A Study of Combustion Characteristics of Two Gasoline–Biodiesel Mixtures on RCEM Using Various Fuel Injection Pressures
Abstract
:1. Introduction
2. Methodology
2.1. Fuel Preparation
2.2. Test Engine and System Setup
2.3. Test Procedure
3. Results and Discussion
3.1. Effect of Fuel Injection Pressure on the Fuel Injection Flow Rate
3.2. Effect of Fuel Injection Pressure on Combustion Characteristics
3.2.1. In-Cylinder Pressure and Heat Release Rate
3.2.2. Combustion Duration and Ignition Delay
3.3. Brake Thermal Efficiency and BSFC
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Kate, J.T.; Teunter, R.; Kusumastuti, R.D.; Van Donk, D.P. Bio-diesel production using mobile processing units: A case in Indonesia. Agric. Syst. 2017, 152, 121–130. [Google Scholar] [CrossRef]
- Biodiesel Statement. Available online: Volkswagen.co.uk (accessed on 4 August 2011).
- Putrasari, Y.; Lim, O. A study on combustion and emission of GCI engines fueled with gasoline-biodiesel blends. Fuel 2017, 189, 141–154. [Google Scholar] [CrossRef]
- Patel, H.K.; Kumar, S. Experimental analysis on performance of diesel engine using mixture of diesel and bio-diesel as a working fuel with aluminum oxide nanoparticle additive. Therm. Sci. Eng. Prog. 2017, 4, 252–258. [Google Scholar] [CrossRef]
- Badra, J.; Sim, J.; Elwardany, A.E.; Jaasim, M.; Viollet, Y.; Chang, J.; Amer, A.; Im, H.G. Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion with Naphtha Fuels. J. Energy Resour. Technol. 2016, 138, 052202. [Google Scholar] [CrossRef]
- Kodavasal, J.; Kolodziej, C.P.; Ciatti, S.; Som, S. Effects of injection parameters, boost, and swirl ratio on gasoline compression ignition operation at idle and low-load conditions. Int. J. Engine Res. 2016, 18, 824–836. [Google Scholar] [CrossRef]
- Ra, Y.; Loeper, P.; Reitz, R.D.; Andrie, M.; Krieger, R.; Foster, D.E.; Durrett, R.; Gopalakrishnan, V.; Plazas, A.; Peterson, R.; et al. Study of High Speed Gasoline Direct Injection Compression Ignition (GDICI) Engine Operation in the LTC Regime. Sae Int. J. Engines 2011, 4, 1412–1430. [Google Scholar] [CrossRef]
- Manente, V.; Zander, C.-G.; Johansson, B.; Tunestål, P.; Cannella, W. An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency from Idle to Max Load Using Gasoline Partially Premixed Combustion. Sae Int. J. Engines 2010. [Google Scholar] [CrossRef]
- Zheng, M.; Han, X.; Asad, U.; Wang, J. Investigation of butanol-fuelled HCCI combustion on a high efficiency diesel engine. Energy Convers. Manag. 2015, 98, 215–224. [Google Scholar] [CrossRef]
- Hsieh, P.; Bruno, T.J. A perspective on the origin of lubricity in petroleum distillate motor fuels. Fuel Process. Technol. 2015, 129, 52–60. [Google Scholar] [CrossRef]
- Arkoudeas, P.; Karonis, D.; Zannikos, F.; Lois, E. Lubricity assessment of gasoline fuels. Fuel Process. Technol. 2014, 122, 107–119. [Google Scholar] [CrossRef]
- Misra, R.; Murthy, M. Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine—A review. Renew. Sustain. Energy Rev. 2011, 15, 2413–2422. [Google Scholar] [CrossRef]
- Adams, C.A.; Loeper, P.; Krieger, R.; Andrie, M.; Foster, D.E. Effects of biodiesel–gasoline blends on gasoline direct-injection compression ignition (GCI) combustion. Fuel 2013, 111, 784–790. [Google Scholar] [CrossRef]
- El-Seesy, A.I.; Kosaka, H.; Hassan, H.; Sato, S. Combustion and emission characteristics of a common rail diesel engine and RCEM fueled by n-heptanol-diesel blends and carbon nanomaterial additives. Energy Convers. Manag. 2019, 196, 370–394. [Google Scholar] [CrossRef]
- Şen, M. The effect of the injection pressure on single cylinder diesel engine fueled with propanol–diesel blend. Fuel 2019, 254, 115617. [Google Scholar] [CrossRef]
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Goldsborough, S.S.; Hochgreb, S.; Vanhove, G.; Wooldridge, M.S.; Curran, H.J.; Sung, C.-J. Advances in rapid compression machine studies of low-and intermediate-temperature autoignition phenomena. Prog. Energy Combust. Sci. 2017, 63, 1–78. [Google Scholar] [CrossRef] [Green Version]
- Sung, C.-J.; Curran, H.J. Using rapid compression machines for chemical kinetics studies. Prog. Energy Combust. Sci. 2014, 44, 1–18. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, K. Numerical study on the effects of fuel viscosity and density on the injection rate performance of a solenoid diesel injector based on AMESim. Fuel 2019, 256, 115912. [Google Scholar] [CrossRef]
- Raeie, N.; Emami, S.; Sadaghiyani, O.K. Effects of injection timing, before and after top dead center on the propulsion and power in a diesel engine. Propuls. Power Res. 2014, 3, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Song, S. A rapid compression machine study of hydrogen effects on the ignition delay times of n-butane at low-to-intermediate temperatures. Fuel 2020, 266, 116895. [Google Scholar] [CrossRef]
- Ashok, B.; Nanthagopal, K. Eco friendly biofuels for CI engine applications. In Advances in Eco-Fuels for a Sustainable Environment; Elsevier: Amsterdam, The Netherlands, 2019; pp. 407–440. [Google Scholar]
- Sivasubramanian, H. Effect of Ignition Delay (ID) on performance, emission and combustion characteristics of 2-Methyl Furan-Unleaded gasoline blends in a MPFI SI engine. Alex. Eng. J. 2018, 57, 499–507. [Google Scholar] [CrossRef]
- Içıngür, Y.; Altıparmak, D.; Altiparmak, D. Effect of fuel cetane number and injection pressure on a DI Diesel engine performance and emissions. Energy Convers. Manag. 2003, 44, 389–397. [Google Scholar] [CrossRef]
Fatty Acid | System Name | Formula | Structure | Composition (wt%) |
---|---|---|---|---|
Erucic | cis-13-Docosenoic | C22H42O2 | 22:1 | 0 |
Behenic | Docosanoic | C22H44O2 | 22:0 | 0 |
Linolenic | cis-9, cis-12, cis-15-Octadecatrienoic | C18H30O2 | 18:3 | 6 |
Arachidic | Eicosanoic | C20H40O2 | 20:0 | 0 |
Oleic | cis-9-Octadecenoic | C18H34O2 | 18:1 | 23 |
Stearic | Octadecanoic | C18H36O2 | 18:0 | 3 |
Linoleic | cis-9, cis-12-Octadecadienoic | C18H32O2 | 18:2 | 55 |
Palmitic | Hexadecanoic | C16H32O2 | 16:0 | 12 |
Lignoceric | Tetracosanoic | C24H48O2 | 24:0 | 0 |
Myristic | Tetradecanoic | C14H28O2 | 14:0 | 0 |
Test Item | Unit | Test Method | Gasoline | B100 |
---|---|---|---|---|
Heating Value | MJ/kg | ASTM D240:2009 | 45.86 | 39.79 |
Kinematic Viscosity (40 °C) | mm2/s | ISO 3104:2008 | 0.735 | 4.229 |
Lubricity | mm | ISO 12156–1:2012 | 548 | 189 |
Cloud Point | °C | ISO 3015:2008 | −57 | 3 |
Pour Point | °C | ASTM D6749:2002 | −57 | 1 |
Density (15 °C) | kg/m3 | ISO 12185:2003 | 712.7 | 882.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Setiawan, A.; Wahono, B.; Lim, O. A Study of Combustion Characteristics of Two Gasoline–Biodiesel Mixtures on RCEM Using Various Fuel Injection Pressures. Energies 2020, 13, 3265. https://doi.org/10.3390/en13123265
Setiawan A, Wahono B, Lim O. A Study of Combustion Characteristics of Two Gasoline–Biodiesel Mixtures on RCEM Using Various Fuel Injection Pressures. Energies. 2020; 13(12):3265. https://doi.org/10.3390/en13123265
Chicago/Turabian StyleSetiawan, Ardhika, Bambang Wahono, and Ocktaeck Lim. 2020. "A Study of Combustion Characteristics of Two Gasoline–Biodiesel Mixtures on RCEM Using Various Fuel Injection Pressures" Energies 13, no. 12: 3265. https://doi.org/10.3390/en13123265
APA StyleSetiawan, A., Wahono, B., & Lim, O. (2020). A Study of Combustion Characteristics of Two Gasoline–Biodiesel Mixtures on RCEM Using Various Fuel Injection Pressures. Energies, 13(12), 3265. https://doi.org/10.3390/en13123265