# Rotor Loading Characteristics of a Full-Scale Tidal Turbine

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Location

#### 2.1. Ramsey Sound

#### 2.2. Tidal Resource

## 3. Turbine Description

#### 3.1. Overview

#### 3.2. Designed Rotor Characteristics

#### 3.3. Instrumentation

## 4. Results and Discussion

#### 4.1. Site Layout and Characterisation

#### 4.2. Turbine Operation

#### 4.3. Hydrodynamic Loading Coefficients

#### 4.4. Instantaneous Structural Loadings

## 5. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Evans, P.; Mason-Jones, A.; Wilson, C.; Wooldridge, C.; O’Doherty, T.; O’Doherty, D. Constraints on extractable power from energetic tidal straits. Renew. Energy
**2015**, 81, 707–722. [Google Scholar] [CrossRef] - Lewis, M.; Neill, S.; Robins, P.; Hashemi, M.; Ward, S. Characteristics of the velocity profile at tidal-stream energy sites. Renew. Energy
**2017**, 114, 258–272. [Google Scholar] [CrossRef] - Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine. Renew. Energy
**2014**, 66, 729–746. [Google Scholar] [CrossRef] - Ouro, P.; Harrold, M.; Stoesser, T.; Bromley, P. Hydrodynamic loadings on a horizontal axis tidal turbine prototype. J. Fluids Struct.
**2017**, 71, 78–95. [Google Scholar] [CrossRef] [Green Version] - Blackmore, T.; Myers, L.; Bahaj, A. Effects of turbulence on tidal turbines: Implications to performance, blade loads, and condition monitoring. Int. J. Mar. Energy
**2016**, 14, 1–26. [Google Scholar] [CrossRef] [Green Version] - Milne, I.; Sharma, R.; Flay, R.; Bickerton, S. Characteristics of the turbulence in the flow at a tidal stream power site. Philos. Trans. R. Soc. A
**2013**, 371, 2012019. [Google Scholar] [CrossRef] [PubMed] - Nezu, I.; Nakagawa, H. Turbulence in Open-Channel Flows; A. A. Balkema.: Rotterdam, The Netherlands, 1993. [Google Scholar]
- Togneri, M.; Masters, I. Micrositing variability and mean flow scaling for marine turbulence in Ramsey Sound. J. Ocean Eng. Mar. Energy
**2016**, 2, 35–46. [Google Scholar] [CrossRef] - Parkinson, S.; Collier, W. Model validation of hydrodynamic loads and performance of a full-scale tidal turbine using Tidal Bladed. Int. J. Mar. Energy
**2016**, 16, 279–297. [Google Scholar] [CrossRef] - Garcia-Novo, P.; Kyozuka, Y. Analysis of turbulence and extreme current velocity values in a tidal channel. J. Mar. Sci. Technol.
**2018**, 1–14, Accepted. [Google Scholar] [CrossRef] - Payne, G.; Stallard, T.; Martinez, R.; Bruce, T. Variation of loads on a three-bladed horizontal axis tidal turbine with frequency and blade position. J. Fluids Struct.
**2018**, 83, 156–170. [Google Scholar] [CrossRef] - Jeffcoate, P.; Starzmann, R.; Elsaesser, B.; Scholl, S.; Bischoff, S. Field measurements of a full scale tidal turbine. Int. J. Mar. Energy
**2015**, 12, 3–20. [Google Scholar] [CrossRef] [Green Version] - Frost, C.; Benson, I.; Jeffcoate, P.; Elsaher, B.; Whittake, T. The Effect of Control Strategy on Tidal Stream Turbine Performance in Laboratory and Field Experiments. Energies
**2018**, 11, 1533. [Google Scholar] [CrossRef] - Laws, N.; Epps, B. Renewable energy conversion: Technology, research, and outlook. Renew. Sustain. Energy Rev.
**2016**, 57, 1245–1259. [Google Scholar] [CrossRef] - Roche, R.; Walker-Springett, K.; Robins, P.; Jones, J.; Veneruso, G.; Whitton, T.; Piano, M.; Ward, S.; Duce, C.; Waggitt, J.; et al. Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK). Renew. Energy
**2016**, 99, 1327–1341. [Google Scholar] [CrossRef] - Harrold, M.; Bromley, P.; Clelland, D.; Kiprakis, A.; Abusara, M. Evaluating the thrust control capabilities of the DeltaStream
^{TM}turbine. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC), Nantes, France, 6–11 September 2015. [Google Scholar] - Harrold, M.; Bromley, P.; Clelland, D.; Broudic, M. Demonstrating a tidal turbine control strategy at laboratory scale. In Proceedings of the ASME 35th International Conference on Ocean, Offshore and Arctic Engineering (OMAE), Busan, Korea, 19–24 June 2016. [Google Scholar]
- Winter, A. Speed regulated operation for tidal turbines with fixed pitch rotors. In Proceedings of the MTS/IEEE OCEANS Conference, Kona, HI, USA, 19–22 September 2011. [Google Scholar]
- Gracie-Orr, K.; Nevalainen, T.; Johnstone, C.; Murray, R.; Doman, D.; Pegg, M. Development and initial application of a blade design methodology for overspeed power-regulated tidal turbines. Int. J. Mar. Energy
**2016**, 15, 140–155. [Google Scholar] [CrossRef] [Green Version] - Hansen, A.; Butterfield, C. Aerodynamics of horizontal-axis wind turbines. Ann. Revis. Fluid Mech.
**1993**, 25, 115–149. [Google Scholar] [CrossRef] - International Electrotechnical Commission (IEC). IEC/TS 62600-200. Marine Energy—Wave, Tidal and Other Water Current Converters—Part 200: Electricity Producing Tidal Energy Converters—Power Performance Assessment; Technical Report; International Electrotechnical Commission (IEC): Geneva, Switzerland, 2013. [Google Scholar]
- Milne, I.; Day, A.; Sharma, R.; Flay, R. The characterisation of the hydrodynamic loads on tidal turbines due to turbulence. Renew. Sustain. Energy Rev.
**2016**, 56, 851–864. [Google Scholar] [CrossRef] [Green Version] - Chamorro, L.; Porte-Agel, F. A wind-tunnel investigation of wind-turbine wakes: boundary-Layer turbulence effects. Bound.-Lay. Meteorol.
**2009**, 132, 129–149. [Google Scholar] [CrossRef] - Ouro, P.; Stoesser, T. Impact of Environmental Turbulence on the Performance and Loadings of a Tidal Stream Turbine. Flow Turbul. Combust.
**2019**, 1–32. [Google Scholar] [CrossRef] - Fairley, I.; Evans, P.; Wooldridge, C.; Willis, M.; Masters, I. Evaluation of tidal stream resource in a potential array area via direct measurements. Renew. Energy
**2013**, 57, 70–78. [Google Scholar] [CrossRef] - McNaughton, J.; Harper, S.; Sinclair, R.; Sellar, B. Measuring and modelling the power curve of a commercial-scale tidal turbine. In Proceedings of the 11th European Wave and Tidal Energy Conference (EWTEC), Nantes, France, 6–11 September 2015. [Google Scholar]
- Medici, D.; Ivanell, S.; Dahlberg, J.; Alfredsson, P. The upstream fl ow of a wind turbine: Blockage effect. Wind Energy
**2011**, 14, 691–697. [Google Scholar] [CrossRef] - Simley, E.; Angelou, N.; Mikkelsen, T.; Sjoholm, M.; Mann, J.; Pao, L. Characterization of wind velocities in the upstream induction zone of a wind turbine using scanning continuous-wave lidars. J. Renew. Sustain. Energy
**2016**, 8, 013301. [Google Scholar] [CrossRef] [Green Version] - Gaurier, B.; Germain, G.; Facq, J.; Johnstone, C.; Grant, A.; Day, A.; Nixon, E.; Felice, F.; Costanzo, M. Tidal energy “Round Robin” tests comparison between towing tank and circulating tank results. Int. J. Mar. Energy
**2015**, 12, 87–109. [Google Scholar] [CrossRef]

**Figure 2.**Flow strength and directionality data obtained at the turbine location prior to its installation.

**Figure 7.**Time-series of the flow velocity at hub height (

**top**) and turbulence intensity (

**bottom**) averaged over 10-min periods during two full tidal cycles.

**Figure 8.**Vertical profiles of velocity (

**a**,

**b**) and turbulence intensity (

**c**,

**d**) averaged over 10 min at three selected time instances during ebb ($\mathit{e}1$, $\mathit{e}2$ and $\mathit{e}3$) and flood ($\mathit{f}1$, $\mathit{f}3$ and $\mathit{f}3$) tides and transition from ebb to flood ($e-f$) and flood to ebb ($f-e$). Dashed lines indicate turbine top and bottom tips.

**Figure 9.**Power spectral distribution of streamwise velocity during ebb (

**left**) and flood (

**right**) tides.

**Figure 10.**Normalised hub height approach flow velocity (

**top**) and turbulence intensity (

**bottom**) profiles measured with the turbine ADP during peak ebb and flood tides, i.e., $e2$ and $f2$. Comparison with vortex sheet theory predictions (Equation (7)) for different ${c}_{t}$.

**Figure 11.**Time-series of approach flow velocity (U

_{0}), turbine rotational speed (Ω), tip speed ratio (λ) and blade 1 root bending moment (${M}_{{y}_{\mathrm{root}}}$) during a test that took place in an ebb tide.

**Figure 12.**Measured dimensionless rotor loading curves in ebb (

**left**) and flood (

**right**) tides: ${c}_{{M}_{{y}_{\mathrm{root}}}}$ (

**top**); ${c}_{{F}_{{x}_{\mathrm{root}}}}$ (

**middle**); ${c}_{t}$ (

**bottom**).

**Figure 13.**Time-series of instantaneous velocity at hub height at relative distances of $x/D$ = 0.8 and 1.7 upstream of the turbine (

**a**); axial loads ${F}_{{x}_{\mathrm{root}}}$ (

**b**) and bending moments ${M}_{{y}_{\mathrm{root}}}$ (

**c**) at the root of the three blades. Data correspond to the interval the turbine operated at maximum rotational speed.

**Figure 14.**Power Spectral Density of ${F}_{{x}_{\mathrm{root}}}$ and ${M}_{{y}_{\mathrm{root}}}$ computed over a 5-min interval during ebb tide at a maximum rotational speed of $\mathsf{\Omega}$ = 11.61 RPM. The spectra were obtained from an individual blade, with the spectral energy of ${F}_{{x}_{\mathrm{root}}}$ multiplied by ${10}^{2}$ to facilitate comparison.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Harrold, M.; Ouro, P.
Rotor Loading Characteristics of a Full-Scale Tidal Turbine. *Energies* **2019**, *12*, 1035.
https://doi.org/10.3390/en12061035

**AMA Style**

Harrold M, Ouro P.
Rotor Loading Characteristics of a Full-Scale Tidal Turbine. *Energies*. 2019; 12(6):1035.
https://doi.org/10.3390/en12061035

**Chicago/Turabian Style**

Harrold, Magnus, and Pablo Ouro.
2019. "Rotor Loading Characteristics of a Full-Scale Tidal Turbine" *Energies* 12, no. 6: 1035.
https://doi.org/10.3390/en12061035