Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records
Abstract
:1. Introduction
2. Methodology
2.1. Empirical Mode Decomposition (EMD)
2.2. Ensemble Empirical Mode Decomposition (EEMD)
2.3. Wavelet Analysis (WA)
2.4. Back Propagation-Artificial Neural Network (BP-ANN)
2.5. Regression Model (RE)
2.6. Hybrid EEMD/WA-RE Model
2.7. Hybrid EEMD/WA-ANN Model
3. Case Study
3.1. Study Case
3.2. Implementation
3.3. Model Evaluation Criteria
4. Results
5. Discussion
6. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bulut, H.; Buyukalaca, O. Simple model for the generation of daily global solar-radiation data in Turkey. Appl. Energy 2007, 84, 477–491. [Google Scholar] [CrossRef]
- Kaplanis, S.; Kumar, J.; Kaplani, E. On a universal model for the prediction of the daily global solar radiation. Renew. Energy 2016, 91, 178–188. [Google Scholar] [CrossRef] [Green Version]
- Qazi, A.; Fayaz, H.; Wadi, A.; Raj, R.G.; Rahim, N.A.; Khan, W.A. The artificial neural network for solar radiation prediction and designing solar systems: A systematic literature review. J. Clean. Prod. 2015, 104, 1–12. [Google Scholar] [CrossRef]
- Diagne, M.; David, M.; Lauret, P.; Boland, J.; Schmutz, N. Review of solar irradiance forecasting methods and a proposition for small-scale insular grids. Renew. Sustain. Energy Rev. 2013, 27, 65–76. [Google Scholar] [CrossRef]
- Perez, R.; Lorenz, E.; Pelland, S.; Beauharnois, M.; Van Knowe, G.; Hemker, K.; Heinemann, D.; Remund, J.; Muller, S.C.; Traunmuller, W.; et al. Comparison of numerical weather prediction solar irradiance forecasts in the US, Canada and Europe. Sol. Energy 2013, 94, 305–326. [Google Scholar] [CrossRef]
- Mathiesen, P.; Collier, C.; Kleissl, J. A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Sol. Energy 2013, 92, 47–61. [Google Scholar] [CrossRef]
- Zamora, R.J.; Dutton, E.G.; Trainer, M.; McKeen, S.A.; Wilczak, J.M.; Hou, Y.T. The accuracy of solar irradiance calculations used in mesoscale numerical weather prediction. Mon. Weather Rev. 2005, 133, 783–792. [Google Scholar] [CrossRef]
- Wang, F.; Mi, Z.Q.; Su, S.; Zhao, H.S. Short-term solar irradiance forecasting model based on Artificial Neural Network using statistical feature parameters. Energies 2012, 5, 1355–1370. [Google Scholar] [CrossRef]
- Trapero, J.R.; Kourentzes, N.; Martin, A. Short-term solar irradiation forecasting based on Dynamic Harmonic Regression. Energy 2015, 84, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Voyant, C.; Paoli, C.; Muselli, M.; Nivet, M.L. Multi-horizon solar radiation forecasting for Mediterranean locations using time series models. Renew. Sustain. Energy Rev. 2013, 28, 44–52. [Google Scholar] [CrossRef]
- Chen, S.X.; Gooi, H.B.; Wang, M.Q. Solar radiation forecast based on fuzzy logic and neural networks. Renew. Energy 2013, 60, 195–201. [Google Scholar] [CrossRef]
- Mellit, A.; Benghanem, M.; Kalogirou, S.A. An adaptive wavelet-network model for forecasting daily total solar-radiation. Appl. Energy 2006, 83, 705–722. [Google Scholar] [CrossRef]
- Akarslan, E.; Hocaoglu, F.O.; Edizkan, R. A novel M-D (multi-dimensional) linear prediction filter approach for hourly solar radiation forecasting. Energy 2014, 73, 978–986. [Google Scholar] [CrossRef]
- Cevik, A. Unified formulation for web crippling strength of cold-formed steel sheeting using stepwise regression. J. Constr. Steel Res. 2007, 63, 1305–1316. [Google Scholar] [CrossRef]
- Nourani, V.; Komasi, M.; Mano, A. A Multivariate ANN-Wavelet Approach for Rainfall-Runoff Modeling. Water Resour. Manag. 2009, 23, 2877–2894. [Google Scholar] [CrossRef]
- Cao, S.H.; Cao, J.C. Forecast of solar irradiance using recurrent neural networks combined with wavelet analysis. Appl. Ther. Eng. 2005, 25, 161–172. [Google Scholar] [CrossRef]
- Sharifi, S.S.; Rezaverdinejad, V.; Nourani, V. Estimation of daily global solar radiation using wavelet regression, ANN, GEP and empirical models: A comparative study of selected temperature-based approaches. J. Atmos. Sol. Terr. Phys. 2016, 149, 131–145. [Google Scholar] [CrossRef]
- Lauret, P.; Voyant, C.; Soubdhan, T.; David, M.; Poggi, P. A benchmarking of machine learning techniques for solar radiation forecasting in an insular context. Sol. Energy 2015, 112, 446–457. [Google Scholar] [CrossRef]
- Wang, J.Z.; Jiang, H.; Wu, Y.J.; Dong, Y. Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm. Energy 2015, 81, 627–644. [Google Scholar] [CrossRef]
- Gala, Y.; Fernandez, A.; Diaz, J.; Dorronsoro, J.R. Support Vector Forecasting of Solar Radiation Values. Hybrid Artif. Intell. Syst. 2013, 8073, 51–60. [Google Scholar]
- Baser, F.; Demirhan, H. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation. Energy 2017, 123, 229–240. [Google Scholar] [CrossRef]
- Coelho, J.P.; Boaventura-Cunha, J. Long term solar radiation forecast using computational intelligence methods. Appl. Comput. Intell. Soft Comput. 2015, 2014, 21. [Google Scholar] [CrossRef]
- Cao, J.C.; Cao, S.H. Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis. Energy 2006, 31, 3435–3445. [Google Scholar] [CrossRef]
- Paoli, C.; Voyant, C.; Muselli, M.; Nivet, M.L. Forecasting of preprocessed daily solar radiation time series using neural networks. Sol. Energy 2010, 84, 2146–2160. [Google Scholar] [CrossRef]
- Amrouche, B.; Le Pivert, X. Artificial neural network based daily local forecasting for global solar radiation. Appl. Energy 2014, 130, 333–341. [Google Scholar] [CrossRef]
- Pedro, H.T.C.; Coimbra, C.F.M. Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 2012, 86, 2017–2028. [Google Scholar] [CrossRef]
- Khatib, T.; Mohamed, A.; Sopian, K. A review of solar energy modeling techniques. Renew. Sust. Energy Rev. 2012, 16, 2864–2869. [Google Scholar] [CrossRef]
- Yadav, A.K.; Chandel, S.S. Solar radiation prediction using Artificial Neural Network techniques: A review. Renew. Sust. Energy Rev. 2014, 33, 772–781. [Google Scholar] [CrossRef]
- Voyant, C.; Muselli, M.; Paoli, C.; Nivet, M.L. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation. Energy 2011, 36, 348–359. [Google Scholar] [CrossRef]
- Ozgoren, M.; Bilgili, M.; Sahin, B. Estimation of global solar radiation using ANN over Turkey. Expert Syst. Appl. 2012, 39, 5043–5051. [Google Scholar] [CrossRef]
- Koca, A.; Oztop, H.F.; Varol, Y.; Koca, G.O. Estimation of solar radiation using artificial neural networks with different input parameters for Mediterranean region of Anatolia in Turkey. Expert Syst. Appl. 2011, 38, 8756–8762. [Google Scholar] [CrossRef]
- Celik, O.; Teke, A.; Yildirim, H.B. The optimized artificial neural network model with Levenberg-Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. J. Clean. Prod. 2016, 116, 1–12. [Google Scholar] [CrossRef]
- Chiteka, K.; Enweremadu, C.C. Prediction of global horizontal solar irradiance in Zimbabwe using artificial neural networks. J. Clean. Prod. 2016, 135, 701–711. [Google Scholar] [CrossRef]
- Renno, C.; Petito, E.; Gatto, A. ANN model for predicting the direct normal irradiance and the global radiation for a solar application to a residential building. J. Clean. Prod. 2016, 135, 1298–1316. [Google Scholar] [CrossRef]
- Foufoula-Georgiou, E.; Kumar, P. (Eds.) Wavelets in Geophysics; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Almasri, A.; Locking, H.; Shukur, G. Testing for climate warming in Sweden during 1850–1999, using wavelets analysis. J. Appl. Stat. 2008, 35, 431–443. [Google Scholar] [CrossRef]
- Kisi, O. Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting. Hydrol. Process. 2009, 23, 3583–3597. [Google Scholar] [CrossRef]
- Partal, T. Modelling evapotranspiration using discrete wavelet transform and neural networks. Hydrol. Process. 2009, 23, 3545–3555. [Google Scholar] [CrossRef]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Yen, N.C.; Tung, C.C.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Monjoly, S.; Andre, M.; Calif, R.; Soubdhan, T. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach. Energy 2017, 119, 288–298. [Google Scholar] [CrossRef]
- Shuanghua, C.; Jiacong, C.; Fengqiang, L. Study of application of wavelet analysis to neural networks for the forecast of solar irradiance. J. Donghua Univ. 2004, 6, 18–22. [Google Scholar]
- Meng, K.F.; Li, C.L.; Zhang, H.N.; Yang, L.B.; Zhang, S.C.; Wang, X.; Yang, J.; Li, Z.X. Analysis and discussion on related problems of solar energy resources development in Qinghai province. In Proceedings of the CSEE (Chineses Society for Electrical Engineering) Annual Meeting, Chengdu, China, 30 September 2015; pp. 1–3. [Google Scholar]
- Yan, L.; Zhou, X.; Zhang, C.; Fei, W.Y.; Xia, X.C.; Zhou, F.Q.; Hu, X.H.; Xu, H.H.; Huang, C.G.; Liu, F.S.; et al. A proposal for planning and constructing a national integrated energy base combined with large-scale photo-voltaic power and hydropower in Qinghai province. Adv. Technol. Electr. Eng. Energy 2011, 29, 1–9. [Google Scholar]
- Photovoltaic leads the development of new energy and new materials industry in Qinghai Province Available online:. Available online: http://www.cpicorp.com.cn/zhxx/201803/t20180326_287170.htm (accessed on 26 March 2018).
- Cameron, C.A.; Windmeijer, F.A.G. An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econ. 1997, 77, 1790–1792. [Google Scholar] [CrossRef]
- Muhammad, I. Coefficient of Determination. Available online: Itfeature.com (accessed on 29 April 2012).
Methods | RMSE | MAPE (%) | r | R2 |
---|---|---|---|---|
EEMD-RE | 1.135 | 22.11 | 0.748 | 0.5484 |
EEMD-ANN | 1.474 | 29.47 | 0.590 | 0.2387 |
WA-RE | 1.181 | 22.58 | 0.723 | 0.5116 |
WA-ANN | 1.188 | 22.56 | 0.725 | 0.5052 |
ARIMA | 1.948 | 33.21 | 0.035 | -0.3097 |
Methods | RMSE | MAPE (%) | r | R2 |
---|---|---|---|---|
EEMD-RE | 0.571 | 10.23 | 0.918 | 0.8247 |
EEMD-ANN | 0.935 | 16.92 | 0.812 | 0.5297 |
WA-RE | 0.637 | 12.03 | 0.897 | 0.7810 |
WA-ANN | 0.619 | 11.34 | 0.904 | 0.7913 |
ARIMA | 1.666 | 27.60 | 0.060 | −0.4945 |
Methods | RMSE | MAPE (%) | r | R2 |
---|---|---|---|---|
EEMD-RE | 0.417 | 4.25 | 0.957 | 0.8973 |
EEMD-ANN | 0.775 | 14.87 | 0.883 | 0.6454 |
WA-RE | 0.416 | 8.07 | 0.970 | 0.8979 |
WA-ANN | 0.467 | 8.49 | 0.950 | 0.8712 |
ARIMA | 1.607 | 27.01 | 0.040 | 0.5256 |
Methods | RMSE | MAPE (%) | r | R2 |
---|---|---|---|---|
EEMD-RE | 0.339 | 6.00 | 0.979 | 0.9319 |
EEMD-ANN | 0.362 | 5.66 | 0.966 | 0.9226 |
WA-RE | 0.305 | 5.23 | 0.980 | 0.9450 |
WA-ANN | 0.377 | 6.83 | 0.959 | 0.9161 |
ARIMA | 0.368 | 6.79 | 0.967 | 0.9199 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.-Y.; Qiu, J.; Li, F.-F. Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records. Energies 2018, 11, 1376. https://doi.org/10.3390/en11061376
Wang S-Y, Qiu J, Li F-F. Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records. Energies. 2018; 11(6):1376. https://doi.org/10.3390/en11061376
Chicago/Turabian StyleWang, Si-Ya, Jun Qiu, and Fang-Fang Li. 2018. "Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records" Energies 11, no. 6: 1376. https://doi.org/10.3390/en11061376
APA StyleWang, S.-Y., Qiu, J., & Li, F.-F. (2018). Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records. Energies, 11(6), 1376. https://doi.org/10.3390/en11061376