Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield
Abstract
1. Introduction
2. Material and Methods
2.1. Experimental Site and Field Operations
2.2. Lab Scale Anaerobic Digestion System and Experimental Setup
- Test 1: 2.5 kg of inoculum, 0.5 kg of water, 0.3 kg of fresh grass;
- Test 2: 2.5 kg of inoculum, 0.7 kg of water, 0.1 kg of dry grass;
- Test 3: 2.5 kg of inoculum, 0.5 kg of water, 0.3 kg of ensiled grass.
3. Results and Discussion
3.1. Characteristics of the Feedstocks
3.2. Biogas Quality
3.3. Biogas and Biomethane Yield
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amon, T.; Amon, B.; Kryvoruchko, V.; Machmüller, A.; Hopfner-Sixt, K.; Bodiroza, V.; Hrbek, R.; Friedel, J.; Pötsch, E.; Wagentristl, H.; et al. Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour. Technol. 2007, 98, 3204–3212. [Google Scholar] [CrossRef] [PubMed]
- Appels, L.; Lauwers, J.; Degrève, J.; Helsen, L.; Lievens, B.; Willems, K.; Van Impe, J.; Dewil, R. Anaerobic digestion in global bio-energy production: Potential and research challenges. Renew. Sustain. Energy Rev. 2011, 15, 4295–4301. [Google Scholar] [CrossRef]
- Coppolecchia, D.; Gardoni, D.; Baldini, C.; Borgonovo, F.; Guarino, M. The influence on biogas production of three slurry-handling systems in dairy farms. J. Agric. Eng. 2015, 46, 30–35. [Google Scholar] [CrossRef]
- Chiumenti, A.; Boscaro, D.; da Borso, F.; Sartori, L.; Pezzuolo, A. Anaerobic digestion of grass: Effect of the harvesting period on biogas yield. In ASABE Annual International Meeting 2017; Spokane: Washington, DC, USA, 2017. [Google Scholar]
- Da Borso, F.; Chiumenti, A.; Sigura, M.; Pezzuolo, A. Influence of automatic feeding systems on design and management of dairy farms. J. Agric. Eng. 2017, 48, 48–52. [Google Scholar] [CrossRef]
- Chiumenti, A.; da Borso, F.; Limina, S. Dry anaerobic digestion of cow manure and agricultural products in a full-scale plant: Efficiency and comparison with wet fermentation. Waste Manag. 2018, 71, 704–710. [Google Scholar] [CrossRef] [PubMed]
- Diaz, L.F.; Chiumenti, A.; Savage, G.M.; Eggerth, L.L. Managing the Organic fraction of Municipal Solid Waste. BioCycle 2006, 47, 50–54. [Google Scholar]
- Gerin, P.A.; Vliegen, F.; Jossart, J.M. Energy and CO2 balance of maize and grass as energy crops for anaerobic digestion. Bioresour. Technol. 2008, 99, 2620–2627. [Google Scholar] [CrossRef]
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Chiumenti, R.; Chiumenti, A.; da Borso, F.; Limina, S.; Landa, A. Anaerobic Digestion of Swine Manure in Conventional and Hybrid Pilot Scale Plants: Performance and Gaseous Emissions Reduction. In Proceedings of the International Syposium ASABE 2009, Reno, NV, USA, 21–24 June 2009. [Google Scholar]
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the biogas productivity potential of some Italian agro-industrial biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef]
- Boscaro, D.; Pezzuolo, A.; Grigolato, S.; Cavalli, R.; Marinello, F.; Sartori, L. Preliminary analysis on mowing and harvesting grass along riverbanks for the supply of anaerobic digestion plants in north-eastern Italy. J. Agric. Eng. 2015, 46, 100–104. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.; Cascone, G.; Arcidiacono, C. Potential biogas production from agricultural by-products in Sicily. A case study of citrus pulp and olive pomace. J. Agric. Eng. 2017, 48, 196–202. [Google Scholar] [CrossRef]
- Eggerth, L.L.; Diaz, L.F.; Chang, M.T.F.; Iseppi, L. Marketing of composts. Waste Manag. 2007, 8, 325–355. [Google Scholar]
- Blokhina, Y.N.; Prochnow, A.; Plöchl, M.; Luckhaus, C.; Heiermann, M. Concepts and profitability of biogas production from landscape management grass. Bioresour. Technol. 2011, 102, 2086–2092. [Google Scholar] [CrossRef] [PubMed]
- Hansen, C.; Zhong, J.; Hansen, J. Anaerobic digestion of dairy processing waste, algae, and grass in pilot and full scale. Trans. ASABE 2014, 57, 609–614. [Google Scholar]
- Tsapekos, P.; Kougias, P.G.; Egelund, H.; Larsen, U.; Pedersen, J.; Trénel, P.; Angelidaki, I. Improving the energy balance of grass-based anaerobic digestion through combined harvesting and pretreatment. Anaerobe 2017, 46, 131–137. [Google Scholar] [CrossRef]
- Wahid, R.; Feng, L.; Cong, W.; Ward, A.J.; Møller, H.B.; Eriksen, J. Anaerobic mono-digestion of lucerne, grass and forbs—Influence of species and cutting frequency. Biomass Bioenergy 2018, 109, 199–208. [Google Scholar] [CrossRef]
- Bedoić, R.; Čuček, L.; Ćosić, B.; Krajnc, D.; Smoljanić, G.; Kravanja, Z.; Ljubas, D.; Pukšec, T.; Duić, N. Green biomass to biogas—A study on anaerobic digestion of residue grass. J. Clean. Prod. 2019, 213, 700–709. [Google Scholar] [CrossRef]
- Boscaro, D.; Pezzuolo, A.; Sartori, L.; Marinello, F.; Mattioli, A.; Bolzonella, D.; Grigolato, S. Evaluation of the energy and greenhouse gases impacts of grass harvested on riverbanks for feeding anaerobic digestion plants. J. Clean. Prod. 2018, 172, 4099–4109. [Google Scholar] [CrossRef]
- Mattioli, A.; Boscaro, D.; Dalla Venezia, F.; Santacroce, F.C.; Pezzuolo, A.; Sartori, L.; Bolzonella, D. Biogas from residual grass: A territorial approach for sustainable bioenergy production. Waste Biomass Valorization 2017, 8, 2747–2756. [Google Scholar] [CrossRef]
- Pappalardo, S.; Prosdocimi, M.; Tarolli, P.; Borin, M. Assessment of Energy Potential from Wetland Plants along the Minor Channel Network on an Agricultural Floodplain. Environ. Sci. Pollut. Res. 2014, 22, 2479–2490. [Google Scholar] [CrossRef]
- Colantoni, A.; Delfanti, L.; Recanatesi, F.; Tolli, M.; Lord, R. Land use planning for utilizing biomass residues in Tuscia Romana (central Italy): Preliminary results of a multi criteria analysis to create an agro-energy district. Land Use Policy 2016, 50, 125–133. [Google Scholar] [CrossRef]
- Tsapekos, P.; Kougias, P.G.; Egelund, H.; Larsen, U.; Pedersen, J.; Trénel, P.; Angelidaki, I. Mechanical pretreatment at harvesting increases the bioenergy output from marginal land grasses. Renew. Energy 2017, 111, 914–921. [Google Scholar] [CrossRef]
- Hensgen, F.; Richter, F.; Wachendorf, M. Integrated generation of solid fuel and biogas from green cut material from landscape conservation and private households. Bioresour. Technol. 2011, 102, 10441–10450. [Google Scholar] [CrossRef] [PubMed]
- Bishop, G.C.; Burns, R.T.; Shepherd, T.A.; Moody, L.B.; Gooch, C.A.; Spajic, R.; Pronto, J. Evaluation of laboratory biochemical methane potentials as a predictor of anaerobic dairy manure digester biogas and methane production. In Proceedings of the American Society of Agricultural and Biological Engineers Annual International Meeting, Reno, NV, USA, 21–24 June 2009; pp. 5254–5265. [Google Scholar]
- Safferman, S.I.; Kirk, D.M.; Faivor, L.L.; Haan, W.W. Bioremediation and Sustainability: Research and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 103–136. [Google Scholar]
- Ahn, H.K.; Smith, M.C.; Konrad, S.L.; White, J.W. Evaluation of biogas production potential by dry anaerobic digestion of switchgrass-animal manure mixtures. Appl. Biochem. Biotechnol. 2010, 160, 965–975. [Google Scholar] [CrossRef] [PubMed]
- Lehtomäki, A.; Huttunen, S.; Lehtinen, T.M.; Rintala, J.A. Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresour. Technol. 2008, 99, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.W.; Samani, Z.; Hanson, A.; Smith, G. Energy recovery from grass using two-phase anaerobic digestion. Waste Manag. 2002, 22, 1–5. [Google Scholar] [CrossRef]
- Chiumenti, A.; Boscaro, D.; Da Borso, F.; Sartori, L.; Pezzuolo, A. Biogas from fresh spring and summer grass: Effect of the harvesting period. Energies 2018, 11, 1466. [Google Scholar] [CrossRef]
- Baldini, M.; da Borso, F.; Ferfuia, C.; Danuso, F. Ensilage suitability and bio-methane yield of Arundo donax and Miscanthus giganteus. Ind. Crops Prod. 2017, 95, 264–275. [Google Scholar] [CrossRef]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 21th ed.; APHA: Washington, DC, USA, 2005; pp. 5–41. [Google Scholar]
- Lossie, U.; Pütz, P. Targeted control of biogas plants with the help of FOS/TAC. In Practice Report; Hach-Lange: Salford, UK, 2015. [Google Scholar]
- Chiumenti, A.; Pezzuolo, A.; Sartori, L.; Boscaro, D.; da Borso, F. Anaerobic digestion of grass: Effect of drying and ensiling on biogas yield. In 2018 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018. [Google Scholar]
- Jantrania, A.R.; White, R.K. High-solids anaerobic fermentation of poultry manure. In Proceedings of the Fifth International Symposium on Agricultural Waste 1985. ASAE, St. Joseph, MI, USA, 16–17 December 1985; pp. 73–80. [Google Scholar]
- Chiumenti, A. Complete nitrification-denitrification of swine manure in a full-scale, non-conventional composting system. Waste Manag. 2015, 46, 577–587. [Google Scholar] [CrossRef]
- Mulbry, W.; Selmer, K.; Lansing, S. Effect of liquid surface area on hydrogen sulfide oxidation during micro-aeration in dairy manure digesters. PLoS ONE 2017, 12, 0185738. [Google Scholar] [CrossRef]
- Nizami, A.S.; Orozco, A.; Groom, E.; Dieterich, B.; Murphy, J.D. How much gas can we get from grass? Appl. Energy 2012, 92, 783–790. [Google Scholar] [CrossRef]
TS (%) | VS (%TS) | pH | Redox (mV) | Acidity/Alkalinity | TKN (g∙kg−1) | TKN (% TS) | NH4 (g∙kg−1) | NH4 (%TS) | Lignin (%TS) | Cellulose (%TS) | Hemi Cellulose (%TS) | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh Grass | 32.43 ± 2.27 | 79.21 ± 3.15 | n.d | n.d. | n.d. | 10.15 | 3.13 | − | − | 3.93 ± 0.43 | 21.24 ± 1.35 | 23.07 ± 3.32 | ||
Inoculum | 7.85 ± 0.07 | 80.80 ± 0.53 | 8.20 ± 0.06 | −400 ± 2.89 | 0.24 ± 0.01 | 4.19 | 5.34 ± 0.45 | 2.29 | 2.92 ± 0.37 | 12.54 ± 0.90 | 19.62 ± 0.99 | 18.14 ± 1.12 | ||
Input Mix * | 8.90 | 80.27 | n.d | n.d. | n.d. | 4.10 | 4.61 | 2.21 | 2.49 | n.d. | n.d. | n.d. | ||
Dry Grass | 89.08 ± 0.38 | 87.73 ± 0.05 | n.d | n.d. | n.d. | 22.10 | 2.56 | − | − | 4.03 ± 0.43 | 23.76 ± 1.35 | 26.16 ± 3.32 | ||
Inoculum | 8.00 ± 0.07 | 79.77 ± 0.53 | 8.30 ± 0.06 | −395 ± 2.89 | 0.23 ± 0.01 | 4.47 | 5.58 ± 0.45 | 2.57 | 3.22 ± 0.37 | 12.17 ± 0.90 | 18.26 ± 0.99 | 17.03 ± 1.12 | ||
Input Mix * | 8.62 | 78.98 | n.d | n.d. | n.d. | 4.04 | 4.69 | 2.44 | 2.84 | n.d. | n.d. | n.d. | ||
Ensiled Grass | 30.83 | 69.17 | 5.23 | n.d. | n.d. | 7.28 | 2.36 | 1.66 | 0.54 | 4.73 ± 0.43 | 23.34 ± 1.35 | 19.52 ± 3.32 | ||
Inoculum | 8.61 ± 0.07 | 81.19 ± 0.53 | 8.29 ± 0.06 | −400.00 ± 2.89 | 0.22 ± 0.01 | 3.93 | 4.56 ± 0.45 | 2.02 | 2.35 ± 0.37 | 13.50 ± 0.90 | 17.20 ± 0.99 | 15.55 ± 1.12 | ||
Input Mix * | 9.32 | 81.45 | n.d. | n.d. | n.d. | 3.63 | 3.90 | 2.20 | 2.36 | n.d. | n.d. | n.d. |
TS (%) | VS (%TS) | pH | Redox (mV) | Acidity/Alkalinity | TKN (g∙kg−1) | TKN (%TS) | NH4 (g∙kg−1) | NH4 (%TS) | Lignin (%TS) | Cellulose (%TS) | Hemi Cellulose (%TS) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fresh Grass digestate | 6.28 ± 0.09 | 71.79 ± 0.66 | 7.92 ± 0.01 | −397.25 ± 23.53 | 0.15 ± 0.05 | 3.99 | 6.36 ± 0.05 | 2.29 | 3.65 ± 0.10 | 11.69 ± 0.34 | 12.71 ± 0.26 | 13.57 ± 0.46 |
Removal (%) | 294 ± 0.4 | 37.0 ± 0.3 | n.d. | n.d. | n.d. | 2.7 | n.d. | n.d. | n.d. | n.d. | n.d. | n.d. |
Dried Grass digestate | 6.06 ± 0.18 | 76.09 ± 0.35 | 7.8 ± 0.03 | -348.50 ± 16.26 | 0.17 ± 0.06 | 3.30 | 4.69 ± 0.51 | 1.88 | 3.62 ± 0.17 | 12.30 ± 1.33 | 12.70 ± 1.24 | 13.64 ± 0.92 |
Removal (%) | 29.7 ± 0.9 | 32.2 ± 0.2 | n.d. | n.d. | n.d. | 18.3 | n.d. | 23.0 | n.d. | n.d. | n.d. | n.d. |
Ensiled Grass digestate | 6.41 ± 0.23 | 71.45 ± 0.85 | 7.93 ± 0.03 | −384.00 ± 8.19 | 0.19 ± 0.01 | 3.34 | 5.21 ± 0.79 | 1.88 | 3.11 ± 0.49 | 14.35 ± 0.59 | 11.33 ± 0.34 | 12.09 ± 0.89 |
Removal (%) | 31.2 ± 1.1 | 39.7 ± 0.5 | n.d. | n.d. | n.d. | 8.0 | n.d. | 14.5 | n.d. | n.d. | n.d. | n.d. |
Lactic Acid (g∙L−1) | Acetic Acid (g∙L−1) | Propionic Acid (g∙L−1) | Iso-Butyric Acid (g∙L−1) | N-Butyric (g∙L−1) | Iso-Valerianic (g∙L−1) | N-Valerianic (g∙L−1) | Caproic Acid (g∙L−1) | |
---|---|---|---|---|---|---|---|---|
Fresh Grass digestate | − | 0.014 ± 0.004 | 0.0047 ± 0.0042 | − | 0.0004 ± 0.0008 | 0.0035 ± 0.0007 | 0.0040 ± 0.0023 | 0.0002 ± 0.0004 |
Dried Grass digestate | 0.0030 ± 0.0036 | 0.0155 ± 0.0111 | − | - | − | 0.0022 ± 0.0017 | 0.0013 ± 0.0022 | − |
Ensiled Grass digestate | 0.0017 ± 0.0013 | − | − | − | − | 0.0009 ± 0.0011 | 0.0004 ± 0.0007 | 0.0015 ± 0.0031 |
Ensilde Grass (input) | 0.7030 | 1.6397 | 2.7517 | 0.3257 | 3.7353 | 0.1905 | 0.0991 | 0.0750 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiumenti, A.; Pezzuolo, A.; Boscaro, D.; da Borso, F. Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield. Energies 2019, 12, 3244. https://doi.org/10.3390/en12173244
Chiumenti A, Pezzuolo A, Boscaro D, da Borso F. Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield. Energies. 2019; 12(17):3244. https://doi.org/10.3390/en12173244
Chicago/Turabian StyleChiumenti, Alessandro, Andrea Pezzuolo, Davide Boscaro, and Francesco da Borso. 2019. "Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield" Energies 12, no. 17: 3244. https://doi.org/10.3390/en12173244
APA StyleChiumenti, A., Pezzuolo, A., Boscaro, D., & da Borso, F. (2019). Exploitation of Mowed Grass from Green Areas by Means of Anaerobic Digestion: Effects of Grass Conservation Methods (Drying and Ensiling) on Biogas and Biomethane Yield. Energies, 12(17), 3244. https://doi.org/10.3390/en12173244