How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Description
- Exp10. This file represents the average climate behaviour registered by the CIEMAT station from 2008 to 2017.
- CTE. This file represents the typical meteorological year of Madrid created by the Spanish Ministry to calculate the certification of the energy performance of buildings. This file is provided by the Spanish Building Code website [46]. Based on summer and winter severity, Spanish cities are adapted to different representative synthetic climatic zones.
- EPW. This file represents an International Weather for Energy Calculation (IWEC) created by ASHRAE to characterize the climate of Madrid. It is derived from hourly weather data registered from 1982 to 1999. This file is provided by the EnergyPlus website [47].
2.2. Local Legislation
3. Climate Assessment
3.1. Monitoring Set-Up
3.2. Climate Trends
3.3. Climate Comparison between the Databases Evaluated
3.4. Degree-Days
4. Building Energy Performance
4.1. Dynamic Simulations of a Typical Residential Building
4.2. Building Model
5. Results and Discussion
5.1. Thermal Inertia
5.2. Adaptive Thermal Comfort
5.3. Thermal Needs
6. Discussions
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Guarda, E.L.A.D.; Domingos, R.M.A.; Jorge, S.H.M.; Durante, L.C.; Sanches, J.C.M.; Leão, M.; Callejas, I.J.A. The influence of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the Brazilian Savannah. Sustain. Cities Soc. 2020, 52, 101843. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report; Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Waddicor, D.A.; Fuentes, E.; Siso, L.; Salom, J.; Favre, B.; Jimenez, C.; Azar, M. Climate change and building ageing impact on building energy performance and mitigation measures application: A case study in Turin, northern Italy. Build. Environ. 2016, 102, 13–25. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignor, M.; Miller, H. Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2007; pp. 747–845. [Google Scholar]
- Sanjuan, C.; Sánchez, M.N.; Enriquez, R.; Heras, M.R. Experimental PIV Techniques Applied to the Analysis of Natural Convection in Open Joint Ventilated Facades. Energy Procedia 2012, 30, 1216–1225. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, M.N.; Giancola, E.; Blanco, E.; Soutullo, S.; Suárez, M.J. Experimental Validation of a Numerical Model of a Ventilated Façade with Horizontal and Vertical Open Joints. Energies 2020, 13, 146. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.; Lior, N. Vulnerability to climate change impacts of present renewable energy systems designed for achieving net-zero energy buildings. Energy 2016, 114, 1288–1305. [Google Scholar] [CrossRef]
- Chai, J.; Huang, P.; Sun, Y. Investigations of climate change impacts on net-zero energy building lifecycle performance in typical Chinese climate regions. Energy 2019, 185, 176–189. [Google Scholar] [CrossRef]
- Melton, P. Designing for the Next Century’s. Environment Building News, 10 October 2010. [Google Scholar]
- Shen, J.; Copertaro, B.; Sangelantoni, L.; Zhang, X.; Suo, H.; Guan, X. An early-stage analysis of climate-adaptive designs for multi-family buildings under future climate scenario: Case studies in Rome, Italy and Stockholm, Sweden. J. Build. Eng. 2020, 27, 100972. [Google Scholar] [CrossRef]
- Zhai, Z.J.; Helman, J.M. Implications of climate changes to building energy and design. Sustain. Cities Soc. 2019, 44, 511–519. [Google Scholar] [CrossRef]
- Amin, M.; Nik, V.M.; Carlucci, S.; Geving, S. Impacts of future weather data typology on building energy performance—investigating long-term patterns of climate change and extreme weather conditions. Appl. Energy 2019, 238, 696–720. [Google Scholar]
- Jiang, A.; Liu, X.; Czarnecki, E.; Zhang, C. Hourly weather data projection due to climate change for impact assessment on building and infrastructure. Sustain. Cities Soc. 2019, 10, 1688. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Pilli-Sihvola, K.; Aatola, P.; Ollikainen, M.; Tuomenvirta, H. Climate change and electricity consumption e Witnessing increasing or decreasing use and costs. Energy Policy 2010, 38, 2409–2419. [Google Scholar] [CrossRef]
- Cartalis, C.; Synodinou, A.; Proedrou, M.; Tsangrassoulis, A.; Santamouris, M. Modifications in energy demand in urban areas as a result of climate changes: An assessment for the southeast Mediterranean region. Energy Convers. Manag. 2001, 42, 1647–1656. [Google Scholar] [CrossRef]
- Aguiar, R.; Oliveira, M.; Gonccedilalves, H. Climate change impacts on the thermal performance of Portuguese buildings. Results of the SIAM study. Build. Serv. Eng. Res. Technol. 2002, 23, 223–231. [Google Scholar] [CrossRef]
- Mirasgedis, S.; Sarafidis, Y.; Georgopoulou, E.; Kotroni, V.; Lagouvardos, K.; Lalas, D. Modeling framework for estimating impacts of climate change on electricity demand at regional level: Case of Greece. Energy Convers. Manag. 2007, 48, 1737–1750. [Google Scholar] [CrossRef]
- Fantozzi, F.; Hamdi, H.; Rocca, M.; Vegnuti, S. Use of Automated Control Systems and Advanced Energy Simulations in the Design of Climate Responsive Educational Building for Mediterranean Area. Sustainability 2019, 11, 1660. [Google Scholar] [CrossRef] [Green Version]
- Leccese, F.; Salvadori, G.; Asdrubali, F.; Gori, P. Passive thermal behaviour of buildings: Performance of external multi-layered walls and influence of internal walls. Appl. Energy 2018, 225, 1078–1089. [Google Scholar] [CrossRef]
- Escandón, R.; Suárez, R.; Sendra, J.J.; Ascione, F.; Bianco, N.; Mauro, G.M. Predicting the Impact of Climate Change on Thermal Comfort in A Building Category: The Case of Linear-type Social Housing Stock in Southern Spain. Energies 2019, 12, 2238. [Google Scholar] [CrossRef] [Green Version]
- Nik, V.M.; Kalagasidis, A.S. Impact study of the climate change on the energy performance of the building stock in Stockholm considering four climate uncertainties. Build. Environ. 2013, 60, 291–304. [Google Scholar] [CrossRef]
- Jentsch, M.F.; Patrick, A.; James, B.; Bourikas, L.; Bahaj, A.S. Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates. Renew. Energy 2013, 55, 514–524. [Google Scholar] [CrossRef]
- Kjellström, E.; Nikulin, G.; Hansson, U.; Strandberg, G.; Ullerstig, A. 21st century changes in the European climate: Uncertainties derived from an ensemble of regional climate model simulations. Tellus A 2011, 63, 24–40. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.; Kjellström, E.; Giorgi, F.; Lenderink, G.; Rummukainen, M. Weight assignment in regional climate models. Clim. Res. 2010, 44, 179–194. [Google Scholar] [CrossRef]
- Wang, L.; Liu, X.; Brown, H. Prediction of the impacts of climate change on energy consumption for a medium-size office building with two climate models. Energy Build. 2017, 157, 218–226. [Google Scholar] [CrossRef]
- Shibuya, T.; Croxford, B. The effect of climate change on office building energy consumption in Japan. Energy Build. 2016, 117, 149–159. [Google Scholar] [CrossRef]
- Zhao, D.; Fan, H.; Pan, L.; Xu, Q.; Zhang, X. Energy consumption performance considering climate change in office building. Procedia Eng. 2017, 205, 3448–3455. [Google Scholar] [CrossRef]
- Sabunas, A.; Kanapickas, A. Estimation of climate change impact on energy consumption in a residential building in Kaunas, Lithuania, using HEED Software. Energy Procedia 2017, 128, 92–99. [Google Scholar] [CrossRef]
- Radhi, H. Evaluating the potential impact of global warming on the UAE residential buildings. A contribution to reduce the CO2 emissions. Build. Environ. 2009, 44, 2451–2462. [Google Scholar] [CrossRef]
- Wong, S.L.; Wan, K.K.; Li, D.H.; Lam, J.C. Impact of climate change on residential building envelope cooling loads in subtropical climates. Energy Build. 2010, 42, 2098–2103. [Google Scholar] [CrossRef]
- Wan, K.K.; Li, D.H.; Liu, D.; Lam, J.C. Future trends of building heating and cooling loads and energy consumption in different climates. Build. Environ. 2011, 46, 223–234. [Google Scholar] [CrossRef]
- Gaterell, M.; McEvoy, M. The impact of climate change uncertainties on the performance of energy efficiency measures applied to dwellings. Energy Build. 2005, 37, 982–995. [Google Scholar] [CrossRef]
- Shen, P.; Braham, W.; Yi, Y. The feasibility and importance of considering climate change impacts in building retrofit analysis. Appl. Energy 2019, 233, 254–270. [Google Scholar] [CrossRef]
- Mata, E.; Wanemark, J.; Nik, V.M.; Kalagasidis, A.S. Economic feasibility of building retrofitting mitigation potentials: Climate change uncertainties for Swedish cities. Appl. Energy 2019, 242, 1022–1035. [Google Scholar] [CrossRef]
- Kikumoto, H.; Ooka, R.; Arima, Y. A study of urban thermal environment in Tokyo in summer of the 2030s under influence of global warming. Energy Build 2016, 114, 54–61. [Google Scholar] [CrossRef]
- Coley, D.; Kershaw, T.; Eames, M. A comparison of structural and behavioural adaptations to future proofing buildings against higher temperatures. Build. Environ. 2012, 55, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chen, D.; Ren, Z. Assessment of climate change impact on residential building heating and cooling energy requirement in Australia. Build. Environ. 2010, 45, 1663–1682. [Google Scholar] [CrossRef]
- De Wilde, P.; Rafiq, Y.; Beck, M. Uncertainties in predicting the impact of climate change on thermal performance of domestic buildings in the UK. Build. Serv. Eng. Res. Technol. 2008, 29, 7–26. [Google Scholar] [CrossRef]
- Tian, W.; de Wilde, P. Uncertainty and sensitivity analysis of building performance using probabilistic climate projections: A UK case study. Autom. Constr. 2011, 20, 1096–1109. [Google Scholar] [CrossRef]
- Lomas, K.J.; Giridharan, R. Thermal comfort standards, measured internal temperatures and thermal resilience to climate change of free running buildings: A case-study of hospital wards. Build. Environ. 2012, 55, 57–72. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Weng, Q. Modeling the effect of climate change on building energy demand in Los Angeles county by using a GIS-based high spatial—And temporal-resolution approach. Energy 2019, 176, 641–655. [Google Scholar] [CrossRef]
- US Department of Energy. Energy Efficiency and Renewable Energy Office, Building Technology Program, Energy Plus 8.0.0. Available online: https://energyplus.net/ (accessed on 17 December 2019).
- ESP-r. Available online: http://www.esru.strath.ac.uk/Programs/ESP-r.htm (accessed on 17 December 2019).
- Transient System Simulation Tool (TRNSYS). Available online: https://www.trnsys.com (accessed on 4 November 2019).
- Spanish Building Code. Available online: https://www.codigotecnico.org/index.php/menu-ahorro-energia.html (accessed on 4 November 2019).
- Energy Plus Weather Database. Available online: https://energyplus.net/weather-region/europe_wmo_region_6/ESP%20%20 (accessed on 4 November 2019).
- Ascione, F.; Bianco, N.; De Masi, R.F.; Mauro, G.M.; Vanoli, G.P. Resilience of robust cost-optimal energy retrofit of buildings to global warming: A multi-stage, multi-objective approach. Energy Build. 2017, 153, 150–167. [Google Scholar] [CrossRef]
- European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast). 2010. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri¼OJ:L:2010:153:0013:0035:EN:PDF (accessed on 17 December 2019).
- Lopez-Ochoa, L.M.; Las-Heras-Casas, J.; Lopez-Gonzalez, L.M.; Olasolo-Alonso, P. Towards nearly zero-energy buildings in Mediterranean countries: Energy Performance of Buildings Directive evolution and the energy rehabilitation challenge in the Spanish residential sector. Energy 2019, 176, 335–352. [Google Scholar] [CrossRef]
- Spain. Royal Decree 2429/1979 Approving the Basic Building Norm on Thermal Conditions in Buildings. Spanish Official Journal 253,1979 (BOE-A-1979-24866). Available online: http://www.boe.es/boe/dias/1979/10/22/pdfs/A24524-24550.pdf (accessed on 17 December 2019).
- Spain. Draft Royal Decree by which the Royal Decree 314/2006 of March 17 is Modified, by which the Technical Building Code is Approved. 2018. Available online: https://www.codigotecnico.org/index.php/menu-documentos-complementarios/357-proyecto-modificacion-cte-julio-2018.html (accessed on 17 December 2019).
- Spain. Royal Decree 235/2013. Approving the Basic Procedure for Certification of Energy Efficiency of Buildings. Spanish Official Journal 89,2013 (BOE-A-2013-3904). Available online: https://www.boe.es/boe/dias/2013/04/13/pdfs/BOE-A-2013-3904.pdf (accessed on 17 December 2019).
- Sirombo, E.; Filippi, M.; Catalano, A.; Sica, A. Building monitoring system in a large social housing intervention in Northern Italy. Energy Procedia 2017, 140, 386–397. [Google Scholar] [CrossRef]
- Giancola, E.; Sánchez, M.N.; Friedrich, M.; Kalyanova Larsen, O.; Nocente, A.; Avesani, S.; Babich, F.; Goia, F. Possibilities and challenges of different experimental techniques for airflow characterisation in the air cavities of façades. J. Facade Des. Eng. 2018, 6, 34–48. [Google Scholar]
- Olmedo, R.; Sánchez, M.N.; Enríquez, R.; Jiménez, M.J.; Heras, M.R. ARFRISOL Buildings-UIE3-CIEMAT. In International Energy Agency, EBC Annex 58: Reliable Building Energy Performance Characterisation Based on Full Scale Dynamic Measurements-Report of Subtask 1a: Inventory of Full Scale Test Facilities for Evaluation of Building Energy Performances; Janssens, A., Ed.; KULeuven: Leuven, Belgium, 2016; Volume 2, pp. 171–184. ISBN 9789460189906. [Google Scholar]
- Soutullo, S.; Sánchez, M.N.; Enríquez, R.; Jiménez, M.J.; Heras, M.R. Empirical estimation of the climatic representativeness in two different areas: Desert and Mediterranean climates. Energy Procedia 2017, 122, 829–834. [Google Scholar] [CrossRef]
- EC-European Commission. Climate Final Report. PASCOOL Project. JOULE II: Programme of the European Commission. (JOU2-CT79-0013); EC-European Commission: Athens, Greece, 1995. [Google Scholar]
- Filkenstein, J.M.; Schafer, R.E. lmproved goodness to fit tests. Biometrica 1971, 58, 641–645. [Google Scholar]
- European Climate Assessment Dataset (ECAD) Project. Available online: https://www.ecad.eu/ (accessed on 4 November 2019).
- European Environment Agency. Available online: https://www.eea.europa.eu/data-and-maps/indicators/heating-degree-days-2 (accessed on 4 November 2019).
- Soutullo, S.; Giancola, E.; Heras, M.R. Dynamic energy assessment to analyze different refurbishment strategies of existing dwellings placed in Madrid. Energy 2018, 152, 1011–1023. [Google Scholar] [CrossRef]
- Macdonald, I.; Clarke, J.; Strachan, P. Assessing uncertainty in building simulation. Proc. Build. Simul. 1999, 2, 683–690. [Google Scholar]
- Dodoo, A.; Tettey, U.Y.A.; Gustavsson, L. Influence of simulation assumptions and input parameters on energy balance calculations of residential buildings. Energy 2017, 120, 718–730. [Google Scholar] [CrossRef]
- Giancola, E.; Soutullo, S.; Olmedo, R.; Heras, M.R. Evaluating rehabilitation of the social housing envelope: Experimental assessment of thermal indoor improvements during actual operating conditions in dry hot climate, a case study. Energy Build. 2014, 75, 264–271. [Google Scholar] [CrossRef]
- Soutullo, S.; Sánchez, M.N.; Enríquez, R.; Olmedo, R.; Jiménez, M.J. Bioclimatic vs conventional building: Experimental quantification of the thermal improvements. Energy Procedia 2017, 122, 823–828. [Google Scholar] [CrossRef]
- Givoni, B. Comfort, climate analysis and building design guidelines. Energy Build. 1992, 1, 11–23. [Google Scholar] [CrossRef]
- Soutullo, S.; Sánchez, M.N.; Enríquez, R.; Olmedo, R.; Jiménez, M.J.; Heras, M.R. Comparative thermal study between conventional and bioclimatic office buildings. Build. Environ. 2016, 105, 95–103. [Google Scholar] [CrossRef]
- ASHRAE Standard 55-2004. Thermal Environmental Condition for Human Occupancy; American Society of Heating, Refrigerating, Air-Conditioning Engineers: Atlanta, GA, USA, 2004. [Google Scholar]
- Pierangioli, L.; Cellai, G.; Ferrise, R.; Trombi, G.; Bindi, M. Effectiveness of passive measures against climate change: Case studies in Central Italy. Build. Simul. 2017, 10, 459–479. [Google Scholar] [CrossRef]
- Cellura, M.; Guarino, F.; Longo, S.; Tumminia, G. Climate change and the building sector: Modelling and energy implications to an office building in southern Europe. Energy Sustain. Dev. 2018, 45, 46–65. [Google Scholar] [CrossRef]
- Dastgerdi, A.S.; Sargolini, M.; Pierantoni, I. Climate change challenges to existing cultural heritage policy. Sustainability 2019, 11, 5227. [Google Scholar] [CrossRef] [Green Version]
- Ascione, F. Energy conservation and renewable technologies for buildings to face the impact of the climate change and minimize the use of cooling. Sol. Energy 2017, 154, 34–100. [Google Scholar] [CrossRef]
Constructive Elements | ULim (W/m2K) | g |
---|---|---|
Roof | 0.90 | |
Exterior wall | 1.40 | |
Ground floor | 2.00 | |
Partition wall | 1.00 | |
Internal floor | 1.00 | |
Glazing (double glazing) | 3.25 | 0.76 |
Frame (metal frame with thermal break) | 4.00 |
Constructive Elements | ULim (W/m2K) | g |
---|---|---|
Roof | 0.68 | |
Exterior wall (W/m2K) | 0.66 | |
Ground floor (W/m2K) | 0.66 | |
Partition wall (W/m2K) | 0.66 | |
Internal floor (W/m2K) | 0.66 | |
Glazing (low-emission glazing) | 1.54 | 0.65 |
U Frame (metal frame without a thermal break) | 2.20 |
Sensor | Manufacturer & Model | Measured Variable | Range | Accuracy |
---|---|---|---|---|
Pyranometer | Kipp & Zonnen—CM11 | Global solar irradiance | 0–4000 W/m2 | Secondary standard according to ISO 9060:1990 |
Pyrgeometer | Kipp & Zonnen—CGR4 | Long-wave irradiance | −250 to +250 W/m² | >3% for daily totals |
4-wire PT100 | Temp & RH Young—41382 | Outdoors air temperature | −50 to 50 °C | ±0.1 °C NIST calibration at 23 °C |
Capacitive humidity sensor | Outdoors Relative Humidity | 0–100% RH | ±1% RH at 23 °C. | |
2 axis ultrasonic wind sensor | Gill—Windsonic | Wind speed | 0–60 m/s | ±2% at 12m/s |
Wind direction | 0–359° | ±2° at 12m/s | ||
Carbon dioxide transmitter | Vaisala. GMP343 | Outdoors CO2 concentration | 0–2000 ppm | ±5 ppm + 2% of reading |
Climate Data | CTE | EPW | Exp10 |
---|---|---|---|
Annual temperature + standard deviation (°C) | 13.6 ± 3.5 | 14.3 ± 4 | 15.8 ± 3.5 |
Annual relative humidity + standard deviation (%) | 58 ± 11 | 62 ± 14 | 51 ± 11 |
Annual global solar radiation + standard deviation (kWh/m2) | 2131 ± 227 | 2210 ± 235 | 2254 ± 232 |
Climate Index | Definition | CTE | EPW | Exp-10 |
---|---|---|---|---|
ETR | Extreme temperature range considering daily maximum and minimum temperatures | 42 | 45 | 33 |
SU | Number of days with daily maximum temperature above 25 °C | 100 | 111 | 129 |
TR | Number of days with daily minimum temperature above 20 °C | 19 | 8 | 29 |
Case Studies | ||
---|---|---|
Internal Loads | Case 1979 | Case 2006 |
Exterior Summer Shade | 0% | 0% |
Ventilation regime/Thermostat schedule | Annual: 0.63 ac/h Winter: 21 °C | Annual: 0.63 ac/h Summer: 26 °C |
Summer natural Ventilation/Schedule | 4 ac/h from 0–8 h | 4 ac/h from 0–8 h |
Set point temperatures | Winter: 21 °C Summer: 26 °C | Winter: 21 °C Summer: 26 °C |
Annual infiltration | 0.8 ac/h | 0.3 ac/h |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soutullo, S.; Giancola, E.; Jiménez, M.J.; Ferrer, J.A.; Sánchez, M.N. How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid. Energies 2020, 13, 237. https://doi.org/10.3390/en13010237
Soutullo S, Giancola E, Jiménez MJ, Ferrer JA, Sánchez MN. How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid. Energies. 2020; 13(1):237. https://doi.org/10.3390/en13010237
Chicago/Turabian StyleSoutullo, S., E. Giancola, M. J. Jiménez, J. A. Ferrer, and M. N. Sánchez. 2020. "How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid" Energies 13, no. 1: 237. https://doi.org/10.3390/en13010237