Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals
2.2. Catalytic Runs
2.3. Gas Chromatography-Mass Spectrometry Analyses of the Reaction Products
2.4. Recovery and Reuse of Catalyst
3. Results and Discussion
3.1. Effect of Catalyst Nature on the Levulinic Acid Esterification with Ethyl Alcohol
3.2. Effect of Fe2(SO4)3 Concentration Levulinic Acid Esterification with C2H5OH
3.3. Effect of Temperature on Fe2(SO4)3-Catalyzed Levulinic acid Esterification with Ethyl Alcohol
3.4. Effect of Reactants Molar Ratio on Fe2(SO4)3-Catalyzed Levulinic Acid Esterification
3.5. Assessment the Effect of Alcohol on the Fe2(SO4)3-Catalyzed Levulinic acid Esterification
3.6. Reuse and Recycle of Fe2(SO4)3 Catalyst in Homogeneous Phase
4. Conclusions
- This inexpensive commercial catalyst (ferric sulfate) is an attractive option to the solid acid catalysts that require a laborious synthesis.
- The advantages of this protocol are the use of a commercially available low-cost catalyst, which is easy to manipulate and potentially less corrosive.
- Among the metal salts assessed (i.e., Fe2(SO4)3, FeCl3, CuSO4, FeSO4, MnSO4, NiSO4), was the most active and selective catalyst.
- This procedure of alkyl levulinates synthesis avoids the neutralization steps of products, which are common in Brønsted-acid catalyzed processes.
- Ferric sulfate efficiently promotes the esterification of levulinic acid with short chain alkyl alcohols. High conversions and ester selectivity (ca. 90%) was achieved in esterification reactions of levulinic acid with methyl, ethyl, propyl and butyl alcohols.
- The high yields achievable under mild reaction conditions are comparable to those obtained with solid acid catalysts reported in the literature.
- The catalyst was three-times recovered and reused without loss activity.
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Badgujar, K.C.; Bhanage, B.M. The green metric evaluation and synthesis of diesel-blend compounds from biomass derived levulinic acid in supercritical carbon dioxide. Biomass Bioenergy 2016, 84, 12–21. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Kaburagi, W.; Osada, Y.; Fujitani, T.; Yamashita, H. Catalytic transfer hydrogenation of biomass-derived levulinic acid and its esters to γ-valerolactone over ZrO2 catalyst supported on SBA-15 silica. Catal. Today 2017, 281, 418–428. [Google Scholar] [CrossRef]
- Chen, S.S.; Maneerung, T.; Tsang, D.C.W.; Ok, Y.S.; Wang, C.H. Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem. Eng. J. 2017, 328, 246–273. [Google Scholar] [CrossRef]
- Tan, J.; Liu, Q.; Chen, L.; Wang, T.; Ma, L.; Chen, G. Efficient production of ethyl levulinate from cassava over Al2(SO4)3 catalyst in ethanol–water system. J. Energy Chem. 2017, 26, 115–120. [Google Scholar] [CrossRef]
- De, S.; Saha, B.; Luque, R. Hydrodeoxygenation processes: Advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels. Bioresour. Technol. 2015, 178, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.S.K.; Pfaltzgraff, L.A.; Herrero-Davila, L.; Mubofu, E.B.; Abderrahim, S.; Clark, J.H.; Koutinas, A.A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; et al. Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 2013, 6, 426–464. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. Current options for the valorization of food manufacturing waste: A review. J. Clean. Prod. 2014, 65, 28–41. [Google Scholar] [CrossRef]
- Mukherjee, A.; Dumont, M.J.; Raghavan, V. Review: Sustainable production of hydroxymethylfurfural and levulinic acid: Challenges and opportunities. Biomass Bioenergy 2015, 72, 143–183. [Google Scholar] [CrossRef]
- Rackemann, D.W.; Doherty, W.O.S. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefin. 2011, 5, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Madadian, E.; Valerie Orsat, V.; Lefsrud, M. Comparative study of temperature impact on air gasification of various types of biomass in a research-scale down-draft reactor. Energy Fuels 2017, 31, 4045–4053. [Google Scholar] [CrossRef]
- Goyal, H.; Seal, D.; Saxena, R. Bio-fuels from thermochemical conversion of renewable resources: A review. Renew. Sustain. Energy Rev. 2008, 12, 504–517. [Google Scholar] [CrossRef]
- Balat, M. Biomass energy and biochemical conversion processing for fuels and chemicals. Energy Sources Part A 2006, 28, 517–525. [Google Scholar] [CrossRef]
- Shu, Q.; Gao, J.; Nawaz, Z.; Liao, Y.; Wang, D.; Wang, J. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon based solid acid catalyst. Appl. Energy 2010, 87, 2589–2596. [Google Scholar] [CrossRef]
- Corma, A.; Garcıa, H. Lewis acids: From conventional homogeneous to green homogeneous and heterogeneous catalysis. Chem. Rev. 2003, 103, 4307–4365. [Google Scholar] [CrossRef] [PubMed]
- An, R.; Xu, G.; Chang, C.; Bai, J.; Fang, S. Efficient one-pot synthesis of n-butyl levulinate from carbohydrates catalyzed by Fe2(SO4)3. J. Energy Chem. 2017, 26, 556–563. [Google Scholar]
- Cirujano, F.G.; Corma, A.; Xamena, F.X.L. Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chem. Eng. Sci. 2015, 124, 52–60. [Google Scholar] [CrossRef]
- Enumula, S.S.; Gurram, V.R.B.; Burri, D.R.; Kamajaru, S.R.R. Conversion of furfuryl alcohol to alkyl levulinate fuel additives over Al2O3/SBA-15 catalyst. J. Mol. Catal. A 2017, 426, 30–38. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, J. Modified solid acids derived from biomass-based cellulose for one-step conversion of carbohydrates into ethyl levulinate. J. Energy Chem. 2016, 25, 747–753. [Google Scholar] [CrossRef]
- Nandiwale, K.Y.; Sonar, S.A.; Niphadkar, P.S.; Joshi, N.P.; Desphand, S.S.; Patil, S.V.; Bokade, V.V. Catalytic upgrading of renewable levulinic acid to ethyl levulinate biodiesel using dodecatungstophosphoric acid supported on desilicated H-ZSM-5 as catalyst. Appl. Catal. A 2013, 460–461, 90–98. [Google Scholar] [CrossRef]
- Pileidis, F.D.; Titirici, M.M. Levulinic acid biorefineries: New challenges for efficient utilization of biomass. ChemSusChem 2016, 9, 562–582. [Google Scholar] [CrossRef] [PubMed]
- Omoruyi, U.; Page, S.; Hallett, J.; Miller, P.W. Homogeneous catalyzed reactions of levulinic acid: To γ-valerolactone and beyond. ChemSusChem 2016, 9, 2037–2047. [Google Scholar] [CrossRef] [PubMed]
- Trombettoni, V.; Lanari, D.; Prinsen, P.; Luque, R.; Marrocchi, A.; Vaccaro, L. Recent advances in sulfonated resin catalysts for efficient biodiesel and bio-derived additives production. Prog. Energy Combust. Sci. 2018, 65, 136–162. [Google Scholar] [CrossRef]
- Peng, L.; Gao, X.; Chen, K. Catalytic upgrading of renewable furfuryl alcohol to alkyl levulinates using AlCl3 as a facile, efficient, and reusable catalyst. Fuel 2015, 160, 123–131. [Google Scholar] [CrossRef]
- Islam, M.M.; Bhunia, S.; Molla, R.A.; Bhaumik, A.; Islam, S.M. Organic solid acid catalyst for efficient conversion of furfuryl alcohol to biofuels. ChemistrySelect 2016, 1, 6079–6085. [Google Scholar] [CrossRef]
- Song, D.; An, S.; Sun, Y.; Guo, Y. Efficient conversion of levulinic acid or furfuryl alcohol into alkyl levulinates catalyzed by heteropoly acid and ZrO2 bifunctionalized organosilica nanotubes. J. Catal. 2016, 333, 184–199. [Google Scholar] [CrossRef]
- Windom, B.C.; Lovestead, T.M.; Mascal, M.; Nikitin, E.B.; Bruno, T.J. Advanced distillation curve analysis on ethyl levulinate as a diesel fuel oxygenate and a hybrid biodiesel fuel. Energy Fuels 2011, 25, 1878–1889. [Google Scholar] [CrossRef]
- Choudhary, V.; Pinar, A.B.; Lobo, R.F.; Vlachos, D.G.; Sandler, S.I. Comparison of homogeneous and heterogeneous catalysts for glucose-to-fructose isomerization in aqueous media. ChemSusChem 2013, 6, 2369–2376. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lotero, E.; Goodwin, J.G., Jr. A comparison of the esterification of acetic acid with methanol using heterogeneous versus homogeneous acid catalysis. J. Catal. 2006, 242, 278–286. [Google Scholar] [CrossRef]
- Reddy, B.M.; Patil, M.K. Organic syntheses and transformations catalyzed by sulfated zirconia. Chem. Rev. 2009, 109, 2185–2208. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Yoshida, T.; Takagaki, A.; Takata, T.; Kondo, J.N.; Domen, K.; Hayashi, S. A carbon material as a strong protonic acid. Angew. Chem. Int. Ed. 2004, 43, 2955–2958. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Hara, M. Amorphous carbon with SO3H groups as a solid Brønsted acid catalyst. ACS Catal. 2012, 2, 1296–1304. [Google Scholar] [CrossRef]
- Pileidis, F.D.; Tabassum, M.; Coutts, S.; Titirici, M.M. Esterification of levulinic acid into ethyl levulinate catalysed by sulfonated hydrothermal carbons. Chin. J. Catal. 2014, 35, 929–936. [Google Scholar] [CrossRef]
- Fraile, J.M.; García-Bordejé, E.; Roldán, L. Deactivation of sulfonated hydrothermal carbons in the presence of alcohols: Evidences for sulfonic esters formation. J. Catal. 2012, 289, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; An, S.; Lu, B.; Guo, Y.; Leng, J. Arylsulfonic acid functionalized hollow mesoporous carbon spheres for efficient conversion of levulinic acid or furfuryl alcohol to ethyl levulinate. Appl. Catal. B 2015, 179, 445–457. [Google Scholar] [CrossRef]
- Ferreira, A.B.; Cardoso, A.L.; da Silva, M.J. Novel and highly efficient SnBr2-catalyzed esterification reactions of fatty acids: The notable anion ligand effect. Catal. Lett. 2013, 143, 1240–1246. [Google Scholar] [CrossRef]
- Cardoso, A.L.; Neves, S.C.G.; da Silva, M.J. Kinetic study of alcoholysis of the fatty acids catalyzed by tin chloride(II): An alternative catalyst for biodiesel production. Energy Fuels 2009, 23, 1718–1722. [Google Scholar] [CrossRef]
- Da Silva, M.J.; Julio, A.A.; dos Santos, K.T. Sn(II)-catalyzed β-citronellol esterification: A Brønsted acid-free process for synthesis of fragrances at room temperature. Catal. Sci. Technol. 2015, 5, 1261–1266. [Google Scholar] [CrossRef]
- Gonçalves, C.E.; Laier, L.O.; da Silva, M.J. Novel esterification of glycerol catalysed by tin chloride (II): A recyclable and less corrosive process for production of bio-additives. Catal. Lett. 2011, 141, 1111–1117. [Google Scholar] [CrossRef]
- Maheshika, G.N.; Wijerathna, J.A.R.H.; Gunawardena, S.H.P. Ferric Sulphate Catalyzed Esterification of High Free Fatty Acids Content Waste Coconut Oil for Biodiesel Synthesis. Int. J. Sci. Res. 2014, 3, 2068–2072. [Google Scholar]
- da Silva, M.J.; Ayala, D.A.M. Unravelling transition metal-catalyzed terpenic alcohol esterification: A straightforward process for the synthesis of fragrances. Catal. Sci. Technol. 2016, 9, 3197–3207. [Google Scholar] [CrossRef]
- Li, Z.; Wnetrzak, R.; Kwapinski, W.; Leahy, J.J. Synthesis and Characterization of Sulfated TiO2 Nanorods and ZrO2/TiO2 Nanocomposites for the Esterification of Biobased Organic Acid. Appl. Mater. Interfaces 2012, 4, 4499–4505. [Google Scholar] [CrossRef] [PubMed]
- Pasquale, G.; Vazquez, P.; Romanelli, G.; Baronetti, G. Catalytic upgrading of levulinic acid to ethyl levulinate using reusable silica-included Wells-Dawson heteropolyacid as catalyst. Catal. Commun. 2012, 18, 115–120. [Google Scholar] [CrossRef]
- Fernandes, D.R.; Rocha, A.S.; Mai, E.F.; Mota, C.J.A.; Da Silva, V.T. Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Appl. Catal. A 2012, 425–426, 199–204. [Google Scholar] [CrossRef]
- Yan, K.; Wu, G.; Wen, J.; Chen, A. One-step synthesis of mesoporous H4SiW12O40-SiO2 catalysts for the production of methyl and ethyl levulinate biodiesel. Catal. Commun. 2013, 34, 58–63. [Google Scholar] [CrossRef]
- Melero, J.A.; Morales, G.; Iglesias, J.; Paniagua, M.; Hernandez, B.; Penedo, S. Efficient conversion of levulinic acid into alkyl levulinates catalyzed by sulfonic mesostructured silicas. Appl. Catal. A Gen. 2013, 466, 116–122. [Google Scholar] [CrossRef]
Catalyst | pH Value |
---|---|
- | 2.0 |
Fe2(SO4)3 | −0.06 |
FeCl3 | 0.04 |
CuSO4 | 0.78 |
FeSO4 | 0.87 |
ZnSO4 | 0.88 |
MnSO4 | 1.32 |
NiSO4 | 1.67 |
Catalyst | Temperature (K) | Conversion (%) | Reference |
---|---|---|---|
ZrO2/TiO2 | 351 | 90 | Nandivale et al. [19] |
H3PMo12O40/SiO2 | 355 | 76 | Li et al. [41] |
SO42-/SnO2 | 343 | 54 | Pasquale et al. [42] |
H4SiW12O40/SiO2 | 348 | 75 | Fernandes et al. [43] |
Sulfonic acid/SBA-15 | 390 | 93 | Yan et al. [44] |
H3PW12O40/ZSM-5 | 351 | 94 | Melero et al. [45] |
Fe2(SO4)3 | 333 | 94 | This work |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, F.P.; Rodrigues, F.A.; Silva, M.J. Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives. Energies 2018, 11, 1263. https://doi.org/10.3390/en11051263
Martins FP, Rodrigues FA, Silva MJ. Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives. Energies. 2018; 11(5):1263. https://doi.org/10.3390/en11051263
Chicago/Turabian StyleMartins, Fernanda Pereira, Fabio Avila Rodrigues, and Marcio Jose Silva. 2018. "Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives" Energies 11, no. 5: 1263. https://doi.org/10.3390/en11051263
APA StyleMartins, F. P., Rodrigues, F. A., & Silva, M. J. (2018). Fe2(SO4)3-Catalyzed Levulinic Acid Esterification: Production of Fuel Bioadditives. Energies, 11(5), 1263. https://doi.org/10.3390/en11051263