# Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

- Distribution of the power among several converters, thus allowing us to reduce the power rating of the individual converters.
- Ripple reduction at the input and/or output of the converter when phase shifted carriers are used in the modulation, thus allowing reduction in the filters size.

## 2. Proposed Topology

#### 2.1. Partial Power Converters

#### 2.2. Topology Description

#### Analysis of Topology

## 3. Experimental Results

#### 3.1. Clamping Circuit

#### 3.2. Converter Operation with $D=0.63$

#### 3.3. Converter Operation with $D=0.28$

#### 3.4. Converter Efficiency

## 4. Analysis of the Partial Power Ratio

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Lian, Y.; Adam, G.; Holliday, D.; Finney, S. Modular input-parallel output-series DC/DC converter control with fault detection and redundancy. IET Gener. Transm. Distrib.
**2016**, 10, 1361–1369. [Google Scholar] [CrossRef] - Srighakollapu, N.; Keeramthode, R.; Posa, R. PV Inverter with Input Parallel Output Series Connected Flyback Converters Feeding a Fullbridge Grid Converter. European Patent EP2571154A2, 20 March 2013. [Google Scholar]
- Zapata, J.W.; Kouro, S.; Aguirre, M.; Meynard, T. Model predictive control of interleaved dc-dc stage for photovoltaic microconverters. In Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society, IECON 2015, Yokohama, Japan, 9–12 November 2015; pp. 4311–4316. [Google Scholar]
- Muller, S.; Deicke, M.; Doncker, R.W.D. Doubly fed induction generator systems for wind turbines. IEEE Ind. Appl. Mag.
**2002**, 8, 26–33. [Google Scholar] [CrossRef] - Kasper, M.; Bortis, D.; Kolar, J.W. Classification and Comparative Evaluation of PV Panel-Integrated DC/DC Converter Concepts. IEEE Trans. Power Electron.
**2014**, 29, 2511–2526. [Google Scholar] [CrossRef] - Birchenough, A. A high efficiency DC bus regulator / RPC for spacecraft applications. AIP
**2004**, 699, 606–613. [Google Scholar] - Zhou, H.; Zhao, J.; Han, Y. PV Balancers: Concept, Architectures, and Realization. IEEE Trans. Power Electron.
**2015**, 30, 3479–3487. [Google Scholar] [CrossRef] - Marzouk, A.; Fournier-Bidoz, S.; Yablecki, J.; McLean, K.; Trescases, O. Analysis of partial power processing distributed MPPT for a PV powered electric aircraft. In Proceedings of the 2014 International Power Electronics Conference (IPEC-Hiroshima 2014—ECCE-ASIA), Hiroshima, Japan, 18–21 May 2014; pp. 3496–3502. [Google Scholar]
- Lee, J.P.; Min, B.D.; Kim, T.J.; Yoo, D.W.; Yoo, J.Y. A Novel Topology for Photovoltaic DC/DC Full-Bridge Converter With Flat Efficiency Under Wide PV Module Voltage and Load Range. IEEE Trans. Ind. Electron.
**2008**, 55, 2655–2663. [Google Scholar] [CrossRef] - Min, B.D.; Lee, J.P.; Kim, J.H.; Kim, T.J.; Yoo, D.W.; Song, E.H. A New Topology With High Efficiency Throughout All Load Range for Photovoltaic PCS. IEEE Trans. Ind. Electron.
**2009**, 56, 4427–4435. [Google Scholar] - Kim, H.; Kim, J.; Kim, H.; Lee, K.; Kim, J.; Yoo, D.; Shin, D. A high efficiency photovoltaic module integrated converter with the asymmetrical half-bridge flyback converter. Sol. Energy
**2010**, 84, 1376–1381. [Google Scholar] [CrossRef] - Zhao, J.; Yeates, K.; Han, Y. Analysis of high efficiency DC/DC converter processing partial input/output power. In Proceedings of the 2013 IEEE 14th Workshop on Control and Modeling for Power Electronics (COMPEL), Salt Lake City, UT, USA, 23–26 June 2013; pp. 1–8. [Google Scholar]
- Harfman-Todorovic, M.; Tao, F.; Agamy, M.; Dong, D.; Liu, X.; Garces, L.; Zhou, R.; Delgado, E.; Marabell, D.; Stephens, C.; et al. A high efficiency PV micro-inverter with grid support functions. In Proceedings of the 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 4244–4250. [Google Scholar]
- Zapata, J.W.; Renaudineau, H.; Kouro, S.; Perez, M.A.; Meynard, T.A. Partial power DC-DC converter for photovoltaic microinverters. In Proceedings of the 42nd Annual Conference of the IEEE Industrial Electronics Society, IECON 2016, Florence, Italy, 23–26 October 2016; pp. 6740–6745. [Google Scholar]
- Kouro, S.; Leon, J.; Vinnikov, D.; Franquelo, L. Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology. IEEE Ind. Electron. Mag.
**2015**, 9, 47–61. [Google Scholar] [CrossRef] - Fornage, M. Method and Apparatus for Converting Direct Current To Alternating Current. U.S. Patent 0221267A1, 27 September 2007. [Google Scholar]
- Kouro, S.; Wu, B.; Abu-Rub, H.; Blaabjerg, F. Chapter 7: Photovoltaic energy conversion systems. In Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
- Femia, N.; Petrone, G.; Spagnuolo, G.; Vitelli, M. Optimization of perturb and observe maximum power point tracking method. IEEE Trans. Power Electron.
**2005**, 20, 963–973. [Google Scholar] [CrossRef]

**Figure 2.**(

**a**) Configuration of the partial power converter. (

**b**) Proposed topology using a Flyback converter.

**Figure 3.**(

**a**) Partial power operation range of the Step-Up Partial Power Converter (PPC). (

**b**) Operation range of the Step-Up Flyback based PPC for different transformer turns ratio ${n}_{T}$.

**Figure 5.**Current measurements in the proposed converter. (

**a**) Without the clamping circuit and $D=0.48$. (

**b**) With the clamping circuit and $D=0.48$.

**Figure 6.**Current measurements. (

**a**) With the clamping circuit and $D=0.63$. (

**b**) With the clamping circuit and $D=0.28$.

**Figure 7.**Maximum Power Point Tracking (MPPT) performance in the Step-Up based PPC: (

**a**) under constant solar irradiation; (

**b**) under a solar irradiation change.

**Figure 8.**Curve of experimental efficiency: (

**a**) Total power conversion system. (

**b**) Isolated DC-DC converter in the Step-Up Flyback based PPC.

Parameters | Value | Parameters | Value |
---|---|---|---|

System Power (W) | 99 | Converter voltage (V) | 4.8 |

DC-DC Power (W) | 19.8 | Global Voltage gain ${G}_{v}$ | 1.17 |

${K}_{pr}(\%)$ | 20 | DC-DC Voltage gain ${G}_{vc}$ | 0.15 |

Input voltage (V) | 27.9 | DC-stage efficiency ${\eta}_{d{c}_{s}}$ (%) | 90 |

Output voltage (V) | 32.7 | DC-DC efficiency ${\eta}_{d{c}_{c}}(\%)$ | 59 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Zapata, J.W.; Kouro, S.; Carrasco, G.; Renaudineau, H. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance. *Energies* **2018**, *11*, 357.
https://doi.org/10.3390/en11020357

**AMA Style**

Zapata JW, Kouro S, Carrasco G, Renaudineau H. Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance. *Energies*. 2018; 11(2):357.
https://doi.org/10.3390/en11020357

**Chicago/Turabian Style**

Zapata, Jaime Wladimir, Samir Kouro, Gonzalo Carrasco, and Hugues Renaudineau. 2018. "Step-Up Partial Power DC-DC Converters for Two-Stage PV Systems with Interleaved Current Performance" *Energies* 11, no. 2: 357.
https://doi.org/10.3390/en11020357