# Multi-Criteria Approach for Selecting Optimal Dozer Type in Open-Cast Coal Mining

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Method

#### 2.1. The Usage of the Dozers in Open-Cast Mining

- towing capacity (very heavy, heavy, of medium weight, light and very light),
- the strength of the machine (very strong, strong, medium strength, low strength, and very low strength),
- the type of the transportation mechanism (caterpillar, pneumatic),
- the position of the working organ (bulldozers, angle-dozers, tilt-dozers).

#### 2.2. AHP

- Production of a hierarchical model, that is, the structure of the decision-making problem (presented in Figure 2);
- The calculation of the individual priorities of the criteria weight, sub-criteria and alternatives weights, which are afterwards combined into the total priority alternatives;
- Checking the consistency of the decision-maker.

_{max}represents the maximum value of the calculated matrix and is defined using Equation (4) while n is the number of analysed objects.

## 3. Results

- Technical parameters;
- Economic parameters;
- Exploitation parameters;
- Survey parameters.

#### 3.1. Tehnical Parameters (TP)

#### 3.2. Economic Parameters (EcP)

#### 3.3. Exploitation Parameters (ExP)

_{op}, the time of the planned standstill—T

_{ps}, the time of unplanned standstill —T

_{ns}. On the basis of the relevant data, using equation 6, the coefficients of the technical availability of a machine were calculated [35].

#### 3.4. Survey Parameters

#### 3.5. Results of Tehnical Parameters (TP)

_{EP}, TP

_{TT}, TP

_{TF}, TP

_{TU}are weight coefficients of sub-criteria engine power (EP), transmission type (TT), towing force (TF) and undercarriage type (UT) in the group of technical parameters (TP), respectively, and EP

_{n}, TT

_{n}, TF

_{n}, UT

_{n}are weight coefficients for n type of alternative according to sub-criteria engine power (EP), transmission type (TT), towing force (TF) and undercarriage type (UT), respectively. Result of alternative ranking according to technical parameters, are presented in Table 6.

#### 3.6. Results of Economic Parameters (EcP)

#### 3.7. Results of Exploitation Parameters (ExP)

#### 3.8. Results of Survey Parameters (SP)

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Billings, R.; Scherer, L. The Effects of response mode and importance on decision-making strategies: Judgment versus choice. Organ. Behav. Hum. Decis. Process.
**1998**, 41, 1–19. [Google Scholar] [CrossRef] - Keen, P. Decision support systems: The next decade. Decis. Support Syst.
**1987**, 3, 253–265. [Google Scholar] [CrossRef] - Saaty, T.L.; Vargas, L.G. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process; Springer Science & Business Media: New York, NY, USA, 2012; Volume 175. [Google Scholar]
- Mohamadibadi, H.S.; Tichkowsky, G.; Kumar, A. Development of a Multi-Criteria Assessment Model for Ranking of Renewable and Non-Renewable Transportation Fuel Vehicles. Energy
**2009**, 34, 112–125. [Google Scholar] [CrossRef] - Govindan, K.; Jepsen, M.B. ELECTRE: A compehensive literature review on methodologies and applications. Eur. J. Oper. Res.
**2016**, 250, 1–29. [Google Scholar] [CrossRef] - Tsaur, R.C. Decision risk analysis for an interval TOPSIS method. Appl. Math. Comput.
**2011**, 218, 4295–4304. [Google Scholar] [CrossRef] - Gutiérrez, L.; Muñoz-Carpintero, D.; Valencia, F.; Sáez, D. A new method for identification of fuzzy models with controllability constraints. Appl. Soft Comput.
**2018**, 73, 254–262. [Google Scholar] [CrossRef] - Tavana, M.; Di Caprio, D.; Santos-Alteaga, F. An extended stochastic VIKOR model with decision maker’s attitude towards risk. Inf. Sci.
**2018**, 432, 301–318. [Google Scholar] [CrossRef] - Đenadić, S.; Miletić, F.; Kovač, A.; Ivanović, J. Metodologija ocenjivanja parametara dozerske mehanizacije u RB Kolubara. In VI Savetovanje sa Međunarodnim Učešćem Energetika i Rudarstvo; Privredna Komora Srbije: Beograd, Serbia, 2018; pp. 274–283. ISBN 978-86-80420-16-5. [Google Scholar]
- Đenadić, S.; Miletić, F.; Jovančić, P.; Janković, I.; Lazić, M. Analitičko hijerarhijski proces primenjen za selekciju hidrauličnih bagera na površinskim kopovima. In Proceedings of the VIII Međunarodna Konferencija OMC 2018, Zlatibor, Serbia, 17–20 Ocotober 2018; Jugoslovenski Komitet za Površinsku Eksploataciju: Belgrade, Serbia, 2018; pp. 14–22, ISBN 978-86-83497-25-6. [Google Scholar]
- Ristovic, I.; Ignjatovic, D. The Reliability of Dozers on the Open Pits of Lignite in Serbia. In Proceedings of the International Carpathian Control Conference, Podbanske, Slovakia, 23–26 May 2000; pp. 153–158, ISBN 80-7099-510-6. [Google Scholar]
- Ignjatovic, D.; Ristovic, I.; Stojakovic, M. The Methodology of the Selection of Auxiliary Mechanisation for the Open Pit Mines of Llignite. In Proceedings of the Mine Planning and Equipment Selection, Athens, Greece, 6–9 November 2000; pp. 577–581. [Google Scholar]
- Nichols, H.; Day, D. Moving the Earth: The Workbook of Excavation; McGraw-Hill Professional: New York, NY, USA, 1998; pp. 15.27–15.43. [Google Scholar]
- Ignjatović, D. Mašine i Pomoćni Radovi na Površinskim Kopovima; Rudarsko-Geološki Fakultet: Beograd, Serbia, 2017; pp. 60–62. [Google Scholar]
- Ignjatović, D. Rudarske Mašine; Rudarsko-Geološki Fakultet: Beograd, Serbia, 2013; pp. 285–290. [Google Scholar]
- Saaty, T.L. Decision Making: The Analytical Hierarchy Process; Mc-Graw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Maruthur, N.M.; Joy, S.M.; Dolan, G.J.; Shihab, M.H.; Singh, S. Use of the Analytic Hierarchy Process forMedication Decision-Making in Type 2 Diabetes. PLoS ONE
**2015**, 10, e0126625. [Google Scholar] [CrossRef] - Veisi, H.; Liaghati, H.; Alipour, A. Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecol. Indic.
**2016**, 60, 644–654. [Google Scholar] [CrossRef] - Ecer, F. A hybrid banking websites quality evaluation model using AHP and COPRAS-G: A Turkey case. Technol. Econ. Dev. Econ.
**2014**, 20, 758–782. [Google Scholar] [CrossRef] - Mohammed, S.M.Z.; Mohd, A.R.; Singh, M.M. A Secure Mobile App Solution Using Human Behavioral Context and Analytic Hierarchy Process. Procedia Comput. Sci.
**2015**, 72, 434–445. [Google Scholar] [CrossRef] [Green Version] - Kolak, I.O.; Feyzioglu, O.; Noyan, N. Bi-level multi-objective traffic network optimisation with sustainability perspective. Expert Syst. Appl.
**2018**, 104, 294–306. [Google Scholar] [CrossRef] - Sitorus, F.; Ciliers, J.J.; Brito-Parada, P.R. Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends. Expert Syst. Appl.
**2018**, 121, 393–417. [Google Scholar] [CrossRef] - Shen, L.; Muduli, K.; Brave, A. Developing a sustainable development framework in the context of mining industies: AHP approach. Resour. Policy
**2013**, 46, 15–26. [Google Scholar] [CrossRef] - Milisavljević, V.; Medenica, D.; Čokorilo, V.; Ristović, I. New approach to equipment quality evaluation method with distinct functions. Termal. Sci.
**2016**, 20, 743–752. [Google Scholar] [CrossRef] - Stevanović, D.; Lekić, M.; Kržanović, D.; Ristović, I. Application of MCDA in selection of different mining methods and solutions. Res. J.
**2018**, 12, 171–180. [Google Scholar] [CrossRef] - Milentijevíc, G.; Nedeljkovíc, B.; Lekíc, M.; Nikíc, Z.; Ristovíc, I.; Djokíc, J. Application of a Method for Intelligent Multi-Criteria Analysis of the Environmental Impact of Tailing Ponds in Northern Kosovo and Metohija. Energies
**2016**, 9, 935. [Google Scholar] [CrossRef] - Malenovic-Nikolic, J.; Vasovic, D.; Filipovic, I.; Musicki, S.; Ristovic, I. Application of Project Management Process on Environmental Management System Improvement in Mining-Energy Complexes. Energies
**2016**, 9, 1071. [Google Scholar] [CrossRef] - Karimnia, H.; Bagloo, H. Optimum mining method selection using fuzzy analytical hierarchy process-Qapiliq salt mine, Iran. Int. J. Min. Sci. Technol.
**2015**, 25, 225–230. [Google Scholar] [CrossRef] - Saaty, T.L. Decision making with the analytical hierarchy process. Int. J. Serv. Sci.
**2008**, 1, 83–98. [Google Scholar] - Aleksi, I.; Hocenski, Z. Primjena Expert-Choice Alata i AHP Metode za Odabir Virtex-5 FPGA Čipa; Elektrotehnički fakultet sveučilišta: Osijek, Croatia, 2009. [Google Scholar]
- Jamshidi, M.; Ataei, M.; Sereshki, F.; Jalali, S.M.E. The application of AHP approach to select of optimum underground mining method, case study: JAJAM Bauxite mine (IRAN). Arch. Min. Sci.
**2009**, 54, 103–117. [Google Scholar] - Kelić, N.V. Hidroprenosnici; Naučna Knjiga Beograd: Beograd, Serbia, 1989. [Google Scholar]
- Optimizacija organizacije sredstava i troškova pomoćne mehanizacije u cilju povećanja stepena iskorišćenja jalovinskih i ugljenih sistema na površinskim kopovima EPS-a; Rudarsko-Geološki Fakultet: Beograd, Serbia, 2018.
- Jovančić, P. Održavanje Rudarskih Mašina; Rudarsko-Geološki Fakultet: Beograd, Serbia, 2014; pp. 22–25. [Google Scholar]
- Ignjatović, D.; Jovančić, P.; Janković, I.; Đenadić, S.; Miletić, F. Analiza trenda tehničke raspoloživosti buldozera na površinskim kopovima Elektroprivrede Srbije. In Proceedings of the VII Međunarodna konferencija Ugalj, Zlatibor, Serbia, 11–14 October 2017; Jugoslovenski Komitet za Površinsku Eksploataciju: Belgrade, Serbia, 2017; pp. 101–110, ISBN 978-86-83497-24-9. [Google Scholar]

**Figure 4.**The stages in the decision-making process in choosing the optimal type of machine by applying the AHP method.

Manufacturer | Label | Number | % |
---|---|---|---|

Liebherr | PR-752/754 | 3 | 3.85 |

Caterpillar | D8R | 15 | 19.23 |

Dressta | TD25M | 14 | 17.95 |

Shantui | SD32W | 23 | 29.49 |

Other | 23 | 29.48 | |

Total: | 78 | 100 |

The Level of Importance | Numerical Value | Reciprocal Value |
---|---|---|

Absolute priority | 9 | 1/9 (0.111) |

Higher to absolute priority | 8 | 1/8 (0.125) |

Higher priority | 7 | 1/7 (0.143) |

High to higher priority | 6 | 1/6 (0.167) |

High priority | 5 | 1/5 (0.200) |

Moderate to high priority | 4 | 1/4 (0.250) |

Moderate priority | 3 | 1/3 (0.333) |

Equal to moderate priority | 2 | 1/2 (0.500) |

Equal priority | 1 | 1 (1.000) |

n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|

RI | 0.00 | 0.00 | 0.52 | 0.89 | 1.11 | 1.25 | 1.35 | 1.40 | 1.45 | 1.49 |

Criteria | Sub-Criteria | Machines | |||
---|---|---|---|---|---|

Type 1 | Type 2 | Type 3 | Type 4 | ||

Technical parameters | Engine power [kW] | 252 | 250 | 238 | 235 |

Transmission type | Hydrodynamic | Hydrostatic | Hydrodynamic | Hydrodynamic | |

Towing force [kN] | 315 | 292 | 302 | 317 | |

Undercarriage type | Triangular | Flat | Flat | Flat |

Engine Power (EP) | Transmission Type (TT) | ||||||||||

T1 | T2 | T3 | T4 | Weight | T1 | T2 | T3 | T4 | Weight | ||

T1 | 1 | 1 | 2 | 2 | 0.333 | T1 | 1 | ½ | 1 | 1 | 0.200 |

T2 | 1 | 1 | 2 | 2 | 0.333 | T2 | 2 | 1 | 2 | 2 | 0.400 |

T3 | ½ | ½ | 1 | 1 | 0.167 | T3 | 1 | ½ | 1 | 1 | 0.200 |

T4 | ½ | ½ | 1 | 1 | 0.167 | T4 | 1 | ½ | 1 | 1 | 0.200 |

λ_{max} | 4 | λ_{max} | 4 | ||||||||

CI | 0 | CI | 0 | ||||||||

CR | 0 | CR | 0 | ||||||||

Towing Force (TF) | Undercarriage Type (UT) | ||||||||||

T1 | T2 | T3 | T4 | Weight | T1 | T2 | T3 | T4 | Weight | ||

T1 | 1 | 3 | 2 | 1 | 0.351 | T1 | 1 | 2 | 2 | 2 | 0.400 |

T2 | 1/3 | 1 | ½ | 1/3 | 0.109 | T2 | ½ | 1 | 1 | 1 | 0.200 |

T3 | ½ | 2 | 1 | ½ | 0.189 | T3 | ½ | 1 | 1 | 1 | 0.200 |

T4 | 1 | 3 | 2 | 1 | 0.351 | T4 | ½ | 1 | 1 | 1 | 0.200 |

λ_{max} | 4.00292 | λ_{max} | 4 | ||||||||

CI | 0.00097 | CI | 0 | ||||||||

CR | 0.00109 | CR | 0 |

Alternative | Weight Coefficient of Alternatives for Criteria TP | Rank |
---|---|---|

T1 | $0.277\cdot 0.333+0.095\cdot 0.200+0.468\cdot 0.351+0.160\cdot 0.400=0.340=34\%$ | 1 |

T2 | $0.277\cdot 0.333+0.095\cdot 0.400+0.468\cdot 0.109+0.160\cdot 0.200=0.213=21.3\%$ | 3 |

T3 | $0.277\cdot 0.167+0.095\cdot 0.200+0.468\cdot 0.189+0.160\cdot 0.200=0.186=18.6\%$ | 4 |

T4 | $0.277\cdot 0.167+0.095\cdot 0.200+0.468\cdot 0.351+0.160\cdot 0.200=0.261=26.1\%$ | 2 |

Criteria | Sub-Criteria | Machines | |||
---|---|---|---|---|---|

T1 | T2 | T3 | T4 | ||

Economic parameters | Ownership costs [€/mh] | 15.51 | 17.73 | 11.77 | 9.92 |

Operational costs [€/mh] | 37.95 | 35.69 | 41.45 | 35.01 | |

Human resource costs [€/mh] | 11.79 | 11.79 | 11.79 | 11.79 |

**Table 8.**Results of the pair-wise comparison of economic sub-criteria: Ownership costs (OW), operational costs (OP), and human resource costs (HR).

Ownership Costs (OW) | Operational Costs (OP) | ||||||||||

T1 | T2 | T3 | T4 | Weight | T1 | T2 | T3 | T4 | Weight | ||

T1 | 1 | 2 | 1/3 | 1/4 | 0.125 | T1 | 1 | 1/2 | 2 | ½ | 0.189 |

T2 | 1/2 | 1 | 1/4 | 1/5 | 0.078 | T2 | 2 | 1 | 3 | 1 | 0.351 |

T3 | 3 | 4 | 1 | 1/2 | 0.306 | T3 | ½ | 1/3 | 1 | 1/3 | 0.109 |

T4 | 4 | 5 | 2 | 1 | 0.492 | T4 | 2 | 1 | 3 | 1 | 0.351 |

λ_{max} | 4.03002 | λ_{max} | 4.00821 | ||||||||

CI | 0.01001 | CI | 0.00274 | ||||||||

CR | 0.01124 | CR | 0.00308 | ||||||||

Human Resource Costs (HR) | |||||||||||

T1 | T2 | T3 | T4 | Weight | |||||||

T1 | 1 | 1 | 1 | 1 | 0.250 | ||||||

T2 | 1 | 1 | 1 | 1 | 0.250 | ||||||

T3 | 1 | 1 | 1 | 1 | 0.250 | ||||||

T4 | 1 | 1 | 1 | 1 | 0.250 | ||||||

λ_{max} | 4 | ||||||||||

CI | 0 | ||||||||||

CR | 0 |

Alternative | Weight Coefficient of Alternatives for Criteria EcP | Rank |
---|---|---|

T1 | $0.297\cdot 0.125+0.540\cdot 0.189+0.163\cdot 0.250=0.180=18.0\%$ | 4 |

T2 | $0.297\cdot 0.078+0.540\cdot 0.351+0.163\cdot 0.250=0.253=25.3\%$ | 2 |

T3 | $0.297\cdot 0.306+0.540\cdot 0.109+0.163\cdot 0.250=0.190=19.0\%$ | 3 |

T4 | $0.297\cdot 0.492+0.540\cdot 0.351+0.163\cdot 0.250=0.377=37.7\%$ | 1 |

Criteria | Sub-Criteria | Machines | |||
---|---|---|---|---|---|

T1 | T2 | T3 | T4 | ||

Exploitation parameters | Working hours (mh/year) | 3127 | 2729 | 2639 | 3039 |

General repair (mh) | 23638 | 18526 | 17389 | 19154 | |

Average failures | 3.42 | 2.64 | 4.98 | 4.34 | |

Technical availability | 0.89 | 0.89 | 0.81 | 0.81 |

**Table 11.**Results of the pair-wise comparison of exploitation sub-criteria: Working hours (WH), general repair (GR), average failures (AF), technical availability (TA).

Working Hours (WH) | General Repair (GR) | ||||||||||

T1 | T2 | T3 | T4 | Weight | T1 | T2 | T3 | T4 | Weight | ||

T1 | 1 | 3 | 4 | 2 | 0.467 | T1 | 1 | 3 | 4 | 3 | 0.516 |

T2 | 1/3 | 1 | 2 | 1/2 | 0.160 | T2 | 1/3 | 1 | 2 | 1 | 0.189 |

T3 | ¼ | 1/2 | 1 | 1/3 | 0.095 | T3 | ¼ | ½ | 1 | ½ | 0.105 |

T4 | 1/2 | 2 | 3 | 1 | 0.277 | T4 | 1/3 | 1 | 2 | 1 | 0.189 |

λ_{max} | 4.02322 | λ_{max} | 4.01268 | ||||||||

CI | 0.00774 | CI | 0.00423 | ||||||||

CR | 0.00869 | CR | 0.00475 | ||||||||

Average Failures (AF) | Technical Availability (TA) | ||||||||||

T1 | T2 | T3 | T4 | Weight | T1 | T2 | T3 | T4 | Weight | ||

T1 | 1 | ½ | 4 | 3 | 0.306 | T1 | 1 | 1 | 4 | 4 | 0.400 |

T2 | 2 | 1 | 5 | 4 | 0.492 | T2 | 1 | 1 | 4 | 4 | 0.400 |

T3 | ¼ | 1/5 | 1 | 1/2 | 0.078 | T3 | ¼ | 1/4 | 1 | 1 | 0.100 |

T4 | 1/3 | 1/4 | 2 | 1 | 0.125 | T4 | ¼ | 1/4 | 1 | 1 | 0.100 |

λ_{max} | 4.03218 | λ_{max} | 4 | ||||||||

CI | 0.01073 | CI | 0 | ||||||||

CR | 0.01205 | CR | 0 |

Alternative | Weight Coefficient of Alternatives for Criteria ExP | Rank |
---|---|---|

T1 | $0.250\cdot 0.467+0.250\cdot 0.516+0.250\cdot 0.306+0.250\cdot 0.400=0.422=42.2\%$ | 1 |

T2 | $0.250\cdot 0.160+0.250\cdot 0.189+0.250\cdot 0.492+0.250\cdot 0.400=0.310=31.0\%$ | 2 |

T3 | $0.250\cdot 0.095+0.250\cdot 0.105+0.250\cdot 0.078+0.250\cdot 0.100=0.095=9.5\%$ | 4 |

T4 | $0.250\cdot 0.277+0.250\cdot 0.189+0.250\cdot 0.125+0.250\cdot 0.100=0.173=17.3\%$ | 3 |

Criteria | Sub-Criteria | Machines | |||
---|---|---|---|---|---|

T1 | T2 | T3 | T4 | ||

Survey parameters | Surveillance technical staff | 7.95 | 6.40 | 5.38 | 2.05 |

Maintenance staff | 8.60 | 6.63 | 7.18 | 5.83 | |

Exploitation staff | 9.98 | 8.73 | 7.70 | 1.23 |

**Table 14.**Results of the pair-wise comparison of survey sub-criteria: Surveillance technical staff (SS), maintenance staff (MS), exploitation staff (ES).

Surveillance Technical Staff (SS) | Maintenance Staff (MS) | ||||||||||

T1 | T2 | T3 | T4 | Weight | T1 | T2 | T3 | T4 | Weight | ||

T1 | 1 | 2 | 3 | 6 | 0.476 | T1 | 1 | 3 | 2 | 4 | 0.467 |

T2 | ½ | 1 | 2 | 5 | 0.289 | T2 | 1/3 | 1 | ½ | 2 | 0.160 |

T3 | 1/3 | ½ | 1 | 4 | 0.176 | T3 | ½ | 2 | 1 | 3 | 0.277 |

T4 | 1/6 | 1/5 | ¼ | 1 | 0.059 | T4 | 1/4 | ½ | 1/3 | 1 | 0.095 |

λ_{max} | 4.041286 | λ_{max} | 4.023224 | ||||||||

CI | 0.013762 | CI | 0.007741 | ||||||||

CR | 0.015463 | CR | 0.008698 | ||||||||

Exploitation Staff (ES) | |||||||||||

T1 | T2 | T3 | T4 | Weight | |||||||

T1 | 1 | 2 | 3 | 9 | 0.482 | ||||||

T2 | ½ | 1 | 2 | 8 | 0.297 | ||||||

T3 | 1/3 | ½ | 1 | 7 | 0.184 | ||||||

T4 | 1/9 | 1/8 | 1/7 | 1 | 0.037 | ||||||

λ_{max} | 4.045827 | ||||||||||

CI | 0.015276 | ||||||||||

CR | 0.017164 |

Alternative | Weight Coefficient of Alternatives for Criteria SP | Rank |
---|---|---|

T1 | $0.333\cdot 0.476+0.333\cdot 0.467+0.333\cdot 0.482=0.475=47.5\%$ | 1 |

T2 | $0.333\cdot 0.289+0.333\cdot 0.160+0.333\cdot 0.297=0.249=24.9\%$ | 2 |

T3 | $0.333\cdot 0.176+0.333\cdot 0.277+0.333\cdot 0.037=0.212=21.2\%$ | 3 |

T4 | $0.333\cdot 0.059+0.333\cdot 0.095+0.333\cdot 0.037=0.064=6.4\%$ | 4 |

Weightiness of Sub-Criteria | 0.250 | 0.250 | 0.250 | 0.250 | |
---|---|---|---|---|---|

Criteria | TP | EcP | ExP | SP | |

Alternatives | Weight coefficient of T1 | 0.340 | 0.180 | 0.422 | 0.475 |

Weight coefficient of T2 | 0.213 | 0.253 | 0.310 | 0.249 | |

Weight coefficient of T3 | 0.186 | 0.190 | 0.095 | 0.212 | |

Weight coefficient of T4 | 0.261 | 0.377 | 0.173 | 0.064 |

Alternative | Final Weight Coefficient of Alternatives | Rank |
---|---|---|

T1 | $0.250\cdot 0.340+0.250\cdot 0.180+0.250\cdot 0.422+0.250\cdot 0.475=0.354=35.4\%$ | 1 |

T2 | $0.250\cdot 0.213+0.250\cdot 0.253+0.250\cdot 0.310+0.250\cdot 0.249=0.256=25.6\%$ | 2 |

T3 | $0.250\cdot 0.186+0.250\cdot 0.190+0.250\cdot 0.095+0.250\cdot 0.212=0.171=17.1\%$ | 4 |

T4 | $0.250\cdot 0.261+0.250\cdot 0.377+0.250\cdot 0.173+0.250\cdot 0.064=0.219=21.9\%$ | 3 |

Alternative | Rank |
---|---|

T1 | 1 |

T2 | 2 |

T3 | 4 |

T4 | 3 |

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Jankovic, I.; Djenadic, S.; Ignjatovic, D.; Jovancic, P.; Subaranovic, T.; Ristovic, I.
Multi-Criteria Approach for Selecting Optimal Dozer Type in Open-Cast Coal Mining. *Energies* **2019**, *12*, 2245.
https://doi.org/10.3390/en12122245

**AMA Style**

Jankovic I, Djenadic S, Ignjatovic D, Jovancic P, Subaranovic T, Ristovic I.
Multi-Criteria Approach for Selecting Optimal Dozer Type in Open-Cast Coal Mining. *Energies*. 2019; 12(12):2245.
https://doi.org/10.3390/en12122245

**Chicago/Turabian Style**

Jankovic, Ivan, Stevan Djenadic, Dragan Ignjatovic, Predrag Jovancic, Tomislav Subaranovic, and Ivica Ristovic.
2019. "Multi-Criteria Approach for Selecting Optimal Dozer Type in Open-Cast Coal Mining" *Energies* 12, no. 12: 2245.
https://doi.org/10.3390/en12122245