Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants
Abstract
:1. Introduction
- (i)
- The mathematical model of the CSP plant was established for the economic dispatch. Moreover, the physical constraints of energy storage are incorporated in the CSP modeling.
- (ii)
- The AGC constraints for the CSP plant are strictly modeled, where the regulating and spanning reserves are split into two parts according to the charging and discharging characteristics.
- (iii)
- To address the uncertainty from renewable energy, a robust scheduling model for the CSP plant is further proposed with participation in market reserve and AGC regulation.
2. Modeling of the CSP Plant
2.1. Structure of CSP Plants
2.2. Physical Constraints of CSP Plants
3. Robust Economic Scheduling Model Considering CSP Plant and Renewable Energy
3.1. Power Balance Constraints
3.2. Transmission Line Limit Constraints
3.3. Constraints for Spanning and Regulating Reserves
3.4. Constraints for Traditional Non-AGC Thermal Units
3.5. Constraints for Traditional AGC Thermal Units
3.6. Constraints for CSP Power Plants
4. Numerical Results
4.1. Benefit Analysis of CSP Plants
4.2. Comparison of Traditional and Robust Economic Dispatch Models
4.3. Analysis of CSP Participating in the Ancillary Market
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Boeraeve, F.V.J. The Potential of Primary Forestry Residues as a Bioenergy Source the Technical and Environmental Constraints. Master’s Thesis, Utrecht University, Utrecht, The Netherlands, 2013. [Google Scholar]
- Lu, R.; Ding, T.; Qin, B.; Ma, J.; Bo, R.; Dong, Z.Y. Reliability Based Min–Max Regret Stochastic Optimization Model for Capacity Market with Renewable Energy and Practice in China. IEEE Trans. Sustain. Energy 2019, 10, 2065–2074. [Google Scholar] [CrossRef]
- Kinjo, T.; Senjyu, T.; Urasaki, N.; Fujita, H. Output Levelling of Renewable Energy by Electric Double-Layer Capacitor Applied for Energy Storage System. IEEE Trans. Energy Convers. 2006, 21, 221–227. [Google Scholar] [CrossRef]
- Ding, T.; Yang, Q.; Liu, X.; Huang, C.; Yang, Y.; Wang, M.; Blaabjerg, F. Duality-Free Decomposition Based Data-Driven Stochastic Security-Constrained Unit Commitment. IEEE Trans. Sustain. Energy 2019, 10, 82–93. [Google Scholar] [CrossRef]
- Lu, H.; Wang, C.; Li, Q.; Wiser, R.; Porter, K. Reducing wind power curtailment in China: Comparing the roles of coal power flexibility and improved dispatch. Clim. Policy 2019, 19, 623–635. [Google Scholar] [CrossRef]
- Li, Y.; Wei, L.; Chi, Y.; Wang, Z.; Zhang, Z. Study on the key factors of regional power grid renewable energy accommodating capability. In Proceedings of the IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Xi’an, China, 25–28 October 2016; pp. 790–794. [Google Scholar]
- Bie, Z.; Ding, T.; Wu, Z.; Lv, J.; Zhang, X. Robust Co-Optimization to Energy and Ancillary Service Joint Dispatch Considering Wind Power Uncertainties in Real-Time Electricity Markets. IEEE Trans. Sustain. Energy 2016, 7, 1547–1557. [Google Scholar]
- Thirugnanasambandam, M.; Iniyan, S.; Goic, R. A review of solar thermal technologies. Renew. Sustain. Energy Rev. 2010, 14, 312–322. [Google Scholar] [CrossRef]
- Sun, J.; Shi, M. Numerical Simulation of Electric-Thermal Performance of a Solar Concentrating Photovoltaic/Thermal System. In Proceedings of the Asia-Pacific Power and Energy Engineering Conference, Wuhan, China, 27–31 March 2009; pp. 1–4. [Google Scholar]
- van Voorthuysen, E.H.M. The promising perspective of concentrating solar power (CSP). In Proceedings of the International Conference on Future Power Systems, Amsterdam, The Netherlands, 18 November 2005; pp. 1–7. [Google Scholar]
- Noor, N.; Muneer, S. Concentrating Solar Power (CSP) and its prospect in Bangladesh. In Proceedings of the 1st International Conference on the Developements in Renewable Energy Technology (ICDRET), Dhaka, Bangladesh, 17–19 December 2009; pp. 1–5. [Google Scholar]
- Neves, D.; Silva, C.A. Optimal electricity dispatch on isolated mini-grids using a demand response strategy for thermal storage backup with genetic algorithms. Energy 2015, 82, 436–445. [Google Scholar] [CrossRef]
- Machinda, G.T.; Arscott, R.; Chowdhury, S.P.; Kibaara, S. Concentrating Solar Thermal Power Technologies: A review. In Proceedings of the Annual IEEE India Conference, Hyderabad, India, 16–18 December 2011; pp. 1–6. [Google Scholar]
- Boukelia, T.E.; Mecibah, M.S.; Meliche, I.E. Design, optimization and feasibility study of parabolic trough solar thermal power plant with integrated thermal energy storage and backup system for Algerian conditions. In Proceedings of the 3rd International Symposium on Environmental Friendly Energies and Applications (EFEA), St. Ouen, France, 19–21 November 2014; pp. 1–5. [Google Scholar]
- Dario, P.; Daisuke, T. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chem. Rev. 2018, 118, 8983–9057. [Google Scholar]
- Nitti, A.; Bianchi, G.; Po, R.; Swager, T.M.; Pasini, D. Domino Direct Arylation and Cross-Aldol for Rapid Construction of Extended Polycyclic π-Scaffolds. J. Am. Chem. Soc. 2017, 139, 8788–8791. [Google Scholar] [CrossRef]
- Nitti, A.; Signorile, M.; Boiocchi, M.; Bianchi, G.; Po, R.; Pasini, D. Conjugated Thiophene-Fused Isatin Dyes through Intramolecular Direct Arylation. J. Org. Chem. 2016, 81, 11035–11042. [Google Scholar] [CrossRef]
- Llamas, J.; Bullejos, D.; Barranco, V.; de Adana, M.R. World location as associated factor for optimal operation model of Parabolic trough Concentrating Solar Thermal Power plants. In Proceedings of the IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence, Italy, 7–10 June 2016; pp. 1–6. [Google Scholar]
- Cot-Gores, J.; Castell, A.; Cabeza, L.F. Thermochemical energy storage and conversion: A-state-of-the-art review of the experimental research under practical conditions. Renew. Sustain. Energy Rev. 2012, 16, 5207–5224. [Google Scholar] [CrossRef]
- Colomer, G.; Chiva, J.; Lehmkuhl, O.; Oliva, A. Advanced Multiphysics Modeling of Solar Tower Receivers Using Object-oriented Software and High Performance Computing Platforms. Energy Procedia 2015, 69, 1231–1240. [Google Scholar] [CrossRef] [Green Version]
- Sharma, C.; Sharma, A.K.; Mullick, S.C.; Kandpal, T.C. A study of the effect of design parameters on the performance of linear solar concentrator based thermal power plants in India. Renew. Energy 2016, 87, 666–675. [Google Scholar] [CrossRef]
- Martinek, J.; Jorgenson, J.; Mehos, M.; Denholm, P. A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants. Appl. Energy 2018, 231, 854–865. [Google Scholar] [CrossRef]
- Ding, T.; Xu, Y.; Yang, Y.; Li, Z.; Zhang, X.; Blaabjerg, F. A Tight Linear Program for Feasibility Check and Solutions to Natural Gas Flow Equations. IEEE Trans. Power Syst. 2019, 34, 2441–2444. [Google Scholar] [CrossRef]
- Ding, T.; Bai, J.; Du, P.; Qin, B.; Li, F.; Ma, J.; Dong, Z.Y. Rectangle Packing Problem for Battery Charging Dispatch Considering Uninterrupted Discrete Charging Rate. IEEE Trans. Power Syst. 2019, 34, 2472–2475. [Google Scholar] [CrossRef]
- García, I.L.; Alvarez, J.L.; Blanco, D. Performance model for parabolic trough solar thermal power plants with thermal storage: Comparison to operating plant data. Sol. Energy 2011, 85, 2443–2460. [Google Scholar] [CrossRef]
- Lianjun, S.; Ming, Z.; Fan, Y.; Kuo, T. Economic Dispatch Model Considering Randomness and Environmental Benefits of Wind Power. In Proceedings of the International Conference on Electrical and Control Engineering, Wuhan, China, 25–27 June 2010; pp. 3676–3679. [Google Scholar]
- Vasallo, M.J.; Bravo, J.M. A novel two-model based approach for optimal scheduling in CSP plants. Sol. Energy 2016, 126, 73–92. [Google Scholar] [CrossRef]
- Pousinho, H.; Silva, H.; Mendes, V.; Collares-Pereira, M.; Cabrita, C.P. Self-scheduling for energy and spinning reserve of wind/CSP plants by a MILP approach. Energy 2014, 78, 524–534. [Google Scholar] [CrossRef]
- Pousinho HM, I.; Contreras, J.; Pinson, P.; Mendes, V.M. Robust optimization for self-scheduling and bidding strategies of hybrid CSP –fossil power plants. Int. J. Electr. Power Energy Syst. 2015, 67, 639–650. [Google Scholar] [CrossRef]
- Santos-Alamillos, F.; Pozo-Vazquez, D.; Ruiz-Arias, J.A.; Von Bremen, L.; Tovar-Pescador, J. Combining wind farms with concentrating solar plants to provide stable renewable power. Renew. Energy 2015, 76, 539–550. [Google Scholar] [CrossRef]
- Usaola, J. Participation of CSP plants in the reserve markets: A new challenge for regulators. Energy Policy 2012, 49, 562–571. [Google Scholar] [CrossRef]
- Nonnenmacher, L.; Kaur, A.; Coimbra, C.F. Day-ahead resource forecasting for concentrated solar power integration. Renew. Energy 2016, 86, 866–876. [Google Scholar] [CrossRef]
- He, G.; Chen, Q.; Kang, C.; Xia, Q. Optimal Offering Strategy for Concentrating Solar Power Plants in Joint Energy, Reserve and Regulation Markets. IEEE Trans. Sustain. Energy 2016, 7, 1245–1254. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P. The Value of Concentrating Solar Power and Thermal Energy Storage. IEEE Trans. Sustain. Energy 2010, 1, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Sioshansi, R.; Denholm, P. Benefits of colocating concentrating solarpower and wind. IEEE Trans. Sustain. Energy 2013, 4, 877–885. [Google Scholar] [CrossRef]
- Chen, R.; Sun, H.; Guo, Q.; Li, Z.; Deng, T.; Wu, W.; Zhang, B. Reducing Generation Uncertainty by Integrating CSP With Wind Power: An Adaptive Robust Optimization-Based Analysis. IEEE Trans. Sustain. Energy 2015, 6, 583–594. [Google Scholar] [CrossRef]
- Narimani, A.; Abeygunawardana, A.; Khoo, B.; Maistry, L.; Ledwich, G.F.; Walker, G.R.; Nourbakhsh, G. Energy and ancillary services value of CSP with thermal energy storage in the Australian national electricity market. In Proceedings of the IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar]
- Fernández, A.G.; Gomez-Vidal, J.; Oró, E.; Kruizenga, A.; Solé, A.; Cabeza, L.F. Mainstreaming commercial CSP systems: A technology review. Renew. Energy 2019, 140, 152–176. [Google Scholar] [CrossRef]
- Pavlović, T.M.; Radonjic, I.S.; Milosavljević, D.D.; Pantic, L.S. A review of concentrating solar power plants in the world and their potential use in Serbia. Renew. Sustain. Energy Rev. 2012, 16, 3891–3902. [Google Scholar] [CrossRef]
- Bayrak, F.; Abu-Hamdeh, N.; Alnefaie, K.A.; Öztop, H.F. A review on exergy analysis of solar electricity production. Renew. Sustain. Energy Rev. 2017, 74, 755–770. [Google Scholar] [CrossRef]
- Ding, T.; Bo, R.; Li, F.; Guo, Q.; Sun, H.; Gu, W.; Zhou, G. Interval Power Flow Analysis Using Linear Relaxation and Optimality-Based Bounds Tightening (OBBT) Methods. IEEE Trans. Power Syst. 2015, 30, 177–188. [Google Scholar] [CrossRef]
- Ding, T.; Bo, R.; Sun, H.; Li, F.; Guo, Q. A Robust Two-Level Coordinated Static Voltage Security Region for Centrally Integrated Wind Farms. IEEE Trans. Smart Grid 2016, 7, 460–470. [Google Scholar] [CrossRef]
- Ding, T.; Liu, S.; Yuan, W.; Bie, Z.; Zeng, B. A Two-Stage Robust Reactive Power Optimization Considering Uncertain Wind Power Integration in Active Distribution Networks. IEEE Trans. Sustain. Energy 2016, 7, 301–311. [Google Scholar] [CrossRef]
- Ding, T.; Yang, Q.; Yang, Y.; Li, C.; Bie, Z.; Blaabjerg, F. A Data-Driven Stochastic Reactive Power Optimization Considering Uncertainties in Active Distribution Networks and Decomposition Method. IEEE Trans. Smart Grid 2018, 9, 4994–5004. [Google Scholar] [CrossRef]
Symbol | Value | Symbol | Value |
---|---|---|---|
/ | 90% | / | 150 MW/h |
1200/MWh | 80% | ||
15% |
Generator | Bus # | |||||
---|---|---|---|---|---|---|
G1 | 1 | 0.02 | 2 | 0 | 1 | 0.4 |
G2 | 2 | 0.0175 | 1.75 | 0 | 0.875 | 0.35 |
G3 | 13 | 0.0652 | 1 | 0 | 0.5 | 0.2 |
G4 | 22 | 0.0824 | 3.25 | 0 | 1.625 | 0.65 |
G5 | 23 | 0.025 | 3 | 0 | 1.5 | 0.6 |
G6 | 27 | 0.025 | 3 | 0 | 1.5 | 0.6 |
Case | Thermal Generation (×103 MWh) | Thermal Generation Cost ($) | Reserve Cost ($) | Total Generation Cost ($) | PV Generation (×103 MWh) |
---|---|---|---|---|---|
1 | 4.736 | 14,349.2 | 2556.3 | 15,905.5 | 0 |
2 | 3.555 | 11,123.6 | 2571.5 | 13,695.1 | 1.181 |
3 | 3.583 | 10,074.1 | 1395.6 | 11,469.1 | 1.153 |
Model | Thermal Power Generation (×103 MWh) | CSP Power Generation (×103 MWh) | Total Generation Cost ($) | Replacement Cost ($) | AGC Total Cost ($) |
---|---|---|---|---|---|
General Dispatch | 3.625 | 1.111 | 10,224.3 | 396.8 | - |
Robust Dispatch | 3.640 | 1.096 | 10,269.4 | 609.4 | 377.9 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, J.; Ding, T.; Wang, Z.; Chen, J. Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants. Energies 2019, 12, 3832. https://doi.org/10.3390/en12203832
Bai J, Ding T, Wang Z, Chen J. Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants. Energies. 2019; 12(20):3832. https://doi.org/10.3390/en12203832
Chicago/Turabian StyleBai, Jiawen, Tao Ding, Zhe Wang, and Jianhua Chen. 2019. "Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants" Energies 12, no. 20: 3832. https://doi.org/10.3390/en12203832
APA StyleBai, J., Ding, T., Wang, Z., & Chen, J. (2019). Day-Ahead Robust Economic Dispatch Considering Renewable Energy and Concentrated Solar Power Plants. Energies, 12(20), 3832. https://doi.org/10.3390/en12203832