# Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Description of Proposed Method

## 3. Configuration of Proposed Method

#### 3.1. Zero-Current Duration (ZCD) Demodulator

#### 3.2. Current Integrator

#### 3.3. Carrier Generator

#### 3.4. Pulse Width Modulation (PWM) Circuit

## 4. Experimental Results

#### 4.1. Implementation Control Circuit

#### 4.2. Experimental Results

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- International Electrotechnical Commission. Electromagnetic Compatibility (EMC)—Part 3-2: Limits—Limits for Harmonic Current Emissions (Equipment Input Current ≤ 16 A per Phase), IEC 61000-3-2; International Electrotechnical Commission: Geneva, Switzerland, 2014. [Google Scholar]
- Institute of Electrical and Electronics. IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems; IEEE Std 519-2014 (Revision of IEEE Std 519-1992); Institute of Electrical and Electronics: Piscataway, NJ, USA, 2014; pp. 1–29. [Google Scholar]
- Maksimovic, D.; Jang, Y.; Erickson, R. Nonlinear-carrier control for high-power-factor boost rectifiers. IEEE Trans. Power Electron.
**1996**, 11, 578–584. [Google Scholar] [CrossRef] - Hwang, J.; Chee, A.; Ki, W.-H. New universal control methods for power factor correction and DC to DC converter applications. In Proceedings of the IEEE 1997 Applied Power Electronics Conference, Atlanta, GA, USA, 27 February 1997; pp. 59–65. [Google Scholar]
- Wang, Y.; Li, J. A Novel High-performance Single-phase PFC Approach Based on One-cycle Control. In Proceedings of the IEEE Conference on IEEE Industrial Electronics, Paris, France, 6–10 November 2006; pp. 1763–1768. [Google Scholar]
- Luo, J.; Jeoh, M.K.; Huang, H.C. A new continuous conduction mode PFC IC with average current mode control. In Proceedings of the IEEE International Conference on Power Electronics and Drive Systems, Singapore, 17–20 November 2003; pp. 1110–1114. [Google Scholar]
- Jiang, T.; Mao, P.; Xie, S. Analysis and improvement on input current of one-cycle controlled PFC converter. In Proceedings of the IEEE 2010 Conference on Industrial Electronics and Applications, Taichung, Taiwan, 15–17 June 2010; pp. 2094–2098. [Google Scholar]
- Orabi, M.; Haron, R.; El-Aroudi, A. Comparison between Nonlinear-Carrier Control and Average-Current-Mode Control for PFC Converters. In Proceedings of the IEEE Power Electronics Specialist Conference, Orlando, FL, USA, 17–21 June 2007; pp. 1349–1355. [Google Scholar]
- Chiang, J.-H.; Liu, B.D.; Chen, S.-M. A Simple Implementation of Nonlinear-Carrier Control for Power Factor Correction Rectifier with Variable Slope Ramp on Field-Programmable Gate Array. IEEE Trans. Ind. Inform.
**2013**, 9, 1322–1329. [Google Scholar] [CrossRef] - De Gusseme, K.; Van de Sype, D.M.; Van den Bossche, A.P.M.; Melkebeek, J.A. Input-Current Distortion of CCM Boost PFC Converters Operated in DCM. IEEE Trans. Ind. Inform.
**2007**, 54, 858–865. [Google Scholar] [CrossRef] - Lim, S.F.; Khambadkone, A. A simple digital DCM control scheme for boost PFC operating in both CCM and DCM. IEEE Energy Convers. Congr. Expos.
**2010**, 47, 1218–1225. [Google Scholar] - Ku, C.-P.; Chen, D.; Lin, S.-H. A new control scheme for boost PFC converters for both CCM and DCM operations. IEEE Energy Convers. Congr. Expos.
**2011**, 1334–1338. [Google Scholar] [CrossRef] - Chen, Y.-L.; Chen, Y.-M. Line Current Distortion Compensation for DCM/CRM Boost PFC Converters. IEEE Trans. Power Electron.
**2016**, 32, 2026–2038. [Google Scholar] [CrossRef] - Chen, F.-Z.; Maksimović, D. Digital Control for Improved Efficiency and Reduced Harmonic Distortion over Wide Load Range in Boost PFC Rectifiers. IEEE Trans. Power Electron.
**2010**, 25, 2683–2692. [Google Scholar] [CrossRef] - Kim, J.; Choi, H.; Won, C.-Y. New Modulated Carrier Controlled PFC Boost Converter. IEEE Trans. Power Electron.
**2018**, 33, 4772–4782. [Google Scholar] [CrossRef]

**Figure 1.**Control block diagram of the conventional modulated carrier controlled (MCC) boost power factor correction (PFC) converter.

**Figure 14.**Total harmonics distortion (THD) & power factor (PF) results of the proposed MCC converter.

Parameter | Values |
---|---|

Input Voltage | 85 Vrms~265 Vrms |

Line Frequency | 60 Hz |

Output Voltage | 380 Vdc |

Output Power | 400 W |

Switching Frequency | 100 kHz |

Boost Inductance | 750 μH |

CCD filter | R_{PF}: 1 kΩ, C_{PF}: 22 nF |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Kim, J.; Won, C.-Y.
Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method. *Energies* **2018**, *11*, 717.
https://doi.org/10.3390/en11040717

**AMA Style**

Kim J, Won C-Y.
Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method. *Energies*. 2018; 11(4):717.
https://doi.org/10.3390/en11040717

**Chicago/Turabian Style**

Kim, Jintae, and Chung-Yuen Won.
2018. "Improved Modulated Carrier Controlled PFC Boost Converter Using Charge Current Sensing Method" *Energies* 11, no. 4: 717.
https://doi.org/10.3390/en11040717