Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure
Abstract
:1. Introduction
2. Description of the Proposed Machine
3. FEM Analysis
3.1. Specifications of the Proposed Machine
3.2. Novel Hybrid Permanent Magnet Structure
3.3. Induced Voltage
3.4. Output Power and Electromagnetic Force
4. Experimental Setup
4.1. Experimental Setup
4.2. Equivalent Stroke Length
5. Validation by Experiment
5.1. Induced Voltage
5.2. Output Power and Power Density
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abdelkareem, M.A.A.; Xu, L.; Ali, M.K.A.; Elagouz, A.; Mi, J.; Guo, S.; Liu, Y.; Zuo, L. Vibration energy harvesting in automotive suspension system: A detailed review. Appl. Energy 2018, 229, 672–699. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; John, S. A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems. Energies 2018, 11, 1167. [Google Scholar] [CrossRef]
- ClearMotion—Technology. Available online: http://www.clearmotion.com/technology (accessed on 7 June 2018).
- DPCcars New 2018 Audi A8 Active Suspension. Available online: https://www.youtube.com/watch?v=P7QQLxthHyQ (accessed on 29 November 2018).
- Here’s How Audi’s New Technology Harnesses Suspension Movement to Boost MPG. Available online: https://jalopnik.com/heres-how-audis-new-technology-harnesses-suspension-mov-1785122614 (accessed on 6 November 2018).
- Audi unveils suspension-energy regeneration technology. Available online: https://www.motorauthority.com/news/1092944_audi-unveils-suspension-energy-regeneration-technology (accessed on 6 November 2018).
- Experimental verification of energy-regenerative feasibility for an automotive electrical suspension system-IEEE Conference Publication. Available online: https://ieeexplore.ieee.org/document/4456407 (accessed on 6 November 2018).
- Cassidy, I.L.; Scruggs, J.T.; Behrens, S.; Gavin, H.P. Design and experimental characterization of an electromechanical transducer for large-scale vibratory energy harvesting applications. J. Intell. Mater. Syst. Stuct. 2011. [Google Scholar] [CrossRef]
- Zhang, P.S. Design of Electromagnetic Shock Absorbers for Energy Harvesting for Energy Harvesting from Vehicle Suspensions. Master Thesis, Stony Brook University, Stony Brook, NY, USA, 2010. [Google Scholar]
- Li, Z.; Zuo, L.; Luhrs, G.; Lin, L.; Qin, Y. Electromagnetic Energy-Harvesting Shock Absorbers: Design, Modeling, and Road Tests. IEEE Trans. Veh. Technol. 2013, 62, 1065–1074. [Google Scholar] [CrossRef]
- Zuo, L.; Scully, B.; Shestani, J.; Zhou, Y. Design and characterization of an electromagnetic energy harvester for vehicle suspensions. Smart Mater. Struct. 2010, 19, 045003. [Google Scholar] [CrossRef]
- Tang, X.; Lin, T.; Zuo, L. Design and Optimization of a Tubular Linear Electromagnetic Vibration Energy Harvester. IEEE/ASME Trans. Mechatron. 2014, 19, 615–622. [Google Scholar] [CrossRef]
- Duong, M.T.; Chun, Y.D.; Han, P.W.; Park, B.G.; Bang, D.J.; Lee, J.K. Design of An Electromagnetic Energy Harvesting System Applied to The Shock Absorber of A Sport Utility Vehicle. Available online: http://www.dbpia.co.kr (accessed on 4 June 2018).
- Gysen, B.L.J.; Paulides, J.J.H.; Janssen, J.L.G.; Lomonova, E.A. Active Electromagnetic Suspension System for Improved Vehicle Dynamics. IEEE Trans. Veh. Technol. 2010, 59, 1156–1163. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, M.F. Feasibility study of an electromagnetic shock absorber with position sensing capability. In Proceedings of the 2008 34th Annual Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008. [Google Scholar]
- Goldner, R.B.; Zerigian, P. Electromagnetic linear generator and shock absorber 2005. Available online: https://patents.google.com/patent/US6952060B2/en (accessed on 29 November 2018).
- Zuo, L.; Tang, X.; Zhang, P.S. Electricity generating shock absorbers 2013. Available online: https://patents.google.com/patent/US20130127175A1/en (accessed on 29 November 2018).
- Li, P.; Zuo, L.; Lu, J.; Xu, L. Electromagnetic regenerative suspension system for ground vehicles. In Proceedings of the 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), San Diego, CA, USA, 5–8 October 2014. [Google Scholar]
- Gupta, D.A.; Mulcahy, D.T.M.; Hull, D.J.R. Electromagnetic Shock Absorbers. 4. Available online: https://pdfs.semanticscholar.org/f1f1/ef251e2435cd0ea230eed520544c662edd2e.pdf (accessed on 30 November 2018).
- Duong, M.-T.; Chun, Y.-D. Design of an Electromagnetic Energy Harvesting System Applied to Shock Absorber in Sport Utility Vehicle. J. Magn. 2018, 23, 392–398. [Google Scholar] [CrossRef]
- Duong, M.-T.; Chun, Y.-D.; Bang, D.-J. Improvement of Tubular Permanent Magnet Machine Performance Using Dual-Segment Halbach Array. Energies 2018, 11, 3132. [Google Scholar] [CrossRef]
- Guo, S.; Xu, L.; Liu, Y.; Guo, X.; Zuo, L. Modeling and Experiments of a Hydraulic Electromagnetic Energy-Harvesting Shock Absorber. IEEE/ASME Trans. Mechatron. 2017, 22, 2684–2694. [Google Scholar] [CrossRef]
- Ebrahimi, B.; Khamesee, M.B.; Golnaraghi, F. Eddy current damper feasibility in automobile suspension: modeling, simulation and testing. Smart Mater. Struct. 2009, 18, 015017. [Google Scholar] [CrossRef]
- Asadi, E.; Ribeiro, R.; Khamesee, M.B.; Khajepour, A. Analysis, Prototyping, and Experimental Characterization of an Adaptive Hybrid Electromagnetic Damper for Automotive Suspension Systems. IEEE Trans. Veh. Technol. 2017, 66, 3703–3713. [Google Scholar] [CrossRef]
- Ebrahimi, B. Development of Hybrid Electromagnetic Dampers for Vehicle Suspension Systems. 192. Available online: https://uwspace.uwaterloo.ca/handle/10012/4375 (accessed on 29 November 2018).
Item | Value | Unit |
---|---|---|
Outer diameter | 110 | mm |
Axial length | 243 | mm |
Inner diameter | 40 | mm |
Magnetic air gap | 0.7 | mm |
Inner iron thickness | 2.4 | mm |
Radial PM thickness | 4.2 | mm |
Axial PM thickness | 12.4 | mm |
Spacer thickness | 8.2 | mm |
Pole pitch | 27 | mm |
Radial PM width | 18 | mm |
Axial PM width | 9 | mm |
Tooth thickness | 14.5 | mm |
Tooth width | 8.5 | mm |
Number of turns per slot | 114 | turns |
Back iron thickness | 5 | mm |
Radial PM material | NdFeB, = 1.26 T, = 1.05 at 20 °C | --- |
Axial PM material | NdFeB, = 1.40 T, = 1.05 at 20 °C | --- |
Core material | S20C | --- |
Inner iron material | Stainless steel | --- |
Stroke Length(p-p) (mm) | Maximum Power (W) | Average Power (W) |
---|---|---|
10.0 | 259.0 | 108.5 |
11.25 | 259.6 | 103.2 |
12.0 | 260.1 | 100.2 |
Vibrating Speed (m/s) | Maximum Power (W) | Average Power (W) | ||||
---|---|---|---|---|---|---|
2D | 3D | Exp. | 2D | 3D | Exp. | |
0.100 | 42.8 | 40.3 | 39.4 | 16.3 | 15.3 | 14.3 |
0.125 | 66.7 | 62.4 | 60.5 | 25.4 | 23.7 | 21.3 |
0.150 | 95.7 | 89.7 | 91.0 | 36.5 | 34.2 | 31.0 |
0.175 | 129.5 | 121.2 | 120.1 | 49.4 | 46.2 | 40.4 |
0.200 | 168.4 | 157.5 | 148.7 | 64.3 | 60.2 | 54.8 |
0.225 | 212.0 | 198.5 | 189.7 | 80.9 | 75.8 | 66.0 |
0.250 | 260.1 | 243.7 | 225.0 | 100.1 | 93.9 | 83.1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, M.-T.; Chun, Y.-D.; Hong, D.-K. Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure. Energies 2018, 11, 3352. https://doi.org/10.3390/en11123352
Duong M-T, Chun Y-D, Hong D-K. Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure. Energies. 2018; 11(12):3352. https://doi.org/10.3390/en11123352
Chicago/Turabian StyleDuong, Minh-Trung, Yon-Do Chun, and Do-Kwan Hong. 2018. "Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure" Energies 11, no. 12: 3352. https://doi.org/10.3390/en11123352
APA StyleDuong, M.-T., Chun, Y.-D., & Hong, D.-K. (2018). Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure. Energies, 11(12), 3352. https://doi.org/10.3390/en11123352