stage param. | , , 12 | ||
DC-AC grid–forming converter | |||
Nominal power | 50 | TVR gain | 0.09 |
Transformer | 390 /400 | TVR HPF cut-off | /−1 |
LCL Filter | , , | LPF cut-off freq. | /−1 |
P and Q droop | Virtual resistance | ||
VI ratio | 5 | Lead-lag filter | , |
Ship model | |||
Displacement | 377 | Propeller diameter (D) | |
Added mass | Density | 1000 /3 | |
Nominal speed | 10 | Resistance at 10 () | |
Total polar inertia | 2 | Relative rotative efficiency () | |
Thrust deduction factor | Shaft efficiency | ||
Wake fraction | Ship speed PI ctrl. | 3 , 1 |
References
- Smith, P.F.; Prabhu, S.M.; Friedman, J. Best Practices for Establishing a Model-Based Design Culture. Technical Report, SAE Technical Paper. 2007. Available online: https://www.sae.org/publications/technical-papers/content/2007-01-0777/ (accessed on 2 March 2020).
- Kelemenová, T.; Kelemen, M.; Miková, L.; Maxim, V.; Prada, E.; Lipták, T.; Menda, F. Model based design and HIL simulations. Am. J. Mech. Eng. 2013, 1, 276–281. [Google Scholar]
- Martelli, M.; Figari, M. Real-Time model-based design for CODLAG propulsion control strategies. Ocean Eng. 2017, 141, 265–276. [Google Scholar] [CrossRef]
- Vrijdag, A.; Stapersma, D.; van Terwisga, T. Systematic modelling, verification, calibration and validation of a ship propulsion simulation model. J. Mar. Eng. Technol. 2009, 8, 3–20. [Google Scholar] [CrossRef]
- Sonnenberg, M.; Pritchard, E.; Zhu, D. Microgrid Development Using Model-Based Design. In Proceedings of the 2018 IEEE Green Technologies Conference (GreenTech), Austin, TX, USA, 4–6 April 2018; pp. 57–60. [Google Scholar]
- Kirby, B.; Zou, L.; Cao, J.; Kamwa, I.; Heniche, A.; Dobrescu, M. Development of a predictive out of step relay using model based design. In Proceedings of the IET Conference on Reliability of Transmission and Distribution Networks (RTDN 2011), London, UK, 22–24 November 2011. [Google Scholar]
- Panova, E.A.; Nasibullin, A.T. Development and Testing of the Adequacy of the 220/110 kV Distribution Substation Matlab Simulink Mathematical Model for Relay Protection Calculations. In Proceedings of the 2019 IEEE RussianWorkshop on Power Engineering and Automation of Metallurgy Industry: Research & Practice (PEAMI), Magnitogorsk, Russia, 4–5 October 2019; pp. 134–138. [Google Scholar]
- Zhu, W.; Shi, J.; Liu, S.; Abdelwahed, S. Development and application of a model-based collaborative analysis and design framework for microgrid power systems. IET Gener. Transm. Distrib. 2016, 10, 3201–3210. [Google Scholar] [CrossRef]
- Zhang, Y.; Bastos, J.L.; Schulz, N.N. Model-based design of a protection scheme for shipboard power systems. In Proceedings of the 2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 20–24 July 2008; pp. 1–9. [Google Scholar]
- Dufour, C.; Soghomonian, Z.; Li, W. Hardware-in-the-loop testing of modern on-board power systems using digital twins. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018; pp. 118–123. [Google Scholar]
- Patel, M.R. Shipboard Electrical Power Systems; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Kotsampopoulos, P.; Lagos, D.; Hatziargyriou, N.; Faruque, M.O.; Lauss, G.; Nzimako, O.; Forsyth, P.; Steurer, M.; Ponci, F.; Monti, A.; et al. A Benchmark System for Hardware-in-the-Loop Testing of Distributed Energy Resources. IEEE Power Energy Technol. Syst. J. 2018, 5, 94–103. [Google Scholar] [CrossRef]
- Edrington, C.S.; Steurer, M.; Langston, J.; El-Mezyani, T.; Schoder, K. Role of Power Hardware in the Loop in Modeling and Simulation for Experimentation in Power and Energy Systems. Proc. IEEE 2015, 103, 2401–2409. [Google Scholar] [CrossRef]
- Capasso, C.; Veneri, O.; Notti, E.; Sala, A.; Figari, M.; Martelli, M. Preliminary design of the hybrid propulsion architecture for the research vessel “G. Dallaporta”. In Proceedings of the 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, 2–4 November 2016; pp. 1–6. [Google Scholar]
- Manouchehrinia, B.; Molloy, S.; Dong, Z.; Gulliver, A.; Gough, C. Emission and life-cycle cost analysis of hybrid and pure electric propulsion systems for fishing boats. J. Ocean Technol. 2018, 13, 66–87. [Google Scholar]
- Martelli, M.; Figari, M. Maritime Transportation and Harvesting of Sea Resources; CRC Press: Boca Raton, FL, USA, 2018; Volume 1, pp. 87–93. [Google Scholar]
- Barelli, L.; Bidini, G.; Gallorini, F.; Iantorno, F.; Pane, N.; Ottaviano, P.A.; Trombetti, L. Dynamic Modeling of a Hybrid Propulsion System for Tourist Boat. Energies 2018, 11, 2592. [Google Scholar] [CrossRef] [Green Version]
- Abadie, L.M.; Goicoechea, N. Powering newly constructed vessels to comply with ECA regulations under fuel market prices uncertainty: Diesel or dual fuel engine? Transp. Res. Part D Transp. Environ. 2019, 67, 433–448. [Google Scholar] [CrossRef]
- Halff, A.; Younes, L.; Boersma, T. The likely implications of the new IMO standards on the shipping industry. Energy Policy 2019, 126, 277–286. [Google Scholar] [CrossRef]
- Vieira, G.; Peralta, C.; Salles, M.B.d.C.; Carmo, B.S. Reduction of CO2 emissions in ships with advanced Energy Storage Systems. In Proceedings of the 2017 6th International Conference on Clean Electrical Power (ICCEP), Santa Margherita Ligure, Italy, 27–29 June 2017; pp. 564–571. [Google Scholar]
- Hosagrahara, A.S. Measuring Productivity and Quality in Model-Based Design. U.S. Patent 7,613,589, 3 November 2009. [Google Scholar]
- Satpathi, K.; Balijepalli, V.M.; Ukil, A. Modeling and Real-Time Scheduling of DC Platform Supply Vessel for Fuel Efficient Operation. IEEE Trans. Transp. Electrif. 2017, 3, 762–778. [Google Scholar] [CrossRef]
- Silvestro, F.; D’Agostino, F.; Schiapparelli, G.P.; Boveri, A.; Patuelli, D.; Ragaini, E. A Collaborative Laboratory for Shipboard Microgrid: Research and Training. In Proceedings of the 2018 AEIT International Annual Conference, Bari, Italy, 3–5 October 2018; pp. 1–6. [Google Scholar]
- Boveri, A.; D’Agostino, F.; Fidigatti, A.; Ragaini, E.; Silvestro, F. Dynamic modeling of a supply vessel power system for DP3 protection system. IEEE Trans. Transp. Electrif. 2016, 2, 570–579. [Google Scholar] [CrossRef]
- Campora, U.; Laviola, M.; Zaccone, R. An Overall Comparison Between Natural Gas Spark Ignition and Compression Ignition Engines for a Ro-Pax Propulsion Plant. In Proceedings of the 3th International Conference on Maritime Technology and Engineering, MARTECH, Lisbon, Portugal, 4–6 July 2016; pp. 735–743. [Google Scholar]
- Motonave Traghetto San Cristoforo. Available online: https://www.navigazionelaghi.it/doc/pdf/flotta/S.%20CRISTOFORO_Ita.pdf (accessed on 2 March 2020).
- Italy-Milan: Conversion services of ships. Supplies—Contract notice—Restricted procedure 247237-2018, Ministero delle Infrastrutture e dei Trasporti—Gestione Governativa dei Servizi Pubblici di Navigazione sui Laghi Maggiore di Garda e di Como, 2018.
- Ghimire, P.; Park, D.; Zadeh, M.K.; Thorstensen, J.; Pedersen, E. Shipboard Electric Power Conversion: System Architecture, Applications, Control, and Challenges [Technology Leaders]. IEEE Electrif. Mag. 2019, 7, 6–20. [Google Scholar] [CrossRef]
- Skjong, E.; Volden, R.; Rødskar, E.; Molinas, M.; Johansen, T.A.; Cunningham, J. Past, present, and future challenges of the marine vessel’s electrical power system. IEEE Trans. Transp. Electrif. 2016, 2, 522–537. [Google Scholar] [CrossRef] [Green Version]
- Staudt, V.; Bartelt, R.; Heising, C. Fault Scenarios in DC Ship Grids: The advantages and disadvantages of modular multilevel converters. IEEE Electrif. Mag. 2015, 3, 40–48. [Google Scholar] [CrossRef]
- Satpathi, K.; Ukil, A.; Nag, S.S.; Pou, J.; Zagrodnik, M.A. DC Marine Power System: Transient Behavior and Fault Management Aspects. IEEE Trans. Ind. Inform. 2019, 15, 1911–1925. [Google Scholar] [CrossRef]
- Boveri, A.; Silvestro, F.; Molinas, M.; Skjong, E. Optimal sizing of energy storage systems for shipboard applications. IEEE Trans. Energy Convers. 2018, 34, 801–811. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, F.; Grillo, S.; Schiapparelli, G.; Silvestro, F. DC Shipboard Microgrid Modeling for Fuel Cell Integration Study. In Proceedings of the IEEE PES General Meeting, Atlanta, GA, USA, 4–8 August 2019; pp. 4–8. [Google Scholar]
- D’Agostino, F.; Massucco, S.; Schiapparelli, G.P.; Silvestro, F. Modeling and Real-Time Simulation of a DC Shipboard Microgrid. In Proceedings of the 2019 21st European Conference on Power Electronics and Applications (EPE’19 ECCE Europe), Genova, Italy, 3–5 September 2019; pp. 1–8. [Google Scholar]
- Satpathi, K.; Ukil, A.; Thukral, N.; Zagrodnik, M.A. Modelling of DC shipboard power system. In Proceedings of the 2016 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Trivandrum, India, 14–17 December 2016; pp. 1–6. [Google Scholar]
- Alessandri, A.; Donnarumma, S.; Vignolo, S.; Figari, M.; Martelli, M.; Chiti, R.; Sebastiani, L. System control design of autopilot and speed pilot for a patrol vessel by using LMIs. Towards Green Marine Technology and Transport. In Proceedings of the 16th International Congress of the International Maritime Association of the Mediterranean, Pula, Croatia, 21–24 September 2015; pp. 577–583. [Google Scholar]
- Qoria, T.; Cossart, Q.; Li, C.; Guillaud, X.; Colas, F.; Gruson, F.; Kestelyn, X. Deliverable 3.2: Local Control and Simulation Tools for Large Transmission Systems. MIGRATE Project. 2018, Volume, p. 81. Available online: https://www.h2020-migrate.eu/_Resources/Persistent/5c5beff0d5bef78799253aae9b19f50a9cb6eb9f/D3.2%20-%20Local%20control%20and%20simulation%20tools%20for%20large%20transmission%20systems.pdf (accessed on 11 July 2020).
- Fei, G.; Ren, K.; Jun, C.; Tao, Y. Primary and secondary control in DC microgrids: A review. J. Mod. Power Syst. Clean Energy 2019, 7, 227–242. [Google Scholar]
- Madan, M.; Meena, R. Adapting IEEE 1992 AC1A excitation system model for industrial application. In Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies, GUCON 2018, Uttar Pradesh, India, 28–29 September 2019; pp. 28–31. [Google Scholar]
- Qoria, T.; Prevost, T.; Denis, G.; Gruson, F.; Colas, F.; Guillaud, X. Power Converters Classification and Characterization in Power Transmission Systems. In Proceedings of the EPE’19 ICCE EUROPE, Genova, Italy, 3–5 September 2019. [Google Scholar]
- Reznik, A.; Simões, M.G.; Al-Durra, A.; Muyeen, S. LCL filter design and performance analysis for grid-interconnected systems. IEEE Trans. Ind. Appl. 2013, 50, 1225–1232. [Google Scholar] [CrossRef]
- Prodanovic, M.; Green, T.C. Control and filter design of three-phase inverters for high power quality grid connection. IEEE Trans. Power Electron. 2003, 18, 373–380. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, F.; Massucco, S.; Schiapparelli, G.P.; Silvestro, F.; Paolone, M. Performance Comparative Assessment of Grid Connected Power Converters Control Strategies. In Proceedings of the 2020 IEEE International Conference on Industrial Electronics for Sustainable Energy Systems (IESES), Cagliari, Italy, 1–3 September 2020. [Google Scholar]
- Timbus, A.; Liserre, M.; Teodorescu, R.; Rodriguez, P.; Blaabjerg, F. Evaluation of current controllers for distributed power generation systems. IEEE Trans. Power Electron. 2009, 24, 654–664. [Google Scholar] [CrossRef]
- Dong, N.; Yang, H.; Han, J.; Zhao, R. Modeling and Parameter Design of Voltage-Controlled Inverters Based on Discrete Control. Energies 2018, 11, 2154. [Google Scholar] [CrossRef] [Green Version]
- Bajracharya, C.; Molinas, M.; Suul, J.A.; Undeland, T.M. Understanding of tuning techniques of converter controllers for VSC-HVDC. In Proceedings of theNordic Workshop on Power and Industrial Electronics (NORPIE/2008), Espoo, Finland, 9–11 June 2008. [Google Scholar]
- Aydin, O.; Akdag, A.; Stefanutti, P.; Hugo, N. Optimum controller design for a multilevel AC-DC converter system. In Proceedings of the Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, APEC 2005, Austin, TX, USA, 6–10 March 2005; Volume 3, pp. 1660–1666. [Google Scholar]
- Rocabert, J.; Luna, A.; Blaabjerg, F.; Rodriguez, P. Control of power converters in AC microgrids. IEEE Trans. Power Electron. 2012, 27, 4734–4749. [Google Scholar] [CrossRef]
- Jin, Z.; Meng, L.; Vasquez, J.C.; Guerrero, J.M. Specialized Hierarchical Control Strategy for DC Distribution based Shipboard Microgrids: A combination of emerging DC shipboard power systems and microgrid technologies. In Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1 November 2017; pp. 6820–6825. [Google Scholar]
- Guerrero, J.M.; Chandorkar, M.; Lee, T.L.; Loh, P.C. Advanced control architectures for intelligent microgrids—Part I: Decentralized and hierarchical control. IEEE Trans. Ind. Electron. 2012, 60, 1254–1262. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Zare, F.; Ghosh, A. DC microgrid technology: System architectures, AC grid interfaces, grounding schemes, power quality, communication networks, applications, and standardizations aspects. IEEE Access 2017, 5, 12230–12256. [Google Scholar] [CrossRef]
- D’Arco, S.; Suul, J.A.; Fosso, O.B. A Virtual Synchronous Machine implementation for distributed control of power converters in SmartGrids. Electr. Power Syst. Res. 2015, 122, 180–197. [Google Scholar] [CrossRef]
- Carlton, J. Marine Propellers and Propulsion; Butterworth-Heinemann: Cambridge, MA, USA, 2018. [Google Scholar]
- Kuiper, G. The Wageningen Propeller Series; Technical Report; Marin: Wageningen, The Netherlands, 1992. [Google Scholar]
- RT-LAB Powering Real-Time Simulation. Available online: https://www.opal-rt.com (accessed on 2 March 2020).
- Dufour, C.; Mahseredjian, J.; Bélanger, J.; Naredo, J.L. An advanced real-time electro-magnetic simulator for power systems with a simultaneous state-space nodal solver. In Proceedings of the 2010 IEEE/PES Transmission and Distribution Conference and Exposition: Latin America (T&D-LA), Sao Paulo, Brazil, 8–10 November 2010; pp. 349–358. [Google Scholar]
Flag | Italian | Draft | |
Displacement | 377 | Length O.A. | |
Length between P.P. | 38 | Breadth | |
Total passenger capacity | 450 | Total vehicle capacity | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Agostino, F.; Kaza, D.; Martelli, M.; Schiapparelli, G.-P.; Silvestro, F.; Soldano, C. Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid. Energies 2020, 13, 3580. https://doi.org/10.3390/en13143580
D’Agostino F, Kaza D, Martelli M, Schiapparelli G-P, Silvestro F, Soldano C. Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid. Energies. 2020; 13(14):3580. https://doi.org/10.3390/en13143580
Chicago/Turabian StyleD’Agostino, Fabio, Daniele Kaza, Michele Martelli, Giacomo-Piero Schiapparelli, Federico Silvestro, and Carlo Soldano. 2020. "Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid" Energies 13, no. 14: 3580. https://doi.org/10.3390/en13143580
APA StyleD’Agostino, F., Kaza, D., Martelli, M., Schiapparelli, G.-P., Silvestro, F., & Soldano, C. (2020). Development of a Multiphysics Real-Time Simulator for Model-Based Design of a DC Shipboard Microgrid. Energies, 13(14), 3580. https://doi.org/10.3390/en13143580