Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Methods
2.2. Modeling of HIT Solar Cells
3. Results and Discussion
3.1. Numerical Simulation of HIT Solar Cell
3.2. Hydrogenated Silicon Oxide Passivation Layer
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, C.; Kammen, D.M. An innovation-focused roadmap for a sustainable global photovoltaic industry. Energy Policy 2014, 67, 159–169. [Google Scholar] [CrossRef]
- Battaglia, C.; Cuevas, A.; De Wolf, S. High-efficiency crystalline silicon solar cells: Status and perspectives. Energy Environ. Sci. 2016, 9, 1552–1576. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H.; et al. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2017, 2, 17032. [Google Scholar] [CrossRef]
- Tohoda, S.; Fujishima, D.; Yano, A.; Ogane, A.; Matsuyama, K.; Nakamura, Y.; Tokuoka, N.; Kanno, H.; Kinoshita, T.; Sakata, H.; et al. Future directions for higher-efficiency HIT solar cells using a Thin Silicon Wafer. J. Non-Cryst. Solids 2012, 358, 2219–2222. [Google Scholar] [CrossRef]
- Deligiannis, D.; Van Vliet, J.; Vasudevan, R.; Van Swaaij, R.A.C.M.M.; Zeman, M. Passivation mechanism in silicon heterojunction solar cells with intrinsic hydrogenated amorphous silicon oxide layers. J. Appl. Phys. 2017, 121, 085306. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, L.; Cong, S.; Chen, R.; Wu, Z.; Meng, F.; Shi, Q.; Liu, Z. Controllable a-Si:H/c-Si interface passivation by residual SiH4 molecules in H2 plasma. Sol. Energy Mater. Sol. Cells 2018, 174, 233–239. [Google Scholar] [CrossRef]
- Holman, Z.C.; Descoeudres, A.; Barraud, L.; Fernandez, F.Z.; Seif, J.P.; De Wolf, S.; Ballif, C. Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2012, 2, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Mazzarella, L.; Kirner, S.; Stannowski, B.; Korte, L.; Rech, B.; Schlatmann, R. P-type microcrystalline silicon oxide emitter for silicon heterojunction solar cells allowing current densities above 40 mA/cm2. Appl. Phys. Lett. 2015, 106, 023902. [Google Scholar] [CrossRef]
- Taguchi, M.; Terakawa, A.; Maruyama, E.; Tanaka, M. Obtaining a higher voc in HIT cells. Prog. Photovolt. Res. Appl. 2005, 13, 481–488. [Google Scholar] [CrossRef]
- Bivour, M.; Schröer, S.; Hermle, M. Numerical analysis of electrical TCO/a-Si:H(p) contact properties for silicon heterojunction solar cells. Energy Procedia 2013, 38, 658–669. [Google Scholar] [CrossRef]
- Varache, R.; Kleider, J.P.; Gueunier-Farret, M.E.; Korte, L. Silicon heterojunction solar cells: Optimization of emitter and contact properties from analytical calculation and numerical simulation. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2013, 178, 593–598. [Google Scholar] [CrossRef]
- Bivour, M.; Schröer, S.; Hermle, M.; Glunz, S.W. Silicon heterojunction rear emitter solar cells: Less restrictions on the optoelectrical properties of front side TCOs. Sol. Energy Mater. Sol. Cells 2014, 122, 120–129. [Google Scholar] [CrossRef]
- Mazzarella, L.; Morales-Vilches, A.B.; Korte, L.; Schlatmann, R.; Stannowski, B. Ultra-thin nanocrystalline n-type silicon oxide front contact layers for rear-emitter silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 386–391. [Google Scholar] [CrossRef]
- Richter, A.; Smirnov, V.; Lambertz, A.; Nomoto, K.; Welter, K.; Ding, K. Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2018, 174, 196–201. [Google Scholar] [CrossRef]
- Varache, R.; Leendertz, C.; Gueunier-Farret, M.E.; Haschke, J.; Muñoz, D.; Korte, L. Investigation of selective junctions using a newly developed tunnel current model for solar cell applications. Sol. Energy Mater. Sol. Cells 2015, 141, 14–23. [Google Scholar] [CrossRef]
- Gudovskikh, A.S.; Ibrahim, S.; Kleider, J.P.; Damon-Lacoste, J.; Roca i Cabarrocas, P.; Veschetti, Y.; Ribeyron, P.J. Determination of band offsets in a-Si:H/c-Si heterojunctions from capacitance-voltage measurements: Capabilities and limits. Thin Solid Films 2007, 515, 7481–7485. [Google Scholar] [CrossRef]
- Dao, V.A.; Heo, J.; Choi, H.; Kim, Y.; Park, S.; Jung, S.; Lakshminarayan, N.; Yi, J. Simulation and study of the influence of the buffer intrinsic layer, back-surface field, densities of interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin-layer (HIT) solar cell. Sol. Energy 2010, 84, 777–783. [Google Scholar] [CrossRef]
- Bashiri, H.; Karami, M.A.; Mohammadnejad, S. A theoretical investigation of quantum confinement effects in heterojunction silicon solar cells. Indian J. Phys. 2018, 92, 349–356. [Google Scholar] [CrossRef]
Parameters | n-a-Si:H | n-nc- SiOx:H | i-a-Si:H | p-a-Si:H | p-nc- SiOx:H | n-c-Si |
Thickness (nm) | 5 | 20 | 3 | 5 | 5 | 1.5 × 105 |
Dielectric constant | 11.9 | 11.9 | 11.9 | 11.9 | 11.9 | 11.9 |
Electron affinity (eV) | 3.9 | 3.95 | 3.9 | 3.9 | 3.9 | 4.05 |
Bandgap (eV) | 1.72 | 2.1 | 1.70 | 1.72 | 2.05 | 1.124 |
Effective conduction band density (cm−3) | 1 × 1021 | 1 × 1020 | 1 × 1020 | 1 × 1020 | 1 × 1020 | 2.8 × 1019 |
Effective valence band density (cm−3) | 1 × 1021 | 1 × 1020 | 1 × 1020 | 1 × 1020 | 1 × 1020 | 2.2 × 1019 |
Effective electron mobility (cm2/Vs) | 5 | 50 | 5 | 5 | 20 | 858 |
Effective hole mobility (cm2/Vs) | 1 | 5 | 1 | 1 | 5 | 355 |
Doping concentration acceptors (cm−3) | 0 | 0 | 0 | 1 × 1018 | 1 × 1018 | 0 |
Doping concentration donators (cm−3) | 1 × 1018 | 1.42 × 1019 | 0 | 0 | 0 | 5.63 × 1016 |
Electron thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Hole thermal velocity (cm/s) | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 | 1 × 107 |
Parameters | n- a-Si:H | n-nc- SiOx:H | i-a-Si:H | p a-Si:H | p-nc-SiOx:H | |
Defect density at conduction band (CB) edge (cm−3eV−1) | 1 × 1021 | 2 × 1019 | 1 × 1021 | 1 × 1021 | 1 × 1021 | |
Defect density at valence band (VB) edge (cm−3eV−1) | 1 × 1021 | 2 × 1019 | 1 × 1021 | 1 × 1021 | 1 × 1021 | |
Urbach energy for CB tail (eV) | 0.025 | 0.025 | 0.025 | 0.035 | 0.035 | |
Urbach energy for VB tail (eV) | 0.03 | 0.03 | 0.025 | 0.025 | 0.025 | |
σe(σh) for CB tail (cm−2) | 7 × 10−16 (7 × 10−16) | 1 × 10−17 (1 × 10−15) | 7 × 10−16 (7 × 10−16) | 7 × 10−16 (7 × 10−16) | 7 × 10−16 (7 × 10−16) | |
σe(σh) for VB tail (cm−2) | 7 × 10−16 (7 × 10−16) | 1 × 10−15 (1 × 10−17) | 7 × 10−16 (7 × 10−16) | 7 × 10−16 (7 × 10−16) | 7 × 10−16 (7 × 10−16) | |
Donor (Acceptor) like Gaussian density of states (cm−3eV−1) | 2.5 × 10−17 (2.5 × 10−17) | 1 × 10−17 (1 × 10−17) | 2.5 × 10−17 (2.5 × 10−17) | 2.5 × 10−17 (2.5 × 10−17) | 1.1 × 10−17 (1.1 × 10−17) | |
Gaussian peak energy for donor (eV) | 0.45 | 0.46 | 0.7 | 1.02 | 1.02 | |
Gaussian peak energy for acceptor (eV) | 0.65 | 0.65 | 1 | 1.2 | 1.2 | |
σe(σh) for acceptor like Gaussian states (cm−2) | 3 × 10−15 (3 × 10−14) | 3 × 10−15 (3 × 10−14) | 3 × 10−15 (3 × 10−14) | 3 × 10−15 (3 × 10−14) | 3 × 10−15 (3 × 10−14) | |
σe(σh) for donor like Gaussian states (cm−2) | 3 × 10−14 (3 × 10−15) | 3 × 10−14 (3 × 10−15) | 3 × 10−14 (3 × 10−15) | 3 × 10−14 (3 × 10−15) | 3 × 10−14 (3 × 10−15) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.; Pham, D.P.; Kim, Y.; Cho, E.-C.; Park, J.; Yi, J. Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells. Energies 2020, 13, 2948. https://doi.org/10.3390/en13112948
Lee S, Pham DP, Kim Y, Cho E-C, Park J, Yi J. Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells. Energies. 2020; 13(11):2948. https://doi.org/10.3390/en13112948
Chicago/Turabian StyleLee, Sunhwa, Duy Phong Pham, Youngkuk Kim, Eun-Chel Cho, Jinjoo Park, and Junsin Yi. 2020. "Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells" Energies 13, no. 11: 2948. https://doi.org/10.3390/en13112948
APA StyleLee, S., Pham, D. P., Kim, Y., Cho, E.-C., Park, J., & Yi, J. (2020). Influence of the Carrier Selective Front Contact Layer and Defect State of a-Si:H/c-Si Interface on the Rear Emitter Silicon Heterojunction Solar Cells. Energies, 13(11), 2948. https://doi.org/10.3390/en13112948