# Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Problem Statement

## 3. Community Power Controller at the Microgrid Level

## 4. Robust Model Predictive Control

#### 4.1. Fuzzy Prediction Interval Model

#### 4.2. Deterministic EMS

#### 4.3. Robust EMS with Explicit Uncertainty Compensation

## 5. Case Study

#### 5.1. Fuzzy Prediction Interval for Net Power of the Microgrid

#### 5.2. Hierarchical EMS Results

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## Abbreviations

EMS | Energy management system |

MPC | Model predictive control |

DNO | Distribution network operator |

DER | Distributed energy resource |

DG | Distributed generation |

DN | Distribution network |

ESS | Energy storage system |

SoC | State of charge |

PICP | Prediction interval coverage probability |

PINAW | Prediction interval normalized average width |

RMSE | Root mean square error |

MAE | Mean absolute error |

EFC | Equivalent full cycles |

LPSP | Loss of power supply probability |

LF | Load Factor |

LLF | Load loss factor |

MPD | Maximum power derivative |

APD | Average power derivative |

## Appendix A. Performance Indices for the Power Profile of the Main Grid

## References

- Padhi, P.P.; Pati, R.K.; Nimje, A.A. Distributed generation: Impacts and cost analysis. Int. J. Power Syst. Oper. Energy Manag.
**2012**, 1, 91–96. [Google Scholar] - Hidalgo, R.; Abbey, C.; Joós, G. A review of active distribution networks enabling technologies. In Proceedings of the IEEE PES General Meeting, Providence, RI, USA, 25–29 July 2010; pp. 1–9. [Google Scholar] [CrossRef]
- Abapour, S.; Zare, K.; Mohammadi-Ivatloo, B. Dynamic planning of distributed generation units in active distribution network. IET Gener. Transm. Distrib.
**2015**, 9, 1455–1463. [Google Scholar] [CrossRef] - Palizban, O.; Kauhaniemi, K.; Guerrero, J.M. Microgrids in active network management—Part II: System operation, power quality and protection. Renew. Sustain. Energy Rev.
**2014**, 36, 440–451. [Google Scholar] [CrossRef] - Mirzania, P.; Andrews, D.; Ford, A.; Maidment, G. Community Energy in the UK: The End or the Beginning of a Brighter Future? In Proceedings of the 1st International Conference on Energy Research and Social Science, Sitges, Spain, 5–7 April 2017. [Google Scholar]
- Lefroy, J. Local Electricity Bill. Available online: https://powerforpeople.org.uk/wp-content/uploads/2019/03/Local-Electricity-Bill.pdf (accessed on 3 October 2019).
- Fazeli, A.; Sumner, M.; Johnson, M.C.; Christopher, E. Real-time deterministic power flow control through dispatch of distributed energy resources. IET Gener. Transm. Distrib.
**2015**, 9, 2724–2735. [Google Scholar] [CrossRef] - Daud, A.K.; Ismail, M.S. Design of isolated hybrid systems minimizing costs and pollutant emissions. Renew. Energy
**2012**, 44, 215–224. [Google Scholar] [CrossRef] - Hosseinzadeh, M.; Salmasi, F.R. Power management of an isolated hybrid AC/DC microgrid with fuzzy control of battery banks. IET Renew. Power Gener.
**2015**, 9, 484–493. [Google Scholar] [CrossRef] - Arcos-Aviles, D.; Pascual, J.; Marroyo, L.; Sanchis, P.; Guinjoan, F. Fuzzy Logic-Based Energy Management System Design for Residential Grid-Connected Microgrids. IEEE Trans. Smart Grid
**2018**, 9, 530–543. [Google Scholar] [CrossRef] - Davies, R.; Sumner, M.; Christopher, E. Energy storage control for a small community microgrid. In Proceedings of the 7th IET International Conference on Power Electronics, Machines and Drives, Manchester, UK, 8–10 April 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Silvente, J.; Kopanos, G.M.; Pistikopoulos, E.N.; Espuña, A. A rolling horizon optimization framework for the simultaneous energy supply and demand planning in microgrids. Appl. Energy
**2015**, 155, 485–501. [Google Scholar] [CrossRef] - Palma-Behnke, R.; Benavides, C.; Lanas, F.; Severino, B.; Reyes, L.; Llanos, J.; Sáez, D. A Microgrid Energy Management System Based on the Rolling Horizon Strategy. IEEE Trans. Smart Grid
**2013**, 4, 996–1006. [Google Scholar] [CrossRef] - Parisio, A.; Rikos, E.; Glielmo, L. A Model Predictive Control Approach to Microgrid Operation Optimization. IEEE Trans. Control Syst. Technol.
**2014**, 22, 1813–1827. [Google Scholar] [CrossRef] - Olivares, D.E.; Cañizares, C.A.; Kazerani, M. A Centralized Energy Management System for Isolated Microgrids. IEEE Trans. Smart Grid
**2014**, 5, 1864–1875. [Google Scholar] [CrossRef] - Ji, Z.; Huang, X.; Xu, C.; Sun, H. Accelerated Model Predictive Control for Electric Vehicle Integrated Microgrid Energy Management: A Hybrid Robust and Stochastic Approach. Energies
**2016**, 9, 973. [Google Scholar] [CrossRef] - Li, Z.; Zang, C.; Zeng, P.; Yu, H. Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty. Energies
**2016**, 9, 499. [Google Scholar] [CrossRef] - Brandstetter, M.; Schirrer, A.; Miletić, M.; Henein, S.; Kozek, M.; Kupzog, F. Hierarchical Predictive Load Control in Smart Grids. IEEE Trans. Smart Grid
**2017**, 8, 190–199. [Google Scholar] [CrossRef] - Shayeghi, H.; Shahryari, E.; Moradzadeh, M.; Siano, P. A Survey on Microgrid Energy Management Considering Flexible Energy Sources. Energies
**2019**, 12, 2156. [Google Scholar] [CrossRef] - Lara, J.D.; Olivares, D.E.; Cañizares, C.A. Robust Energy Management of Isolated Microgrids. IEEE Syst. J.
**2018**, 1–12. [Google Scholar] [CrossRef] - Wu, W.; Chen, J.; Zhang, B.; Sun, H. A Robust Wind Power Optimization Method for Look-Ahead Power Dispatch. IEEE Trans. Sustain. Energy
**2014**, 5, 507–515. [Google Scholar] [CrossRef] - Khodaei, A. Provisional Microgrids. IEEE Trans. Smart Grid
**2015**, 6, 1107–1115. [Google Scholar] [CrossRef] - Yi, J.; Lyons, P.F.; Davison, P.J.; Wang, P.; Taylor, P.C. Robust Scheduling Scheme for Energy Storage to Facilitate High Penetration of Renewables. IEEE Trans. Sustain. Energy
**2016**, 7, 797–807. [Google Scholar] [CrossRef] - Malysz, P.; Sirouspour, S.; Emadi, A. An Optimal Energy Storage Control Strategy for Grid-connected Microgrids. IEEE Trans. Smart Grid
**2014**, 5, 1785–1796. [Google Scholar] [CrossRef] - Valencia, F.; Collado, J.; Sáez, D.; Marín, L.G. Robust Energy Management System for a Microgrid Based on a Fuzzy Prediction Interval Model. IEEE Trans. Smart Grid
**2016**, 7, 1486–1494. [Google Scholar] [CrossRef] - Du, Y.; Pei, W.; Chen, N.; Ge, X.; Xiao, H. Real-time microgrid economic dispatch based on model predictive control strategy. J. Mod. Power Syst. Clean Energy
**2017**, 5, 787–796. [Google Scholar] [CrossRef] - Zhang, Y.; Fu, L.; Zhu, W.; Bao, X.; Liu, C. Robust model predictive control for optimal energy management of island microgrids with uncertainties. Energy
**2018**, 164, 1229–1241. [Google Scholar] [CrossRef] - Velarde, P.; Maestre, J.M.; Ocampo-Martinez, C.; Bordons, C. Application of robust model predictive control to a renewable hydrogen-based microgrid. In Proceedings of the 2016 European Control Conference (ECC), Aalborg, Denmark, 29 June–1 July 2016; pp. 1209–1214. [Google Scholar] [CrossRef]
- Pereira, M.; de la Peña, D.M.; Limon, D. Robust economic model predictive control of a community micro-grid. Renew. Energy
**2017**, 100, 3–17. [Google Scholar] [CrossRef] - Fazeli, A.; Sumner, M.; Christopher, E.; Johnson, M. Power flow control for power and voltage management in future smart energy communities. In Proceedings of the 3rd Renewable Power Generation Conference, Naples, Italy, 24–25 September 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Elkazaz, M.; Sumner, M.; Thomas, D. Real-Time Energy Management for a Small Scale PV-Battery Microgrid: Modeling, Design, and Experimental Verification. Energies
**2019**, 12, 2712. [Google Scholar] [CrossRef] - Plett, G.L. High-performance battery-pack power estimation using a dynamic cell model. IEEE Trans. Veh. Technol.
**2004**, 53, 1586–1593. [Google Scholar] [CrossRef] - Sun, F.; Xiong, R.; He, H.; Li, W.; Aussems, J.E. Model-based dynamic multi-parameter method for peak power estimation of lithium–ion batteries. Appl. Energy
**2012**, 96, 378–386. [Google Scholar] [CrossRef] - Pérez, A.; Moreno, R.; Moreira, R.; Orchard, M.; Strbac, G. Effect of Battery Degradation on Multi-Service Portfolios of Energy Storage. IEEE Trans. Sustain. Energy
**2016**, 7, 1718–1729. [Google Scholar] [CrossRef] - Der Merwe, R.V.; Wan, E.A. The square-root unscented Kalman filter for state and parameter-estimation. In Proceedings of the 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, Salt Lake City, UT, USA, 7–11 May 2001; Volume 6, pp. 3461–3464. [Google Scholar] [CrossRef]
- Tampier, C.; Pérez, A.; Jaramillo, F.; Quintero, V.; Orchard, M.; Silva, J. Lithium-ion battery end-of-discharge time estimation and prognosis based on Bayesian algorithms and outer feedback correction loops: A comparative analysis. In Proceedings of the Annual Conference of the Prognostics and Health Management Society, San Diego, CA, USA, 18–24 October 2015; Volume 6, pp. 182–195. [Google Scholar]
- Burgos, C.; Sáez, D.; Orchard, M.E.; Cárdenas, R. Fuzzy modelling for the state-of-charge estimation of lead-acid batteries. J. Power Sources
**2015**, 274, 355–366. [Google Scholar] [CrossRef] - Pola, D.A.; Navarrete, H.F.; Orchard, M.E.; Rabié, R.S.; Cerda, M.A.; Olivares, B.E.; Silva, J.F.; Espinoza, P.A.; Pérez, A. Particle-Filtering-Based Discharge Time Prognosis for Lithium-Ion Batteries with a Statistical Characterization of Use Profiles. IEEE Trans. Reliab.
**2015**, 64, 710–720. [Google Scholar] [CrossRef] - Sáez, D.; Ávila, F.; Olivares, D.; Cañizares, C.; Marín, L. Fuzzy Prediction Interval Models for Forecasting Renewable Resources and Loads in Microgrids. IEEE Trans. Smart Grid
**2015**, 6, 548–556. [Google Scholar] [CrossRef] - Sáez, D.; Zuniga, R. Cluster optimization for Takagi & Sugeno fuzzy models and its application to a combined cycle power plant boiler. In Proceedings of the 2004 American Control Conference, Boston, MA, USA, 30 June–2 July 2004; Volume 2, pp. 1776–1781. [Google Scholar] [CrossRef]
- Babuška, R. Fuzzy Modeling for Control, 1st ed.; Kluwer Academic Publishers: Boston, MA, USA, 1998; p. 288. [Google Scholar] [CrossRef]
- Kouvaritakis, B.; Cannon, M. Model Predictive Control: Classical, Robust and Stochastic, 1st ed.; Springer: Berlin, Germany, 2016; p. 384. [Google Scholar] [CrossRef]
- Goulart, P.J.; Kerrigan, E.C.; Maciejowski, J.M. Optimization over state feedback policies for robust control with constraints. Automatica
**2006**, 42, 523–533. [Google Scholar] [CrossRef] [Green Version] - Kouvaritakis, B.; Cannon, M.; Muñoz-Carpintero, D. Efficient prediction strategies for disturbance compensation in stochastic MPC. Int. J. Syst. Sci.
**2013**, 44, 1344–1353. [Google Scholar] [CrossRef] - Richardson, I.; Thomson, M. One-Minute Resolution Domestic Electricity Use Data, 2008–2009. Colch. Essex UK Data Arch.
**2010**. [Google Scholar] [CrossRef] - Green Energy UK. Tide—A New Way to Take Control; Green Energy UK: Ware, UK; Available online: https://www.greenenergyuk.com/Tide (accessed on 3 October 2019).
- Pascual, J.; Barricarte, J.; Sanchis, P.; Marroyo, L. Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting. Appl. Energy
**2015**, 158, 12–25. [Google Scholar] [CrossRef] - Parra, D.; Norman, S.A.; Walker, G.S.; Gillott, M. Optimum community energy storage for renewable energy and demand load management. Appl. Energy
**2017**, 200, 358–369. [Google Scholar] [CrossRef] - Zahboune, H.; Zouggar, S.; Krajacic, G.; Varbanov, P.S.; Elhafyani, M.; Ziani, E. Optimal hybrid renewable energy design in autonomous system using Modified Electric System Cascade Analysis and Homer software. Energy Convers. Manag.
**2016**, 126, 909–922. [Google Scholar] [CrossRef] - Bilal, B.O.; Sambou, V.; Ndiaye, P.A.; Kébé, C.M.F.; Ndongo, M. Multi-objective design of PV-wind-batteries hybrid systems by minimizing the annualized cost system and the loss of power supply probability (LPSP). In Proceedings of the 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, South Africa, 25–28 Feburary 2013; pp. 861–868. [Google Scholar] [CrossRef]

**Figure 4.**Performance of the proposed hierarchical EMS: (

**a**) Deterministic approach; (

**b**) Robust approach.

Hours | 00:00–06:00 | 06:00–16:00 | 16:00–19:00 | 19:00–23:00 | 23:00–24:00 |
---|---|---|---|---|---|

Energy Cost | 5 p/kWh | 12 p/kWh | 25 p/kWh | 12 p/kWh | 5 p/kWh |

**Table 2.**Performance indices of fuzzy prediction interval model. MAE: mean absolute error; PICP: prediction interval coverage probability; PINAW: prediction interval normalized average width; RMSE: root mean square error.

Performance Indices | Prediction Horizon | ||
---|---|---|---|

One Hour Ahead | Six Hours Ahead | One Day Ahead | |

RMSE (kW) | 4.5136 | 5.0471 | 5.1974 |

MAE (kW) | 3.2995 | 3.7316 | 3.7530 |

PINAW (%) | 22.73 | 27.62 | 28.02 |

PICP (%) | 88.22 | 89.79 | 89.83 |

**Table 3.**Performance indices during a simulation of one-week duration. EFC: equivalent full cycles; LPSP: loss of power supply probability.

EMS Strategy | Cost | RMSE | EFC | LPSP |
---|---|---|---|---|

(£) | (kW) | Cycles | (%) | |

Deterministic EMS | 168.01 | 1.22 | 6.40 | 3.780 |

Robust EMS | 165.28 | 1.14 | 6.07 | 2.927 |

EMS Strategy | C1 | C2 | C3 |
---|---|---|---|

(kWh) | (kWh) | (kWh) | |

Deterministic | 990.361 | 934.338 | 25.483 |

Robust | 994.081 | 931.231 | 15.321 |

**Table 5.**Quality indexes for the power profile of the main grid. APD: average power derivative; LF: load factor; LLF: load loss factor; MPD: maximum power derivative.

EMS Strategy | LF | LLF | ${\mathit{P}}^{+}$ | ${\mathit{P}}^{-}$ | MPD | APD |
---|---|---|---|---|---|---|

(kW) | (kW) | (kW/min) | (kW/min) | |||

Deterministic | 0.3869 | 0.2452 | 30.00 | 0 | 29.63 | 0.1889 |

Robust | 0.4459 | 0.2880 | 25.90 | 0 | 22.48 | 0.1318 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Marín, L.G.; Sumner, M.; Muñoz-Carpintero, D.; Köbrich, D.; Pholboon, S.; Sáez, D.; Núñez, A.
Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control. *Energies* **2019**, *12*, 4453.
https://doi.org/10.3390/en12234453

**AMA Style**

Marín LG, Sumner M, Muñoz-Carpintero D, Köbrich D, Pholboon S, Sáez D, Núñez A.
Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control. *Energies*. 2019; 12(23):4453.
https://doi.org/10.3390/en12234453

**Chicago/Turabian Style**

Marín, Luis Gabriel, Mark Sumner, Diego Muñoz-Carpintero, Daniel Köbrich, Seksak Pholboon, Doris Sáez, and Alfredo Núñez.
2019. "Hierarchical Energy Management System for Microgrid Operation Based on Robust Model Predictive Control" *Energies* 12, no. 23: 4453.
https://doi.org/10.3390/en12234453