An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Data and Test Area
2.2 ANN Model
2.3 ANN Implementation
- (1)
- (2)
- Learning algorithm: The LM algorithm, a combination of a gradient descent method and Gauss–Newton method [40], were applied in this work. Compared with the Gauss–Newton method, the LM algorithm presents a fast local convergence feature, and it also has the gradient descent method to adjust the weight of each layer, greatly improving the convergence rate and generalization ability of the network. Its learning rule is:
- (3)
- Training/test set: A total of 504 input/output pairs at 6 stations from 2000 to 2013 were used to train ANN to build the relationship between solar radiation and the input vector, and 216 pairs from 2008 to 2013 at the remaining 3 stations (the red points in Figure 1) that were applied in the process of validation.
- (4)
- Hidden layer: The design of BP neural network should take the number of neurons in the hidden layer; the number of neurons in the single hidden layer can be calculated by (3).
2.4. Contribution Assessment
3. Results and Discussion
3.1. Performances of ANN Model
3.2. Comparison with Models from the Literature
3.3. Receiving Regional Monthly Mean Solar Radiation
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abedin, Z.; Barua, M.; Paul, S.; Akther, S.; Chowdhury, R.; Chowdhury, M. A model for prediction of monthly solar radiation of different meteorological locations of Bangladesh using artificial neural network data mining tool. In Proceedings of the 2017 International Conference on Electrical, Computer and Communication Engineering (ECCE), Cox’s Bazar, Bangladesh, 16–18 February 2017; pp. 692–697. [Google Scholar]
- Wang, D.; Liang, S.; He, T. Mapping high-resolution surface shortwave net radiation from landsat data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 459–463. [Google Scholar] [CrossRef]
- Gairaa, K.; Khellaf, A.; Messlem, Y.; Chellali, F. Estimation of the daily global solar radiation based on box–jenkins and ann models: A combined approach. Renew. Sustain. Energy Rev. 2016, 57, 238–249. [Google Scholar] [CrossRef]
- Rabehi, A.; Guermoui, M.; Lalmi, D. Hybrid models for global solar radiation prediction: A case study. Int. J. Ambient Energy 2018, 1–10. [Google Scholar] [CrossRef]
- Angstrom, A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Q. J. R. Meteorol. Soc. 1924, 50, 121–126. [Google Scholar] [CrossRef]
- Valiantzas, J.D. Modification of the hargreaves–samani model for estimating solar radiation from temperature and humidity data. J. Irrig. Drain. Eng. 2018, 144. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Dumka, U.C.; Kaskaoutis, D.G. Meteorological Radiation Model (MRM V 6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products. Renew. Sustain. Energy Rev. 2017, 74, 616–637. [Google Scholar] [CrossRef]
- Bristow, K.L.; Campbell, G.S. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agric. For. Meteorol. 1984, 31, 159–166. [Google Scholar] [CrossRef]
- Akinoğlu, B.G.; Ecevit, A. A further comparison and discussion of sunshine-based models to estimate global solar radiation. Energy 1990, 15, 865–872. [Google Scholar] [CrossRef]
- Louche, A.; Notton, G.; Poggi, P.; Simonnot, G. Correlations for direct normal and global horizontal irradiation on a French Mediterranean site. Sol. Energy 1991, 46, 261–266. [Google Scholar] [CrossRef]
- Barker, H.W.; Cole, J.; Li, J.N. Application of Monte Carlo solar radiative transfer model in the McICA framework. Q. J. R. Meterorol. Soc. 2015, 141, 3130–3139. [Google Scholar] [CrossRef]
- Da Silva, M.B.P.; Francisco Escobedo, J.; Juliana Rossi, T.; dos Santos, C.M.; da Silva, S.H.M.G. Performance of the Angstrom-Prescott model (A-P) and SVM and ANN techniques to estimate daily global solar irradiation in botucatu/sp/brazil. J. Atmos. Sol. Terr. Phys. 2017, 160, 11–23. [Google Scholar] [CrossRef]
- Rivero, M.; Orozco, S.; Sellschopp, F.S.; Loera-Palomo, R. A new methodology to extend the validity of the Hargreaves-Samani model to estimate global solar radiation in different climates: Case study mexico. Renew. Energy 2017, 114, 1340–1352. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Bai, Y. An integrated approach to estimate shortwave solar radiation on clear-sky days in rugged terrain using modis atmospheric products. Sol. Energy 2015, 113, 347–357. [Google Scholar] [CrossRef]
- Moustris, K.; Paliatsos, A.G.; Bloutsos, A.; Nikolaidis, K.; Koronaki, I.; Kavadias, K. Use of neural networks for the creation of hourly global and diffuse solar irradiance data at representative locations in Greece. Renew. Energy 2008, 33, 928–932. [Google Scholar] [CrossRef]
- Behrang, M.A.; Assareh, E.; Ghanbarzadeh, A.; Noghrehabadi, A.R. The potential of different artificial neural network (ANN) techniques in daily global solar radiation modeling based on meteorological data. Sol. Energy 2010, 84, 1468–1480. [Google Scholar] [CrossRef]
- Ramedani, Z.; Omid, M.; Keyhani, A. Modeling solar energy potential in a tehran province using artificial neural networks. Int. J. Green Energy 2013, 10, 427–441. [Google Scholar] [CrossRef]
- Waewsak, J.; Chancham, C.; Mani, M.; Gagnon, Y. Estimation of monthly mean daily global solar radiation over bangkok, thailand using artificial neural networks. Energy Procedia 2014, 57, 1160–1168. [Google Scholar] [CrossRef]
- Deo, R.C.; Şahin, M. Forecasting long-term global solar radiation with an ann algorithm coupled with satellite-derived (MODIS) land surface temperature (LST) for regional locations in queensland. Renew. Sustain. Energy Rev. 2017, 72, 828–848. [Google Scholar] [CrossRef]
- Rehman, S.; Mohandes, M. Artificial neural network estimation of global solar radiation using air temperature and relative humidity. Energy Policy 2008, 36, 571–576. [Google Scholar] [CrossRef] [Green Version]
- Rao, K.D.V.S.K.; Premalatha, M.; Naveen, C. Analysis of different combinations of meteorological parameters in predicting the horizontal global solar radiation with ANN approach: A case study. Renew. Sustain. Energy Rev. 2018, 91, 248–258. [Google Scholar] [CrossRef]
- Teke, A.; Yıldırım, H.B.; Çelik, Ö. Evaluation and performance comparison of different models for the estimation of solar radiation. Renew. Sustain. Energy Rev. 2015, 50, 1097–1107. [Google Scholar] [CrossRef]
- Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Salazar, G.A.; Zhu, Z.; Gong, W. Solar radiation prediction using different techniques: Model evaluation and comparison. Renew. Sustain. Energy Rev. 2016, 61, 384–397. [Google Scholar] [CrossRef]
- Mubiru, J.; Banda, E.J.K.B. Estimation of monthly average daily global solar irradiation using artificial neural networks. Sol. Energy 2008, 82, 181–187. [Google Scholar] [CrossRef]
- Lam, J.C.; Wan, K.K.W.; Yang, L. Solar radiation modelling using ANNs for different climates in China. Energy Convers. Manag. 2008, 49, 1080–1090. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, F.; Su, S. Solar irradiance short-term prediction model based on bp neural network. Energy Procedia 2011, 12, 488–494. [Google Scholar] [CrossRef]
- Notton, G.; Paoli, C.; Vasileva, S.; Nivet, M.L.; Canaletti, J.-L.; Cristofari, C. Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks. Energy 2012, 39, 166–179. [Google Scholar] [CrossRef]
- Yadav, A.K.; Malik, H.; Chandel, S.S. Selection of most relevant input parameters using WEKA for artificial neural network based solar radiation prediction models. Renew. Sustain. Energy Rev. 2014, 31, 509–519. [Google Scholar] [CrossRef]
- Vakili, M.; Sabbagh-Yazdi, S.-R.; Kalhor, K.; Khosrojerdi, S. Using artificial neural networks for prediction of global solar radiation in tehran considering particulate matter air pollution. Energy Procedia 2015, 74, 1205–1212. [Google Scholar] [CrossRef]
- Kashyap, Y.; Bansal, A.; Sao, A.K. Solar radiation forecasting with multiple parameters neural networks. Renew. Sustain. Energy Rev. 2015, 49, 825–835. [Google Scholar] [CrossRef]
- Rossow, W.B.; Zhang, Y. Calculation of surface and top of atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 2. Validation and first results. J. Geophys. Res. Atmos. 1995, 100, 1167–1197. [Google Scholar] [CrossRef]
- Chen, J.L.; Li, G.S.; Wu, S.J. Assessing the potential of support vector machine for estimating daily solar radiation using sunshine duration. Energy Convers. Manag. 2013, 75, 311–318. [Google Scholar] [CrossRef]
- Chen, J.L.; Liu, H.B.; Wu, W.; Xie, D.-T. Estimation of monthly solar radiation from measured temperatures using support vector machines—A case study. Renew. Energy 2011, 36, 413–420. [Google Scholar] [CrossRef]
- Citakoglu, H. Comparison of artificial intelligence techniques via empirical equations for prediction of solar radiation. Comput. Electron. Agric. 2015, 118, 28–37. [Google Scholar] [CrossRef]
- Tang, W.; Yang, K.; He, J.; Qin, J. Quality control and estimation of global solar radiation in China. Sol. Energy 2010, 84, 466–475. [Google Scholar] [CrossRef]
- Demuth, H.; Beale, M.; Hagan, M. Neural Network Toolbox 6: Users Guide; Mathwork Inc.: Natick, MA, USA, 2008; Volume 21, pp. 1225–1233. [Google Scholar]
- Mosavi, M.R.; Khishe, M. Training a feed-forward neural network using particle swarm optimizer with autonomous groups for sonar target classification. J. Circuits Syst. Comput. 2017, 26, 1750185. [Google Scholar] [CrossRef]
- Li, J.; Wang, D.; Feng, J.J. Simulation of solar radiation based on neural network and MODIS remote sensing products. Sci. Geogr. Sin. 2017, 37, 912–919, (In Chinese with English Abstract). [Google Scholar]
- Krishnaiah, K.; Rao, S.S.; Madhumurthy, K.; Reddy, K.S. Neural network approach for modelling global solar radiation. J. Appl. Sci. Res. 2007, 3, 1105–1111. [Google Scholar]
- Last, M. Kernel Methods for Pattern Analysis; China Machine Press: Beijing, China, 2005. (In Chinese) [Google Scholar]
- Pryor, S.C.; Ledolter, J. Addendum to “wind speed trends over the contiguous united states”. J. Geophys. Res. 2010, 115, 10103. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, Z.; Li, X.; Jin, Y. Variation of surface solar radiation and its impact factors of Xi’an city, Shaanxi province in recent 50 years. Arid. Land Geogr. (Chin.) 2012, 35, 738–745. [Google Scholar]
- Li, J.; Wang, D. A comparative study on three types of remote sensing solar radiation products. Clim. Environ. Res. 2018, 23, 252–258, (In Chinese with English Abstract). [Google Scholar]
- Wu, S.; Wen, J.; You, D.; Zhang, H.; Xiao, Q.; Liu, Q. Algorithms for calculating topographic parameters and their uncertainties in downward surface solar radiation (DSSR) estimation. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1149–1153. [Google Scholar] [CrossRef]
- Liang, S.; Wang, K.; Zhang, X.; Wild, M. Review on estimation of land surface radiation and energy budgets from ground measurement, remote sensing and model simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 3, 225–240. [Google Scholar] [CrossRef]
- Qin, J.; Chen, Z.; Yang, K.; Liang, S.; Tang, W. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products. Appl. Energy 2011, 88, 2480–2489. [Google Scholar] [CrossRef]
- Meenal, R.; Selvakumar, A.I. Assessment of svm, empirical and ann based solar radiation prediction models with most influencing input parameters. Renew. Energy 2018, 121, 324–343. [Google Scholar] [CrossRef]
- Zou, L.; Lin, A.W.; Wang, L.C.; Yang, Q.; Zhao, Z.Z. Monthly mean global solar radiation modeling using artificial neural network technique in southeast hill areas, China during 1993–2003. Energy Mech. Eng. 2016, 394–401. [Google Scholar] [CrossRef]
- Premalatha, N.; Valan Arasu, A. Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. J. Appl. Res. Technol. 2016, 14, 206–214. [Google Scholar] [CrossRef]
n | Transfer Function | Training Function | R | RMSE/ MJ·m−2 | MBE/ MJ·m−2 | |
---|---|---|---|---|---|---|
Hidden Layer | Output Layer | |||||
4 | tan-sigmoid | purelin | trainlm | 0.94 | 1.59 | 0.13 |
5 | tan-sigmoid | purelin | trainlm | 0.93 | 1.66 | 0.12 |
6 | tan-sigmoid | purelin | trainlm | 0.94 | 1.60 | 0.44 |
7 | tan-sigmoid | purelin | trainlm | 0.96 | 1.34 | 0.21 |
8 | tan-sigmoid | purelin | trainlm | 0.93 | 1.65 | 0.27 |
9 | tan-sigmoid | purelin | trainlm | 0.92 | 2.12 | 1.15 |
10 | tan-sigmoid | purelin | trainlm | 0.94 | 1.66 | 0.52 |
11 | tan-sigmoid | purelin | trainlm | 0.90 | 1.99 | 0.42 |
12 | tan-sigmoid | purelin | trainlm | 0.92 | 1.76 | 0.19 |
13 | tan-sigmoid | purelin | trainlm | 0.93 | 1.73 | 0.20 |
ANN with Different Inputs | RMSE/MJ·m−2 | MBE/MJ·m−2 | R |
---|---|---|---|
ANN1 | 2.31 | −1.13 | 0.89 |
ANN2 | 1.34 | 0.15 | 0.96 |
Station | Year | RMSE(MJ·m−2) | MBE(MJ·m−2) | R | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CERES | ANN | MLR | CERES | ANN | MLR | CERES | ANN | MLR | ||
Yan’an | 2008 | 1.67 | 0.56 | 1.81 | 1.60 | 0.01 | 0.70 | 0.99 | 0.99 | 0.93 |
2009 | 1.70 | 1.28 | 1.32 | 1.64 | −0.45 | 0.80 | 0.99 | 0.96 | 0.97 | |
2010 | 1.57 | 1.05 | 1.16 | 1.44 | −0.34 | 0.08 | 0.99 | 0.97 | 0.97 | |
2011 | 1.35 | 1.40 | 1.05 | 1.28 | −0.41 | 0.37 | 0.99 | 0.96 | 0.98 | |
2012 | 1.82 | 0.91 | 1.19 | 1.69 | −0.50 | 0.40 | 0.99 | 0.98 | 0.97 | |
2013 | 3.99 | 2.35 | 2.97 | 2.36 | 1.36 | 1.53 | 0.65 | 0.88 | 0.76 | |
Mean | 2.02 | 1.25 | 1.58 | 1.67 | −0.05 | 0.65 | 0.93 | 0.96 | 0.93 | |
Xifeng Town | 2008 | 2.34 | 1.05 | 2.07 | 1.82 | 0.16 | −0.36 | 0.95 | 0.98 | 0.91 |
2009 | 2.88 | 1.42 | 2.51 | 2.22 | 0.96 | −0.24 | 0.92 | 0.99 | 0.86 | |
2010 | 3.09 | 1.48 | 2.32 | 2.76 | 1.20 | 2.01 | 0.90 | 0.96 | 0.94 | |
2011 | 2.67 | 1.37 | 3.03 | 2.49 | 1.03 | 2.88 | 0.98 | 0.98 | 0.98 | |
2012 | 2.62 | 0.97 | 1.88 | 2.20 | −0.19 | 1.13 | 0.96 | 0.98 | 0.97 | |
2013 | 2.30 | 1.18 | 2.25 | 2.04 | 0.25 | 1.84 | 0.97 | 0.96 | 0.96 | |
Mean | 2.65 | 1.25 | 2.34 | 2.26 | 0.57 | 1.24 | 0.95 | 0.98 | 0.94 | |
Jinghe | 2008 | 1.38 | 1.56 | 2.06 | −1.04 | −0.80 | 0.31 | 0.98 | 0.97 | 0.89 |
2009 | 1.30 | 1.53 | 2.49 | −0.16 | −0.58 | 1.90 | 0.97 | 0.97 | 0.96 | |
2010 | 0.90 | 1.19 | 2.63 | 0.45 | 0.22 | 2.17 | 0.97 | 0.93 | 0.88 | |
2011 | 1.11 | 1.23 | 1.55 | −0.74 | −1.06 | 1.36 | 0.99 | 0.99 | 0.99 | |
2012 | 1.10 | 1.00 | 1.38 | −0.91 | −0.04 | 0.70 | 0.99 | 0.98 | 0.97 | |
2013 | 1.44 | 1.75 | 2.32 | −0.86 | 0.89 | 1.34 | 0.96 | 0.94 | 0.92 | |
Mean | 1.21 | 1.38 | 2.07 | −0.54 | −0.23 | 1.30 | 0.98 | 0.96 | 0.94 |
Model | Input Parameters | Location | Author/Ref. | R | MBE/ MJ·m−2 | RMSE/ MJ·m−2 |
---|---|---|---|---|---|---|
ANN | LST, DT, Precipitation, EVI, DOY, τ | Tibetan plateau/ China | Qin [46] | 0.89~0.99 | - | 0.86~1.85 |
ANN-S: S0, day length ANN-T: Tmax, Tmin ANN-ST: S0, day length, Tmax, Tmin | Tamil Nadu, India | Meenal [47] | 0.92~0.98 0.77~0.93 0.94~0.98 | 0.02~0.66 −0.14~0.33 −0.03~0.48 | 0.75~1.45 0.89~2.22 0.58~1.18 | |
T, Precipitation, RH, P, S0, Tmax, Tmin, Latitude, Longitude, Altitude | Southeast/ China | Zou [48] | 0.93~0.97 | - | - | |
Latitude, Longitude, Altitude, Year, Month, T, P, Wind speed, RH | Munbai, India | Premalatha [49] | - | - | 3.65 | |
LST, Latitude, Longitude, Altitude, Months | Austrlia | Deo [19] | 0.90~0.98 | - | 0.93~1.85 | |
Month, Latitude, Longitude, Altitude, Tmin, RH, Tmax, Bright Sunshine, Wind Speed, CF | Bangladesh | Abedin [1] | 0.83 | - | - | |
LM-BP: AOT, CF, COT, PWV, T, S0, P, Pw, RH | Shaanxi/China | Our study | 0.93~0.99 | 0.15 | 1.34 | |
Empirical model | Hargreaves-Samani: Tmax, Tmin | Mexico | Rivero [13] | 0.57~0.77 | - | 2.86~3.63 |
Empirical model: S, S0, H0 | China | Chen [32] | - | 1.98~2.7 | - | |
Bristow and Campbell: Tmax, Tmin | China | Chen [33] | - | 1.51 | - | |
Abdalla model: H0, S0, RH, T | Turkey | Citakoglu [34] | 0.91 | 43.95 | - | |
MLR: AOT, CF, COT, PWV, T, S0, P, Pw, RH | Shaanxi/China | Our study | 0.76~0.99 | 1.31 | 2.46 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Wang, W.; Li, J. An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products. Energies 2018, 11, 3510. https://doi.org/10.3390/en11123510
Feng J, Wang W, Li J. An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products. Energies. 2018; 11(12):3510. https://doi.org/10.3390/en11123510
Chicago/Turabian StyleFeng, Jiaojiao, Weizhen Wang, and Jing Li. 2018. "An LM-BP Neural Network Approach to Estimate Monthly-Mean Daily Global Solar Radiation Using MODIS Atmospheric Products" Energies 11, no. 12: 3510. https://doi.org/10.3390/en11123510