FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling
Abstract
:1. Introduction
2. Finite Set-MPC
2.1. Discrete-Time Predictive Model
2.2. Selection Criteria
3. Model-Based Design of FS-MPC
3.1. Computation of Cost Functions
3.2. Selection of Optimum Switching State
3.3. Generation of Switching Signal and Index Number
4. Simulation Results
4.1. System Performance
4.2. Intermediate Response
5. Experimental Results
5.1. System Performance
5.2. Intermediate Response
5.3. FPGA Resource Utilization
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kouro, S.; Cortes, P.; Vargas, R.; Ammann, U.; Rodriguez, J. Model Predictive Control—A Simple and Powerful Method to Control Power Converters. IEEE Trans. Ind. Electron. 2009, 56, 1826–1838. [Google Scholar] [CrossRef]
- Rodríguez, J.; Cortes, P. Predictive Control of Power Converters and Electrical Drives, 1st ed.; Wiley-IEEE Press: New York, NY, USA, 2012; ISBN 978-1-119-96398-1. [Google Scholar]
- Kouro, S.; Perez, M.A.; Rodriguez, J.; Llor, A.M.; Young, H.A. Model Predictive Control: MPC’s Role in the Evolution of Power Electronics. IEEE Ind. Electron. Mag. 2014, 8, 16–31. [Google Scholar] [CrossRef]
- Vazquez, S.; Leon, J.I.; Franquelo, L.G.; Rodriguez, J.; Young, H.A.; Marquez, A.; Zanchetta, P. Model predictive control: A review of its applications in power electronics. IEEE Ind. Electron. Mag. 2015, 9, 8–21. [Google Scholar] [CrossRef]
- Rodríguez, J.; Pontt, J.; Silva, C.; Correa, P.; Lezana, P.; Cortés, P.; Ammann, U. Predictive current control of a voltage source inverter. IEEE Trans. Ind. Electron. 2007, 54, 495–503. [Google Scholar] [CrossRef]
- Nikhil, P.; Sonam, K.; Monika, M.; Wagh, S. Finite control set model predictive control for two level inverter with fixed switching frequency. In Proceedings of the 2018 SICE International Symposium on Control Systems (SICE ISCS), Tokyo, Japan, 9–11 March 2018; pp. 74–81. [Google Scholar] [CrossRef]
- Donoso, F.; Mora, A.; Cárdenas, R.; Angulo, A.; Sáez, D.; Rivera, M. Finite-Set Model-Predictive Control Strategies for a 3L-NPC Inverter Operating With Fixed Switching Frequency. IEEE Trans. Ind. Electron. 2018, 65, 3954–3965. [Google Scholar] [CrossRef]
- Cortes, P.; Rodriguez, J.; Antoniewicz, P.; Kazmierkowski, M. Direct power control of an AFE using predictive control. IEEE Trans. Power Electron. 2008, 23, 2516–2523. [Google Scholar] [CrossRef]
- Rodríguez, J.; Kazmierkowski, M.P.; Espinoza, J.R.; Zanchetta, P.; Abu-Rub, H.; Young, H.A.; Rojas, C.A. State of the art of finite control set model predictive control in power electronics. IEEE Trans. Ind. Inform. 2013, 9, 1003–1016. [Google Scholar] [CrossRef]
- Tarisciotti, L.; Zanchetta, P.; Watson, A.; Bifaretti, S.; Clare, J.C. Modulated model predictive control for a seven-level cascaded H-bridge back-to-back converter. IEEE Trans. Ind. Electron. 2014, 61, 5375–5383. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.A.; Cortes, P.; Rodriguez, J. Predictive control algorithm technique for multilevel asymmetric cascaded H-bridge inverters. IEEE Trans. Ind. Electron. 2008, 55, 4354–4361. [Google Scholar] [CrossRef]
- Cortes, P.; Wilson, A.; Kouro, S.; Rodriguez, J.; Abu-Rub, H. Model predictive control of multilevel cascaded H-bridge inverters. IEEE Trans. Ind. Electron. 2010, 57, 2691–2699. [Google Scholar] [CrossRef]
- Lezana, P.; Aguilera, R.P.; Quevedo, D.E. Model predictive control of an asymmetric flying capacitor converter. IEEE Trans. Ind. Electron. 2009, 56, 1839–1846. [Google Scholar] [CrossRef] [Green Version]
- Rivera, M.; Rojas, C.A.; Rodriguez, J.; Wheeler, P.; Wu, B.; Espinoza, J.R. Predictive current control with input filter resonance mitigation for a direct matrix converter. IEEE Trans. Power Electron. 2011, 26, 2794–2803. [Google Scholar] [CrossRef]
- Wang, L.; Dan, H.; Zhao, Y.; Zhu, Q.; Peng, T.; Sun, Y.; Wheeler, P. A finite control set model predictive control method for matrix converter with zero common-mode voltage. IEEE J. Emerg. Sel. Top. Power Electron. 2018, 6, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Cortes, P.; Ortiz, G.; Yuz, J.; Rodríguez, J.; Vazquez, S.; Franquelo, L. Model predictive control of an inverter with output LC filter for UPS applications. IEEE Trans. Ind. Electron. 2009, 56, 1875–1883. [Google Scholar] [CrossRef]
- Khan, H.S.; Aamir, M.; Ali, M.; Waqar, A.; Ali, S.U.; Imtiaz, J. Finite Control Set Model Predictive Control for Parallel Connected Online UPS System under Unbalanced and Nonlinear Loads. Energies 2019, 12, 581. [Google Scholar] [CrossRef] [Green Version]
- Vazquez, S.; Rodriguez, J.; Rivera, M.; Franquelo, L.G.; Norambuena, M. Model Predictive Control for Power Converters and Drives: Advances and Trends. IEEE Trans. Ind. Electron. 2017, 64, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Young, H.A.; Perez, M.A.; Rodriguez, J.; Abu-Rub, H. Assessing finite-control-set model predictive control: A comparison with a linear current controller in two-level voltage source inverters. IEEE Ind. Electron. Mag. 2014, 8, 44–52. [Google Scholar] [CrossRef]
- Xia, C.; Liu, T.; Shi, T.; Song, Z. A Simplified Finite-Control-Set Model-Predictive Control for Power Converters. IEEE Trans. Ind. Inform. 2014, 10, 991–1002. [Google Scholar] [CrossRef]
- Cortes, P.; Kazmierkowski, M.P.; Kennel, R.M.; Quevedo, D.E.; Rodriguez, J. Predictive control in power electronics and drives. IEEE Trans. Ind. Electron. 2008, 55, 4312–4324. [Google Scholar] [CrossRef]
- Cortes, P.; Rodriguez, J.; Silva, C.; Flores, A. Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans. Ind. Electron. 2012, 59, 1323–1325. [Google Scholar] [CrossRef]
- Yang, Y.; Wen, H.; Li, D. A fast and fixed switching frequency model predictive control with delay compensation for three-phase inverters. IEEE Access. 2017, 5, 17904–17913. [Google Scholar] [CrossRef]
- Vyncke, T.J.; Thielemans, S.; Melkebeek, J.A. Finite-set model based predictive control for flying-capacitor converters: Cost function design and efficient FPGA implementation. IEEE Trans. Ind. Inform. 2013, 9, 1113–1121. [Google Scholar] [CrossRef]
- Sanchez, P.M.; Machado, O.; Peña, E.J.B.; Rodríguez, F.J.; Meca, F.J. FPGA-Based Implementation of a Predictive Current Controller for Power Converters. IEEE Trans. Ind. Inform. 2013, 9, 1312–1321. [Google Scholar] [CrossRef]
- Ma, Z.; Saeidi, S.; Kennel, R. FPGA implementation of model predictive control with constant switching frequency for PMSM drives. IEEE Trans. Ind. Inform. 2014, 10, 2055–2063. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, F.; Sun, T.; Rodríguez, J.; Kennel, R. FPGA-Based Experimental Investigation of a Quasi-Centralized Model Predictive Control for Back-to-Back Converters. IEEE Trans. Power Electron. 2016, 31, 662–674. [Google Scholar] [CrossRef]
- Naouar, M.W.; Naassani, A.A.; Monmasson, E.; Slama-Belkhodja, I. FPGA-based predictive current controller for synchronous machine speed drive. IEEE Trans. Power Electron. 2008, 23, 2115–2126. [Google Scholar] [CrossRef]
- Gulbudak, O.; Santi, E. FPGA-based model predictive controller for direct matrix converter. IEEE Trans. Ind. Electron. 2016, 63, 4560–4570. [Google Scholar] [CrossRef]
- Saeidi, S. FPGA-Based Nonlinear Model Predictive Control of Electric Drives. Ph.D. Thesis, Technische Universitat Munchen, Munchen, Germany, May 2015. [Google Scholar]
- Singh, V.K.; Tripathi, R.N.; Hanamoto, T. Xilinx System Generator Based Modeling of Finite State MPC. In Proceedings of the 9th International Power Electronics Conference (IPEC 2018-ECCE Asia), Niigata, Japan, 20–24 May 2018. [Google Scholar] [CrossRef]
- Selvamuthukumaran, R.; Gupta, R. Rapid prototyping of power electronics converters for photovoltaic system application using Xilinx System Generator. IET Power Electron. 2014, 7, 2269–2278. [Google Scholar] [CrossRef]
- Singh, V.K.; Tripathi, R.N.; Hanamoto, T. HIL Co-Simulation of Finite Set-Model Predictive Control Using FPGA for a Three-Phase VSI System. Energies 2018, 11, 909. [Google Scholar] [CrossRef] [Green Version]
- Monmasson, E.; Idkhajine, L.; Naouar, M.W. FPGA-based controllers. IEEE Ind. Electron. Mag. 2011, 5, 14–26. [Google Scholar] [CrossRef]
- Xilinx. 7 Series FPGAs Configurable Logic Block: User Guide; Xilinx Inc.: San Jose, CA, USA, 27 September 2016. [Google Scholar]
- Xilinx. 7 Series DSP48E1 Slice: User Guide; Xilinx Inc.: San Jose, CA, USA, 27 March 2018. [Google Scholar]
Leg ‘a’, Sa | Leg ‘b’, Sb | Leg ‘c’, Sc |
---|---|---|
G1 ON, 1 | G3 ON, 1 | G5 ON, 1 |
G2 OFF, 0 | G4 OFF, 0 | G6 OFF, 0 |
G1 OFF, 0 | G3 OFF, 0 | G5 OFF, 0 |
G2 ON, 1 | G4 ON, 1 | G6 ON, 1 |
Switching States | Voltage Vectors | Index Number |
---|---|---|
S = [Sa Sb Sc] | vi = [viα viβ] | |
S0 = [0 0 0] | v0 = [0, 0] | 0 |
S1 = [1 0 0] | v1 = [2Vdc/3, 0] | 4 |
S2 = [1 1 0] | v2 = [Vdc/3, √3Vdc/3] | 6 |
S3 = [0 1 0] | v3 = [−Vdc/3, √3 Vdc/3] | 2 |
S4 = [0 1 1] | v4 = [−2Vdc/3, 0] | 3 |
S5 = [0 0 1] | v5 = [−Vdc/3,−√3Vdc/3] | 1 |
S6 = [1 0 1] | v6 = [Vdc/3,−√3Vdc/3] | 5 |
S7 = [1 1 1] | v7 = [0, 0] | 7 |
S. No. | Components | Specifications |
---|---|---|
1 | Three-phase VSI | STEVAL-IHM023V3, 1 kW |
2 | DC supply | THDSHVMTRPFCKIT |
3 | Current transducer | LA 25-NP |
4 | Op-amp IC for level shifter | LM385N |
5 | Isolator IC | ADuM3440 |
6 | ADC | Digilent Pmod AD1 |
7 | DAC | Digilent Pmod DA4 |
8 | FPGA board | Zedboard Zynq Evaluation and Development Kit |
Performance Indices | FS-MPC in αβ-Frame | FS-MPC in dq-Frame | Comments | ||
---|---|---|---|---|---|
Sim. | Exp. | Sim. | Exp. | ||
Current error (spike) at instant 0.062 s | 1.76 | 1.78 | 1.16 | 1.1 | 1. lower for dq-frame 2. quite similar in experiment as compared to simulation for both frames |
Current error (spike) at instant 0.14 s | 1.02 | 1.1 | 0.8 | 0.88 | 1. quite similar for both frames 2. slightly lower for dq-frame |
THD and average fSW for iL = 2.5 A | 5.28% 3053 Hz | 7.91% 2310 Hz | 5.61% 3306 Hz | 8.15% 2350 Hz | 1. higher for dq-frame 2. significantly high in experiment for both frames |
THD and average fSW for iL = 4 A | 3.54% 3733 Hz | 4.9% 2550 Hz | 3.74% 3920 Hz | 4.8% 2580 Hz | 1. quite similar for both frames 2. slightly high in experiment |
Transient response: Settling time for step change at 0.062 s | 200 µs | 400 µs | 250 µs | 500 µs | 1. significantly high in experiment for both frames 2. slightly higher for dq-frame |
Transient response: Settling time for step change at 0.14 s | 150 µs | 280 µs | 130 µs | 200 µs | 1. high in experiment for both frames 2. slightly lower for dq-frame |
Logic Utilization Indices | Available | Used | Utilization Percentage | ||
---|---|---|---|---|---|
αβ-Frame | dq-Frame | αβ-Frame | dq-Frame | ||
Number of slice LUTs | 53,200 | 4364 | 8534 | 8.2% | 16.04% |
Number of FFs | 106,400 | 1078 | 1327 | 1.01% | 1.25% |
Number of DSP cells | 220 | 25 | 66 | 11.36% | 30% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, V.K.; Tripathi, R.N.; Hanamoto, T. FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling. Energies 2020, 13, 260. https://doi.org/10.3390/en13010260
Singh VK, Tripathi RN, Hanamoto T. FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling. Energies. 2020; 13(1):260. https://doi.org/10.3390/en13010260
Chicago/Turabian StyleSingh, Vijay Kumar, Ravi Nath Tripathi, and Tsuyoshi Hanamoto. 2020. "FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling" Energies 13, no. 1: 260. https://doi.org/10.3390/en13010260
APA StyleSingh, V. K., Tripathi, R. N., & Hanamoto, T. (2020). FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling. Energies, 13(1), 260. https://doi.org/10.3390/en13010260