Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System
Abstract
:1. Introduction
2. Experimental Methodology
3. Results and Discussion
3.1. Velocity Attenuation Characteristic
3.2. Positive Phase Pressure Function
3.3. Pressure Decay Characteristic
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Weir, P.; Edwards, J.H. Mechanical loading and Cardox revolutionize an old mine. Coal Age 1928, 33, 288–290. [Google Scholar]
- Lu, T.K.; Wang, Z.F.; Yang, H.M.; Yuan, P.J.; Han, Y.B.; Sun, X.M. Improvement of coal seam gas drainage by under-panel cross-strata stimulation using highly pressurized gas. Int. J. Rock Mech. Min. Sci. 2015, 77, 300–312. [Google Scholar] [CrossRef]
- Wilson, H.H. Coal augers: Development and application underground. Trans. Inst. Min. Eng. 1954, 113, 524–539. [Google Scholar]
- Clairet, J. Use of Cardox in coal mining in Sarre. Rev. Industrie Miner. 1952, 33, 846–854. [Google Scholar]
- Yang, X.; Wen, G.; Sun, H.; Li, X.; Lu, T.; Dai, L.; Cao, J.; Li, L. Environmentally friendly techniques for high gas content thick coal seam stimulation—multi-discharge CO2 fracturing system. J. Nat. Gas Sci. Eng. 2019, 61, 71–82. [Google Scholar] [CrossRef]
- Ke, B.; Zhou, K.; Xu, C.; Ren, G.; Jiang, T. Thermodynamic properties and explosion energy analysis of carbon dioxide blasting systems. Min. Technol. 2019, 128, 39–50. [Google Scholar] [CrossRef]
- Vidanovic, N.; Ognjanovic, S.; Ilincic, N.; Ilic, N.; Tokalic, R. Application of unconventional methods of underground premises construction in coal mines. Tech. Technol. Educ. Manag. 2011, 6, 861–865. [Google Scholar]
- Pantovic, R.; Milic, V.; Stojadinovic, S. Consideration of possibilities for application of CARDOX method in purpose of improvement of coal fragmentation. Proceedings of IOC 2002: 34 th International October Conference on Mining and Metallurgy, Bor Lake, Yugoslavia, 30 September–3 October 2002; pp. 131–135. [Google Scholar]
- Zou, D.; Panawalage, S. Passive and Triggered Explosion Barriers in Underground Coal Mines—A Literature Review of Recent Research; Natural Resources Canada: Ottawa, ON, Canada, 2001. [Google Scholar]
- Zhang, W.; Zhang, D.; Wang, H.; Cheng, J. Comprehensive Technical Support for High-Quality Anthracite Production: A Case Study in the Xinqiao Coal Mine, Yongxia Mining Area, China. Minerals 2015, 5, 919–935. [Google Scholar] [CrossRef]
- Pesch, R.; Robertson, A. Drilling and Blasting for Underground Space. In Proceedings of the EXPLO Conference, Wollongong, Australia, 3–4 September 2007; pp. 189–193. [Google Scholar]
- Tampekis, S.; Samara, F.; Sakellariou, S.; Sfougaris, A.; Christopoulou, O. An eco-efficient and economical optimum evaluation technique for the forest road networks: The case of the mountainous forest of Metsovo, Greece. Environ. Monit. Assess. 2018, 190, 134. [Google Scholar] [CrossRef]
- Parsakhoo, A.; Lotfalian, M. Demolition agent selection for rock breaking in mountain region of hyrcanian forests. Res. J. Environ. Sci. 2009, 3, 384–391. [Google Scholar] [CrossRef]
- Bajpayee, T.; Rehak, T.; Mowrey, G.; Ingram, D. Blasting injuries in surface mining with emphasis on flyrock and blast area security. J. Saf. Res. 2004, 35, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Durga, S.; Swetha, R. Disaster Prevention and Control Management. Procedia Earth Planet. Sci. 2015, 11, 516–523. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.D.; Wang, Z.F.; Chen, X.E.; Chen, X.J.; Wang, L.G. Increasing permeability of coal seams using the phase energy of liquid carbon dioxide. J. CO2 Util. 2017, 19, 112–119. [Google Scholar] [CrossRef]
- He, W.R.; He, F.L.; Zhang, K.; Zhao, Y.Q.; Zhu, H.Z. Increasing Permeability of Coal Seam and Improving Gas Drainage Using a Liquid Carbon Dioxide Phase Transition Explosive Technology. Adv. Civ. Eng. 2018. [Google Scholar] [CrossRef]
- Kang, J.H.; Zhou, F.B.; Qiang, Z.Y.; Zhu, S.J. Evaluation of gas drainage and coal permeability improvement with liquid CO2 gasification blasting. Adv. Mech. Eng. 2018, 10, 15. [Google Scholar] [CrossRef]
- Wang, Z.F.; Sun, X.M.; Lu, T.K.; Han, Y.B. Experiment Research on Strengthening Gas Drainage Effect with Fracturing Technique by Liquid CO2 Phase Transition. J. Henan Polytech. Univ. 2015, 34, 1–5. (In Chinese) [Google Scholar]
- Zhao, L.P. Technology of Liquid Carbon Dioxide Deep Hole Blasting Enhancing Permeability in Coal Seam. Saf. Coal Mines 2013, 44, 76–78. (In Chinese) [Google Scholar]
- Huo, Z.G. New Technology of Carbon Dioxide Fracturer Applied to Deep Borehole Pre-Cracking Blasting for Seam Permeability Improvement. Coal Sci. Technol. 2015, 43, 80–83. (In Chinese) [Google Scholar]
- Dong, Q.X. , Wang, Z.F.; Han, Y.B., Sun, X.M. Research on TNT Equivalent of Liquid CO2 Phase–Transition Fracturing. China Saf. Sci. J. 2014, 24, 84–88. (In Chinese) [Google Scholar]
- Span, R.; Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 1996, 25, 1509–1596. [Google Scholar] [CrossRef]
- Davies, B.; Hawkes, I. The Mechanics of Blasting Strata Using the Cardox and Air Blasting Systems; Toothill Press: London, UK, 1984; pp. 461–467. [Google Scholar]
- Zhang, Y.; Deng, J.; Ke, B.; Deng, H.; Li, J. Experimental Study on Explosion Pressure and Rock Breaking Characteristics under Liquid Carbon Dioxide Blasting. Adv. Civ. Eng. 2018, 2018, 9. [Google Scholar] [CrossRef]
- Zhang, Y.A.; Deng, J.R.; Deng, H.W.; Ke, B. Peridynamics simulation of rock fracturing under liquid carbon dioxide blasting. Int. J. Damage Mech. 2019, 28, 1038–1052. [Google Scholar] [CrossRef]
- Hu, G.Z.; He, W.R.; Sun, M. Enhancing coal seam gas using liquid CO2 phase-transition blasting with cross-measure borehole. J. Nat. Gas Sci. Eng. 2018, 60, 164–173. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.W.; Zhu, Z.J.; Ren, T.X.; Cao, C.; Zhu, F.; Li, Y.P. A new shock-wave test apparatus for liquid CO2 blasting and measurement analysis. Trans. Inst. Meas. Control 2019, 52, 399–408. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, K.L.; Lei, Y.; Zhang, B.L. Evolutionary Features in Damage and Destruction of Gas-Rich Coal Seam by CO2 Phase-transition Blasting. Ekoloji 2018, 27, 1605–1613. [Google Scholar]
- Zhu, W.C.; Gai, D.; Wei, C.H.; Li, S.G. High-pressure air blasting experiments on concrete and implications for enhanced coal gas drainage. J. Nat. Gas Sci. Eng. 2016, 36, 1253–1263. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Xin, L.; Wang, T.; Wang, J. Simulation research on law of coal fracture caused by supercritical CO2 explosion. J. China Univ. Min. Technol. 2017, 46, 501–506. [Google Scholar]
- Gao, F.; Leihu, T.; Zhou, K.-P.; Yanan, Z.; Ke, B. Mechanism Analysis of Liquid Carbon Dioxide Phase Transition for Fracturing Rock Masses. Energies 2018, 11, 2909. [Google Scholar] [CrossRef]
- Zhou, Y. Study on the Mechanism and Damage Effect of CO2 Boiling Liquid Expanding Vapor Explosion in CO2 Flooding; Beijing Institute of Technology: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Papanicolaou, P.N.; List, E.J. Investigations of round vertical turbulent buoyant jets. J. Fluid Mech. 1988, 195, 341–391. [Google Scholar] [CrossRef]
- Persson, P.-A.; Holmberg, R.; Lee, J. Rock Blasting and Explosives Engineering; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Kinney, G.F.; Graham, K.J. Explosive Shocks in Air, 2nd ed.; Springer Science & Business Media: Berlin, Germany, 2013; pp. 18–49. [Google Scholar]
Serial Number | Type | Range/MPa |
---|---|---|
A | MYD-8432C | 250 |
B(C) | MYD-8432E | 40 |
D | MYD-8432F | 10 |
E | MYD-8432G | 5 |
F | MYD-8432H | 1 |
G | MYD-8432H | 1 |
H | MYD-8432H | 1 |
I | MYD-8432I | 0.5 |
J | MYD-8432J | 0.2 |
K | MYD-8432K | 0.1 |
Number | Start/s | R2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.25 | 9.60 | 5.64 | 0.00828 | 0.01722 | 0.01899 | 0.03992 | 0.06800 | 0.076 | 0.195 | 0.867 |
2 | 0.36 | 5.49 | 3.72 | 0.00622 | 0.0129 | 0.01644 | 0.02524 | 0.05028 | 0.053 | 0.104 | 0.985 |
3 | 0.14 | 9.32 | 9.26 | 0.00618 | 0.01291 | 0.01404 | 0.02672 | 0.04502 | 0.039 | 0.230 | 0.922 |
4 | 0.30 | 9.15 | 5.7 | 0.0046 | 0.01276 | 0.01835 | 0.03420 | 0.04294 | 0.114 | 0.189 | 0.819 |
Test Values /MPa | Theoretical Calculation Values /MPa | ||
---|---|---|---|
0.23 | 0.741 | 8.653 | 5.866 |
0.6 | 1.934 | 1.515 | 0.884 |
0.9 | 2.900 | 0.683 | 0.439 |
1.2 | 3.867 | 0.492 | 0.276 |
1.5 | 4.834 | 0.419 | 0.196 |
1.8 | 5.801 | 0.294 | 0.150 |
2 | 6.445 | 0.190 | 0.129 |
2.5 | 8.057 | 0.142 | 0.095 |
3 | 9.668 | 0.023 | 0.075 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ke, B.; Zhou, K.; Ren, G.; Shi, J.; Zhang, Y. Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System. Energies 2019, 12, 4134. https://doi.org/10.3390/en12214134
Ke B, Zhou K, Ren G, Shi J, Zhang Y. Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System. Energies. 2019; 12(21):4134. https://doi.org/10.3390/en12214134
Chicago/Turabian StyleKe, Bo, Keping Zhou, Gaofeng Ren, Ji Shi, and Yanan Zhang. 2019. "Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System" Energies 12, no. 21: 4134. https://doi.org/10.3390/en12214134
APA StyleKe, B., Zhou, K., Ren, G., Shi, J., & Zhang, Y. (2019). Positive Phase Pressure Function and Pressure Attenuation Characteristic of a Liquid Carbon Dioxide Blasting System. Energies, 12(21), 4134. https://doi.org/10.3390/en12214134