# Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

_{2}emission [1]. Such a problematic requires new alternative technologies to create energy in environment-friendly ways and, considering the increasing demand for global energy, society has a greater environmental responsibility to develop green technologies. Under the electrical power market expansion, the most rapidly developed sector is wind energy [2].

## 2. DFIG Control

_{s}and I

_{r}are the stator and the rotor currents, respectively. Additionally, according to Figure 2, the stator and the rotor voltage can be written as:

#### 2.1. DFIG Control Strategy

_{m,MPPT}by the following equation:

#### 2.2. Grid-Side Converter Regulation Using PR regulators

## 3. Grid Code (Output Current Limitation)

## 4. Digital Real-Time Simulation of the RSC

_{DC}= 800 V) is simulated with the MATLAB/Simulink environment, and secondly, the dSPACE blocks are added to the system in order to run in the digital real-time simulator. The generator parameters are given in Table 1.

## 5. Controller Hardware-in-the-Loop Simulation for the Grid-Side Converter

## 6. Conclusions

## Author Contributions

## Funding

## Conflicts of Interest

## References

- Shafiee, S.; Topal, E. When will fossil fuel reserves be diminished? Energy Policy
**2009**, 37, 181–189. [Google Scholar] [CrossRef] - Lucas, H.; Pinnington, S.; Cabeza, L.F. Education and training gaps in the renewable energy sector. Sol. Energy
**2018**, 173, 449–455. [Google Scholar] [CrossRef] - Bubshait, A.S.; Mortezaei, A.; Simoes, M.G.; Busarello, T.D.C. Power Quality Enhancement for a Grid Connected Wind Turbine Energy System. IEEE Trans. Ind. Appl.
**2017**, 53, 2495–2505. [Google Scholar] [CrossRef] - Zhong, H.; Xia, Q.; Chen, Y.; Kang, C. Energy-saving generation dispatch toward a sustainable electric power industry in China. Energy Policy
**2015**, 83, 14–25. [Google Scholar] [CrossRef] - Varaiya, P.P.; Wu, F.F.; Bialek, J.W. Smart Operation of Smart Grid: Risk-Limiting Dispatch. Proc. IEEE
**2011**, 99, 40–57. [Google Scholar] [CrossRef] - Alsmadi, Y.M.; Xu, L.; Blaabjerg, F.; Ortega, A.J.P.; Abdelaziz, A.Y.; Wang, A.; Albataineh, Z. Detailed Investigation and Performance Improvement of the Dynamic Behavior of Grid-Connected DFIG-Based Wind Turbines Under LVRT Conditions. IEEE Trans. Ind. Appl.
**2018**, 54, 4795–4812. [Google Scholar] [CrossRef] - Chabani, M.S.; Benchouia, M.T.; Golea, A.; Boumaaraf, R. Implementation of direct stator voltage control of stand-alone DFIG-based wind energy conversion system. In Proceedings of the 2017 5th International Conference on Electrical Engineering—Boumerdes (ICEE-B), Boumerdes, Algeria, 29–31 October 2017; pp. 1–6. [Google Scholar]
- Awedni, O.; Masmoudi, A.; Krichen, L. Power Control of DFIG-Based Wind Farm for System Frequency Support. In Proceedings of the 2018 15th International Multi-Conference on Systems, Signals & Devices (SSD), Hammamet, Tunisia, 19–22 March 2018; pp. 1298–1304. [Google Scholar]
- El Karkri, Y.; El Markhi, H.; El Moussaou, H.; Lamhamdi, T. LVRT and HVRT control strategies of Doubly-Fed Induction Generator. J. Electr. Syst.
**2018**, 14, 1–20. [Google Scholar] - Li, G.H.; Zhang, B.H.; Hao, Z.G.; Wang, J.; Bo, Z.Q.; Writer, D.; Yip, T. Modeling of DFIG based wind generator and transient characteristics analysis. In Proceedings of the 2011 10th International Conference on Environment and Electrical Engineering, Rome, Italy, 8–11 May 2011; pp. 1–4. [Google Scholar]
- Lei, T.; Ozakturk, M.; Barnes, M. Modelling and analysis of DFIG wind turbine system in PSCAD/EMTDC. In Proceedings of the 6th IET International Conference on Power Electronics, Machines and Drives (PEMD 2012), Bristol, UK, 27–29 March 2012; p. 13. [Google Scholar]
- Piya, P.; Ebrahimi, M.; Karimi-Ghartemani, M.; Khajehoddin, S.A. Fault Ride-Through Capability of Voltage-Controlled Inverters. IEEE Trans. Ind. Electron.
**2018**, 65, 7933–7943. [Google Scholar] [CrossRef] - Massmann, J.; Erlinghagen, P.; Schnettler, A. Impact of Distributed Generation’s Fault Ride Through Strategies on System Stability in the Transmission Grid. In Proceedings of the 2018 Power Systems Computation Conference (PSCC), Dublin, Ireland, 11–15 June 2018; pp. 1–8. [Google Scholar]
- Rauf, A.M.; Khadkikar, V.; El Moursi, M.S. A New Fault Ride-Through (FRT) Topology for Induction Generator Based Wind Energy Conversion Systems. IEEE Trans. Power Deliv.
**2019**, 34, 1129–1137. [Google Scholar] [CrossRef] - Li, W.; Chao, P.; Liang, X.; Sun, Y.; Qi, J.; Chang, X. Modeling of complete fault ride-through processes for DFIG-Based wind turbines. Renew. Energy
**2018**, 118, 1001–1014. [Google Scholar] [CrossRef] - Institution of Engineering and Technology; Papathanassiou, S. IET Renewable Power Generation; Institution of Engineering and Technology: Stevenage, UK, 2007; Volume 3. [Google Scholar]
- El Makrini, A.; El Karkri, Y.; Boukhriss, Y.; El Markhi, H.; El Moussaoui, H. Control Strategy of DFIG Based Wind Turbines Combined the Active and Passive Protections. Int. J. Renew. Energy Res.
**2017**, 7, 1258–1269. [Google Scholar] - Cao, P.; Shu, H.; Yang, B.; An, N.; Qiu, D.; Teng, W.; Dong, J.; Cao, P.; Shu, H.; Yang, B.; et al. Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China. Energies
**2018**, 11, 593. [Google Scholar] [CrossRef] - Ayodele, T.; Jimoh, A.; Munda, J.; Agee, J. Challenges of Grid Integration of Wind Power on Power System Grid Integrity: A Review. Int. J. Renew. Energy Res.
**2012**, 2, 618–626. [Google Scholar] - Firouzi, M.; Gharehpetian, G.B. LVRT Performance Enhancement of DFIG-Based Wind Farms by Capacitive Bridge-Type Fault Current Limiter. IEEE Trans. Sustain. Energy
**2018**, 9, 1118–1125. [Google Scholar] [CrossRef] - Gholizadeh, M.; Tohidi, S.; Oraee, A.; Oraee, H. Appropriate crowbar protection for improvement of brushless DFIG LVRT during asymmetrical voltage dips. Int. J. Electr. Power Energy Syst.
**2018**, 95, 1–10. [Google Scholar] [CrossRef] - El Karkri, Y.; El Markhi, H.; Lamhamdi, T.; El Moussaoui, H. A comparison between Series Dynamic Resistors and CROWBAR circuit protection for LVRT capability of Doubly-Fed Induction Generator. IOP Conf. Ser. Earth Environ. Sci.
**2018**, 161, 12012. [Google Scholar] [CrossRef] - Li, S.; Haskew, T.A.; Williams, K.A.; Swatloski, R.P. Control of DFIG Wind Turbine With Direct-Current Vector Control Configuration. IEEE Trans. Sustain. Energy
**2012**, 3, 1–11. [Google Scholar] [CrossRef] - Sidi, Y.E.; Ben, M.; El, H.; Sidi, M.; Karkri, E.L.; El Karkri, Y.; El Markhi, H.; El Moussaou, H.; Lamhamdi, T. LVRT and HVRT control strategies of DoublyFed Induction Generator Grid integration of renewable energy sources View project Wind turbine integration View project. J. Electr. Syst.
**2018**, 14, 1–20. [Google Scholar] - Li, S.; Haskew, T.A. Analysis of Decoupled d-q Vector Control in DFIG Back-to-Back PWM Converter. In Proceedings of the 2007 IEEE Power Engineering Society General Meeting, Tampa, FL, USA, 24–28 June 2007; pp. 1–7. [Google Scholar]
- Li, S.-Y.; Sun, Y.; Wu, T.; Liang, Y.-Z.; Yu, X.; Zhang, J.-M. Analysis of Low Voltage Ride through Capability in Wind Turbine Based on DFIG. In Proceedings of the 2010 International Conference on Electrical and Control Engineering, Wuhan, China, 25–27 June 2010; pp. 3331–3334. [Google Scholar]
- Chowdhury, M.A.; Hosseinzadeh, N.; Billah, M.M.; Haque, S.A. Dynamic DFIG wind farm model with an aggregation technique. In Proceedings of the International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka, Bangladesh, 18–20 December 2010; pp. 330–333. [Google Scholar]
- Bian, X.; Tse, C.T.; Chung, C.Y.; Wang, K.W. Dynamic modeling of large scale power system with FACTS and DFIG type wind turbine. In Proceedings of the The 2nd International Symposium on Power Electronics for Distributed Generation Systems, Hefei, China, 16–18 June 2010; pp. 753–758. [Google Scholar]
- Joo, I.W.; Song, H.S.; Nam, K. Source-voltage-sensorless scheme for PWM rectifier under voltage unbalance condition. In Proceedings of the 4th IEEE International Conference on Power Electronics and Drive Systems. IEEE PEDS 2001—Indonesia. Proceedings (Cat. No.01TH8594), Denpasar, Indonesia, 25 October 2001; Volume 1, pp. 33–38. [Google Scholar]
- Song, H.S.; Nam, K. Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Trans. Ind. Electron.
**1999**, 46, 953–959. [Google Scholar] [CrossRef] - Xu, L. Coordinated Control of DFIG’s Rotor and Grid Side Converters During Network Unbalance. IEEE Trans. Power Electron.
**2008**, 23, 1041–1049. [Google Scholar] - Xu, L.; Andersen, B.R.; Cartwright, P. VSC Transmission Operating Under Unbalanced AC Conditions—Analysis and Control Design. IEEE Trans. Power Deliv.
**2005**, 20, 427–434. [Google Scholar] [CrossRef] - Etxeberria-Otadui, I.; Lopez De Heredia, A.; Gaztanaga, H.; Bacha, S.; Reyero, M.R. A Single Synchronous Frame Hybrid (SSFH) Multifrequency Controller for Power Active Filters. IEEE Trans. Ind. Electron.
**2006**, 53, 1640–1648. [Google Scholar] [CrossRef] - Etxeberria-Otadui, I.; Viscarret, U.; Caballero, M.; Rufer, A.; Bacha, S. New Optimized PWM VSC Control Structures and Strategies Under Unbalanced Voltage Transients. IEEE Trans. Ind. Electron.
**2007**, 54, 2902–2914. [Google Scholar] [CrossRef] - Liserre, M.; Teodorescu, R.; Blaabjerg, F. Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current controller in a rotating frame. IEEE Trans. Power Electron.
**2006**, 21, 836–841. [Google Scholar] [CrossRef] - Hu, J.; He, Y.; Nian, H. Enhanced control of DFIG-used back-to-back PWM VSC under unbalanced grid voltage conditions. J. Zhejiang Univ. Sci. A
**2007**, 8, 1330–1339. [Google Scholar] [CrossRef] - Chomat, M. Extended vector control of doubly fed machine under unbalanced power network conditions. In Proceedings of the International Conference on Power Electronics Machines and Drives, Sante Fe, NM, USA, 4–7 June 2002; Volume 2002, pp. 329–334. [Google Scholar]
- Iwanski, G.; Koczara, W. Sensorless direct voltage control method for stand-alone slip-ring induction generator. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005; p. 10. [Google Scholar]
- Martinez-Rodrigo, F.; Ramirez, D.; Rey-Boue, A.B.; De Pablo, S.; Herrero-De Lucas, L.C. Modular multilevel converters: Control and applications. Energies
**2017**, 10, 1709. [Google Scholar] [CrossRef] - Limongi, L.R.; Bojoi, R.; Griva, G.; Tenconi, A. Digital current-control schemes. IEEE Ind. Electron. Mag.
**2009**, 3, 20–31. [Google Scholar] [CrossRef][Green Version] - Jaalam, N.; Rahim, N.A.; Bakar, A.H.A.; Eid, B.M. Strategy to enhance the low-voltage ride-through in photovoltaic system during multi-mode transition. Sol. Energy
**2017**, 153, 744–754. [Google Scholar] [CrossRef] - Sefa, I.; Altin, N.; Ozdemir, S.; Demirtas, M. dSPACE based control of voltage source utility interactive inverter. In Proceedings of the 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Ischia, Italy, 11–13 June 2008; pp. 662–666. [Google Scholar]
- Liao, Y.; Li, H.; Yao, J.; Zhuang, K. Operation and control of a grid-connected DFIG-based wind turbine with series grid-side converter during network unbalance. Electr. Power Syst. Res.
**2011**, 81, 228–236. [Google Scholar] [CrossRef] - Hamon, C. Doubly-fed Induction Generator Modeling and Control in DigSilent Power Factory. In Proceedings of the 2010 International Conference on Power System Technology, Hangzhou, China, 24–28 October 2010. [Google Scholar]
- Baros, S.; Ilic, M. Robust ectropy-based cooperative control of a wind DFIG for transient stabilization and MPPT. In Proceedings of the 2015 IEEE Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015; pp. 1–5. [Google Scholar]
- Rey-Boué, A.B.; Martinez-Rodrigo, F.; Guerrero-Rodríguez, N.F.; Herrero-de Lucas, L.C.; de Pablo, S. Enhanced controller for grid-connected modular multilevel converters in distorted utility grids. Electr. Power Syst. Res.
**2018**, 163, 310–327. [Google Scholar] [CrossRef] - Gulur, S.; Iyer, V.M.; Bhattacharya, S. Proportional integral—Resonant and dual loop current control structure comparison for grid connected converters in the rotating frame. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 1617–1623. [Google Scholar]
- Zhang, N.; Tang, H.; Yao, C.; Zhang, N.; Tang, H.; Yao, C. A Systematic Method for Designing a PR Controller and Active Damping of the LCL Filter for Single-Phase Grid-Connected PV Inverters. Energies
**2014**, 7, 3934–3954. [Google Scholar] [CrossRef] - Afshari, E.; Moradi, G.R.; Rahimi, R.; Farhangi, B.; Yang, Y.; Blaabjerg, F.; Farhangi, S. Control Strategy for Three-Phase Grid-Connected PV Inverters Enabling Current Limitation Under Unbalanced Faults. IEEE Trans. Ind. Electron.
**2017**, 64, 8908–8918. [Google Scholar] [CrossRef] - Guerrero-Rodríguez, N.F.; Herrero-de Lucas, L.C.; de Pablo-Gómez, S.; Rey-Boué, A.B. Performance study of a synchronization algorithm for a 3-phase photovoltaic grid-connected system under harmonic distortions and unbalances. Electr. Power Syst. Res.
**2014**, 116, 252–265. [Google Scholar] [CrossRef] - Gómez, E.; Fuentes, J.A.; Molina-García, A.; Ruz, F.; Jiménez, F. Field tests of wind turbines submitted to real voltage dips under the new Spanish grid code requirements. Wind Energy
**2007**, 10, 483–495. [Google Scholar] [CrossRef] - Santos-Martin, D.; Alonso-Martinez, J.; Eloy-Garcia Carrasco, J.; Arnaltes, S. Problem-Based Learning in Wind Energy Using Virtual and Real Setups. IEEE Trans. Educ.
**2012**, 55, 126–134. [Google Scholar] [CrossRef] - Liu, C.; Chen, B.; Cheng, M.; Champagne, A.; Patel, K. Model Integration and Hardware-in-the-Loop (HiL) Simulation Design for the Testing of Electric Power Steering Controllers. SAE Tech. Pap.
**2016**. [Google Scholar] [CrossRef] - Chun, T.W.; Choi, M.G.; Kim, K.M. A programmable low-pass filter based stator flux calculation for a direct vector control of induction motor. In Proceedings of the Proceedings Third Russian-Korean International Symposium on Science and Technology. KORUS’99 (Cat. No.99EX362), Novosibirsk, Russia, 22–25 June 1999; Volume 2, pp. 722–726. [Google Scholar]
- Lemaire, M.; Sicard, P.; Belanger, J. Prototyping and Testing Power Electronics Systems Using Controller Hardware-In-the-Loop (HIL) and Power Hardware-In-the-Loop (PHIL) Simulations. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), Montreal, QC, Canada, 19–22 October 2015; pp. 1–6. [Google Scholar]

**Figure 8.**(

**a**) LVRT requirements according to IEC 61400-21 and (

**b**) Spanish grid code requirements for the reactive power [49].

**Figure 10.**DRTS of the RSC control for wind speed (

**a**), rotor speed (

**b**), rotor current (

**c**), and electromagnetic torque (

**d**).

**Figure 12.**Simulation results of the proposed LVRT strategy for a symmetrical voltage sag of 0.1 pu under a full nominal power.

**Figure 13.**Simulation results of the LVRT proposed strategy for a symmetrical voltage sag of 0.1 pu under a half nominal power.

**Figure 14.**Simulation results of the proposed LVRT strategy for a symmetrical voltage sag of 0.3 pu under a full nominal power.

**Figure 15.**Simulation results of the proposed LVRT strategy for symmetrical voltage sag of 0.3 pu under a half nominal power.

**Figure 16.**Simulation results of the proposed LVRT strategy for an asymmetrical voltage sag of 0.1 pu under a full nominal power.

**Figure 17.**Simulation results of the proposed LVRT strategy for an asymmetrical voltage sag of 0.1 pu under a half nominal power.

**Figure 18.**Simulation results of the proposed LVRT strategy for an asymmetrical voltage sag of 0.5 pu under a full nominal power.

**Figure 19.**Simulation results of the proposed LVRT strategy for an asymmetrical voltage sag of 0.5 pu under a half nominal power.

DFIG System Parameters | |
---|---|

Rated Power | 2 MW |

Rated speed | 1500 tr/min |

Frequency | 50 Hz |

Grid voltage | 400 V (line-to-line) |

DC bus voltage | 800 V |

Stator resistance and inductance | 0.0026 Ω, 8.7e^{−2} mH |

Rotor resistance and inductance | 0.0029 Ω, 2.6 mH |

Mutual inductance | 0.0025 H |

Proportional constant of PI current regulator | 0.5771 |

Integral constant of PI current regulator | 491.5995 |

Power Parameters of the GSC | |
---|---|

Nominal DC voltage | V_{DC} = 800 V |

Switching frequency | f_{sw} = 24,416 Hz |

Line inductance | L = 0.15 mH |

AC system | Voltage amplitude V_{RST}: 400 V(rms) (line-to-line)Nominal frequency: 50 Hz |

Control Subsystem Parameters | |
---|---|

Constants of the proportional-resonant (PR) current regulators in α-β axes | k_{p,Iαβ} = 0.0011k _{i,Iαβ} = 0.1 |

Resonant and cut-off frequencies | ω_{o} = 314.16 rad/sω _{c} = 1 rad/s |

Constants of the proportional-integral (PI) voltage regulator | k_{p,VDC} = 3977.5k _{i,VDC} = 152,110 |

Sample times of the power and control subsystems | ${T}_{s}$ = 5.1196 μs ${T}_{reg}$ = 40.957 μs |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

El Karkri, Y.; Rey-Boué, A.B.; El Moussaoui, H.; Stöckl, J.; Strasser, T.I. Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid. *Energies* **2019**, *12*, 4041.
https://doi.org/10.3390/en12214041

**AMA Style**

El Karkri Y, Rey-Boué AB, El Moussaoui H, Stöckl J, Strasser TI. Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid. *Energies*. 2019; 12(21):4041.
https://doi.org/10.3390/en12214041

**Chicago/Turabian Style**

El Karkri, Yassir, Alexis B. Rey-Boué, Hassan El Moussaoui, Johannes Stöckl, and Thomas I. Strasser. 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid" *Energies* 12, no. 21: 4041.
https://doi.org/10.3390/en12214041