Multi-Objective Optimization of a Permanent Magnet Actuator for High Voltage Vacuum Circuit Breaker Based on Adaptive Surrogate Modeling Technique
Abstract
:1. Introduction
2. Topology Structure and Working Principle of PMA
2.1. Topology Structure
2.2. Working Principle
2.3. Analysis Method
3. Multi-Objective Optimization Based on Adaptive Surrogate Modeling Technique
3.1. General Overview of the Algorithm
- STAGE I
- STAGE II
- (a)
- The error criteria R2 of all the response models (objective and constraint models) on the approximate Pareto front are greater than 0.9, and the RMAEs of all response models are less than 0.1.
- (b)
- The total number of numerical simulations on samples is greater than a given value.
3.2. Surrogate Modeling Technique
3.2.1. Design of Experiments
3.2.2. Construction of Surrogated Models
3.2.3. Model Evaluation Indicator and Modeling Termination Judgment
3.2.4. Sequential Sampling Strategy
3.3. Samples Adding Strategy Based on Approximate MOO Results
3.3.1. Multi-Objective Genetic Algorithm
3.3.2. Adaptive Samples Adding Strategy
3.4. Numerical Test and Results
4. Multi-Objective Optimization for PMA
4.1. Optimization Model
4.1.1. Problem Description
4.1.2. Optimization Variables
26.5 mm ≤ L1 ≤ 35.5 mm, 58.5 mm ≤ h2 ≤ 78 mm, 350 V ≤ U0 ≤ 400 V,
60 mF ≤ C ≤ 100 mF, 400 ≤ N ≤ 650
4.1.3. Objective Functions
4.1.4. Constraint Functions
4.2. Optimization Results and Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Slade, P.G. The Vacuum Interrupter: Theory, Design, and Application, 1st ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 1–2. [Google Scholar]
- Liu, Z.Y.; Wang, J.M.; Xiu, S.X.; Wang, Z.Y.; Yuan, S.; Jin, L.; Zhou, H.M.; Yang, R. Development of high-voltage vacuum circuit breakers in China. IEEE Trans. Plasma Sci. 2007, 35, 856–865. [Google Scholar] [CrossRef]
- Saitoh, H.; Ichikawa, H.; Nishijima, A.; Matsui, Y.; Sakaki, M.; Honma, M.; Okubo, H. Research and development on 145kV/40kA one break vacuum circuit breaker. IEEE/PES Trans. Distrib. Conf. Exhib. 2002, 2, 1465–1468. [Google Scholar]
- Kang, J.H.; Bae, C.Y.; Jung, H.K. Dynamic behavior analysis of permanent magnetic actuator in vacuum circuit breaker. In Proceedings of the Sixth International Conference on Electrical Machines and Systems, Beijing, China, 9–11 November 2003; Volume 1, pp. 100–103. [Google Scholar]
- Fang, S.; Lin, H.; Ho, S. Transient co-simulation of low voltage circuit breaker with permanent magnet actuator. IEEE Trans. Magn. 2009, 45, 1242–1245. [Google Scholar] [CrossRef]
- Ma, S.H.; Wang, J.M. Research and design of permanent magnetic actuator for high voltage vacuum circuit breaker. In Proceedings of the 20th International Symposium on Discharges and Electrical Insulation in Vacuumcuum, Tours, Indre-et-Loire, France, 1–5 July 2002; pp. 100–103. [Google Scholar]
- Ro, J.S.; Hong, S.K.; Jung, H.K. Characteristic analysis and design of a novel permanent magnetic actuator for a vacuum circuit breaker. IET Electr. Power Appl. 2013, 7, 87–96. [Google Scholar] [CrossRef]
- Fang, S.; Xia, M.; Lin, H.; Ho, S. Analysis and design of a high-speed permanent magnet characteristic actuator using eddy current effect for high-voltage vacuum circuit breaker. IET Electr. Power Appl. 2016, 10, 268–275. [Google Scholar] [CrossRef]
- Jung, H.K. Optimal design and dynamic characteristic analysis of a new type electric actuator for high voltage circuit breaker. In Proceedings of the International Conference on Electrical Machines and Systems, Wuhan, Hubei, China, 17–20 October 2008; pp. 2964–2967. [Google Scholar]
- Wang, Z.; Sun, L.; He, S.; Geng, Y.; Liu, Z. A permanent magnetic actuator for 126 kV vacuum circuit breakers. IEEE Trans. Magn. 2014, 50, 129–135. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Ma, S.H.; Wang, J.M. An approach of improve permanent magnetic actuator of vacuum circuit breaker. In Proceedings of the 23rd International Symposium on Discharges and Electrical Insulation in Vacuum, Bucharest, Romania, 15–19 September 2008; Volume 1, pp. 165–168. [Google Scholar]
- Wang, Z.X.; Yan, P.; Geng, Y.S.; Yu, L. Simulation of an improved operating method for vacuum circuit breakers with permanent magnetic actuators. Int. J. Appl. Electromagn. Mech. 2010, 33, 1373–1381. [Google Scholar] [CrossRef]
- Fang, S.; Liu, Q.; Lin, H.; Ho, S.L. A novel flux-weakening control strategy for permanent-magnet actuator of vacuum circuit breaker. IEEE Trans. Ind. Electron. 2016, 63, 2275–2283. [Google Scholar] [CrossRef]
- Lee, C.H.; Shin, B.H.; Bang, Y.B. Designing a permanent-magnetic actuator for vacuum circuit breakers using the Taguchi method and dynamic characteristic analysis. IEEE Trans. Ind. Electron. 2015, 63, 1655–1664. [Google Scholar] [CrossRef]
- Lin, H.; Wang, X.; Fang, S.; Jin, P.; Ho, S.L. Design, optimization, and intelligent control of permanent-magnet contactor. IEEE Trans. Ind. Electron. 2013, 60, 5148–5159. [Google Scholar] [CrossRef]
- Yoo, Y.M.; Kim, D.K.; Kwon, B.I. Optimal design of a permanent magnetic actuator for vacuum circuit breaker using FEM. J. Electr. Eng. Technol. 2006, 1, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.K.; Ro, J.S.; Jung, H.K. Optimal design of a novel permanent magnetic actuator using evolutionary strategy algorithm and kriging meta-model. J. Electr. Eng. Technol. 2014, 9, 471–477. [Google Scholar] [CrossRef]
- Fonseca, C.M.; Fleming, P.J. Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In Proceedings of the Fifth International Conference on GeneticAlgorithms, Champaign, IL, USA, 17–21 July 1993; Volume 93, pp. 416–423. [Google Scholar]
- Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched pareto genetic algorithm for multiobjective optimization. In Proceedings of the 1st IEEE International Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994; Volume 1, pp. 82–87. [Google Scholar]
- Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [Google Scholar] [CrossRef] [Green Version]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, W.; Tsang, E.; Virginas, B. Expensive multiobjective optimization by MOEA/D with Gaussian process model. IEEE Trans. Evol. Comput. 2009, 14, 456–474. [Google Scholar] [CrossRef]
- Sun, C.; Jin, Y.; Zeng, J.; Yu, Y. A two-layer surrogate-assisted particle swarm optimization algorithm. Soft Comput. 2015, 19, 1461–1475. [Google Scholar] [CrossRef] [Green Version]
- Mlakar, M.; Petelin, D.; Tušar, T.; Filipič, B. GP-DEMO: Differential evolution for multiobjective optimization based on Gaussian process models. Eur. J. Oper. Res. 2015, 243, 347–361. [Google Scholar] [CrossRef]
- Song, J.; Yang, Y.; Wu, J.; Wu, J.; Sun, X.; Lin, J. Adaptive surrogate model based multiobjective optimization for coastal aquifer management. J. Hydrol. 2018, 561, 98–111. [Google Scholar] [CrossRef]
- Palar, P.S.; Liem, R.P.; Zuhal, L.R.; Shimoyama, K. On the use of surrogate models in engineering design optimization and exploration: The key issues. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) 2019, Workshop on Surrogate-Assisted Evolutionary Optimization, Prague, Czech Republic, 13–17 July 2019; pp. 1–11. [Google Scholar]
- Tabatabaei, M.; Hakanen, J.; Hartikainen, M.; Miettinen, K.; Sindhya, K. A survey on handling computationally expensive multiobjective optimization problems using surrogates: Non-nature inspired methods. Struct. Multidiscip. Optim. 2015, 52, 1–25. [Google Scholar] [CrossRef]
- Yun, Y.; Yoon, M.; Nakayama, H. Multi-objective optimization based on meta-modeling by using support vector regression. Optim. Eng. 2009, 10, 167–181. [Google Scholar] [CrossRef]
- Hou, S.; Han, X.; Sun, G.; Long, S.; Li, W.; Yang, X.; Li, Q. Multiobjective optimization for tapered circular tubes. Thin-Walled Struct. 2011, 49, 855–863. [Google Scholar] [CrossRef]
- Messac, A.; Mullur, A.A. A computationally efficient metamodeling approach for expensive multiobjective optimization. Optim. Eng. 2008, 9, 37–67. [Google Scholar] [CrossRef]
- Shan, S.; Wang, G.G. An efficient Pareto set identification approach for multiobjective optimization on black-box functions. ASME Trans. J. Mech. Design. 2005, 127, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, Z.O.; Vahabzadeh, H.; Ziai, A.; Wang, G.G.; Menon, C. On the performance of the Pareto set pursuing (PSP) method for mixed-variable multi-objective design optimization. ASME Trans. J. Mech. Design. 2010, 132, 1–11. [Google Scholar] [CrossRef]
- Chen, G.; Han, X.; Liu, G.; Jiang, C.; Zhao, Z. An efficient multi-objective optimization method for black-box functions using sequential approximate technique. Appl. Soft Comput. 2012, 12, 14–27. [Google Scholar] [CrossRef]
- Yin, H.; Fang, H.; Wen, G.; Wang, Q.; Xiao, Y. An adaptive RBF-based multi-objective optimization method for crashworthiness design of functionally graded multi-cell tube. Struct. Multidiscip. Optim. 2016, 53, 129–144. [Google Scholar] [CrossRef]
- Viana, F.A.C.; Venter, G.; Balabanov, V. An algorithm for fast optimal Latin hypercube design of experiments. Int. J. Numer. Meth. Eng. 2010, 82, 135–156. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Rais-Rohani, M.; Liu, Z.; Horstemeyer, M. A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Comput. Struct. 2005, 83, 2121–2136. [Google Scholar] [CrossRef]
- Crombecq, K.; Couckuyt, I.; Gorissen, D.; Dhaene, T. Space-filling sequential design strategies for adaptive surrogate modelling. In Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Funchal, Madeira, Portugal, 1–4 September 2009; Volume 92, pp. 1–20. [Google Scholar]
- Wilson, B.; Cappelleri, D.; Simpson, T.W.; Frecker, M. Efficient Pareto frontier exploration using surrogate approximations. Optim. Eng. 2001, 2, 31–50. [Google Scholar] [CrossRef]
- Deb, K. Multi-Objective Optimization using Evolutionary Algorithms; Wiley: Chichester, England, UK, 2001; pp. 349–362. [Google Scholar]
- Jiang, J.; Lin, H.; Fang, S. Optimization Design of a Permanent Magnet Actuator for 126-kV Vacuum Circuit Breaker. IEEE Trans. Appl. Supercond. 2018, 28, 1–5. [Google Scholar] [CrossRef]
Item | Value | Item | Value |
---|---|---|---|
Rated voltage (kV)/Rated current (kA) | 126/3 | Rated short-circuit breaking current (kA) | 31.5 |
Rated contact stroke (mm) | 50 | Contact connection stroke (mm) | 10 |
Added external contact force at contact touch point (N) | 2400 | Added force on closed contacts (N) | 3500 |
Average opening speed (0–30mm stroke) (m/s) | 3.5 ± 0.3 | Average closing speed (30mm-contact making) (m/s) | 2.0 ± 0.3 |
Basic Function | Formula | Basic Function | Formula |
---|---|---|---|
Linear | Cubic | ||
Thin plate | Gaussian | ||
Multi-quadric |
Test Function | Number of Variables | Variable Bounds | Objectives and Constraints | Characteristics |
---|---|---|---|---|
TEST2 [38] | 2 | [0, 5] [0, 3] | Convex, disconnected, multi constraints | |
KUR [39] | 3 | [−5, 5]3 | Nonconvex, disconnected | |
ZDT3 [39] | 5 | [0, 1]5 | Convex, disconnected |
Test Functions | Algorithms | Number of Function Calls (Computation Cost) | Number of Pareto Optimal Solutions | Performance Indicators | |
---|---|---|---|---|---|
TEST2 | NSGA-II | 45 | 10 | 0.2217 | 0.7720 |
NSGA-II | 900 | 30 | 0.0073 | 0.6671 | |
PSP | 45 | 21 | 0.0103 | 0.7650 | |
Proposed algorithm | 45 | 14 | 0.0073 | 0.6049 | |
KUR | NSGA-II | 245 | 19 | 0.0376 | 0.6324 |
NSGA-II | 1400 | 36 | 0.0119 | 0.4101 | |
PSP | 245 | 57 | 0.0194 | 0.9750 | |
Proposed algorithm | 245 | 44 | 0.0094 | 0.6231 | |
ZDT3 | NSGA-II | 200 | 13 | 0.0592 | 0.8834 |
NSGA-II | 1200 | 40 | 0.0024 | 0.7244 | |
PSP | 200 | 25 | 0.0290 | 0.7967 | |
Proposed algorithm | 200 | 56 | 0.0014 | 0.8307 |
Items | Initial Design | Single Objective Optimization Result [40] | Multi-Objective Optimization Results | ||
---|---|---|---|---|---|
A | B | C | |||
Design Variables | |||||
Initial pressure of breaking spring (N) | 1261 | 1200 | 1200 | 1200 | 1200 |
Stiffness of breaking spring (N/m) | 100833 | 166328 | 166328 | 166328 | 166328 |
Inner radius of PM (mm) | 74 | 75 | 75 | 75 | 75 |
PM thickness (mm) | 8 | 4 | 4 | 4 | 4 |
PM height (mm) | 26 | 27 | 27 | 27 | 27 |
Movable core thickness (mm) | 31 | 29.5 | 26.6 | 27.1 | 26.6 |
Coil frame height (mm) | 62 | 65 | 65.3 | 67 | 65.2 |
Initial voltage of capacitor (V) | 400 | 350 | 371 | 366 | 350 |
Capacitance (mF) | 90 | 60 | 71 | 60 | 60 |
Closing coil turns | 735 | 607 | 626 | 594 | 577 |
Performances | |||||
PM holding force (N) | 14240 | 17867 | 17867 | 17867 | 17867 |
PM volume (mm3) | 101940 | 52474 | 52474 | 52474 | 52474 |
Average velocity of opening (m/s) | 2.70 | 3.20 | 3.21 | 3.21 | 3.21 |
Terminal velocity of opening (m/s) | 3.63 | 4.37 | 4.39 | 4.38 | 4.39 |
Average velocity of closing (m/s) | 2.39 | 2.11 | 2.14 | 2.21 | 2.13 |
Terminal velocity of closing (m/s) | 2.82 | 0.61 | 0.25 | 0.28 | 0.56 |
Energy consumption of closing (J) | 1096 | 1313 | 1620 | 1358 | 1255 |
Volume of the driving part (mm3) | 5057964 | 4976408 | 4214224 | 4265613 | 4212952 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, J.; Lin, H.; Fang, S. Multi-Objective Optimization of a Permanent Magnet Actuator for High Voltage Vacuum Circuit Breaker Based on Adaptive Surrogate Modeling Technique. Energies 2019, 12, 4695. https://doi.org/10.3390/en12244695
Jiang J, Lin H, Fang S. Multi-Objective Optimization of a Permanent Magnet Actuator for High Voltage Vacuum Circuit Breaker Based on Adaptive Surrogate Modeling Technique. Energies. 2019; 12(24):4695. https://doi.org/10.3390/en12244695
Chicago/Turabian StyleJiang, Jiaming, Heyun Lin, and Shuhua Fang. 2019. "Multi-Objective Optimization of a Permanent Magnet Actuator for High Voltage Vacuum Circuit Breaker Based on Adaptive Surrogate Modeling Technique" Energies 12, no. 24: 4695. https://doi.org/10.3390/en12244695
APA StyleJiang, J., Lin, H., & Fang, S. (2019). Multi-Objective Optimization of a Permanent Magnet Actuator for High Voltage Vacuum Circuit Breaker Based on Adaptive Surrogate Modeling Technique. Energies, 12(24), 4695. https://doi.org/10.3390/en12244695