On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry
Abstract
:1. Introduction
2. Methodology
2.1. Instrument Structure and Parameters
2.1.1. Structure
2.1.2. Parameters
2.2. Analysis Approach
3. Testing Results and Analysis
3.1. Testing Results with Standard Gases
3.2. Testing Results On-Site
3.3. Dynamics
3.4. Stability
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De Faria, H., Jr.; Costa, J.G.S.; Olivas, J.L.M. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis. Renew. Sustain. Energy Rev. 2015, 46, 201–209. [Google Scholar] [CrossRef]
- International Electrotechnical Commission. Mineral Oil-Impregnated Electrical Equipment in Service—Guide to the Interpretation of Dissolved and Free Gases Analysis; IEC 60599; International Electrotechnical Commission (IEC): Geneva, Switzerland, 1999. [Google Scholar]
- Transformers Committee. Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers; IEEE Std C57.104; IEEE: New York, NY, USA, 1991. [Google Scholar]
- Bakar, N.A.; Abu-Siada, A. A New Method to Detect Dissolved Gases in Transformer Oil using NIR-IR Spectroscopy. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 409–419. [Google Scholar] [CrossRef]
- Arakelian, V.G. The Long Way to the Automatic Chromatographic Analysis of Gases Dissolved in Insulating Oil. IEEE Electr. Insul. Mag. 2004, 20, 8–25. [Google Scholar] [CrossRef]
- Godina, R.; Rodrigues, E.M.; Matias, J.C.; Catalão, J.P. Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges. Energies 2015, 8, 12147–12186. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Chen, X.; Peng, S.; Li, J. Canonical Correlation Between Partial Discharges and Gas Formation in Transformer Oil Paper Insulation. Energies 2012, 5, 1081–1097. [Google Scholar] [CrossRef] [Green Version]
- ASTM 3612. Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar]
- McNair, H.M.; Bonelli, E.J. Basic Gas Chromatography; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- Zhou, J.Z.; Wen, X.H. Maintenance and roubleshooting of gas chromatograph. Lab. Sci. 2012, 15, 176–178. [Google Scholar]
- Jacob, L.; Guiochon, G. Step Increase of the Carrier Gas Inlet Pressure in Gas Chromatography. Nature 1967, 213, 491–492. [Google Scholar] [CrossRef]
- Korolev, A.A.; Shiryaeva, V.E.; Popova, T.P.; Kurganov, A.A. Dependence of the efficiency of a capillary column in gas chromatography on the relative pressure of the carrier gas. J. Anal. Chem. 2011, 66, 184–188. [Google Scholar] [CrossRef]
- Korolev, A.A.; Shiryaeva, V.E.; Popova, T.P.; Kozin, A.V.; Kurganov, A.A. The influence of carrier gas pressure on the retention of sorbates on monolithic capillary columns in gas chromatography. Russ. J. Phys. Chem. 2009, 83, 670–676. [Google Scholar] [CrossRef]
- He, Y.; Tang, L.; Wu, X.; Hou, X.; Lee, Y.I. Spectroscopy: The Best Way Toward Green Analytical Chemistry. Appl. Spectrosc. Rev. 2007, 42, 119–138. [Google Scholar] [CrossRef]
- Benounis, M.; Aka-Ngnui, T.; Jaffrézic, N.; Dutasta, J.P. NIR and Optical fiber sensor for gases detection produced by transformation oil degradation. Sens. Actuator B 2008, 141, 76–83. [Google Scholar] [CrossRef]
- Zhao, A.X.; Tang, X.J.; Zhang, Z.H.; Liu, J.H. The DGA interpretation method using relative content of characteristic gases and gas-ratio combinations for fault diagnosis of oil-immersed power transformers. In Proceedings of the 2014 International Symposium on Electrical Insulating Materials, Niigata, Japan, 1–5 June 2014; pp. 124–127. [Google Scholar]
- Mao, Z.; Wen, J. Detection of dissolved gas in oil-insulated electrical apparatus by photoacoustic spectroscopy. IEEE Electr. Insul. Mag. 2015, 31, 7–14. [Google Scholar] [CrossRef]
- Bakar, N.; Abu-Siada, A.; Islam, S. A review of dissolved gas analysis measurement and interpretation techniques. IEEE Electr. Insul. Mag. 2014, 30, 39–49. [Google Scholar] [CrossRef]
- Skelly, D. The Transition to Next-Generation Online DGA Monitoring TechnologiesiUtilizing Photo-Acoustic Spectroscopy; General Electric: Boston, MA, USA, 2013. [Google Scholar]
- Tang, X.; Li, Y.; Zhu, L.; Zhao, A.; Liu, J. On-line multi-component alkane mixture quantitative analysis using Fourier transform infrared spectrometer. Chemom. Intell. Lab. Syst. 2015, 146, 371–377. [Google Scholar] [CrossRef]
- Sánchez, A.; Eddings, E.; Mondragón, F. Fourier Transform Infrared (FTIR) Online Monitoring of NO, N2O, and CO2 during Oxygen-Enriched Combustion of Carbonaceous Materials. Energy Fuels 2010, 24, 4849–4853. [Google Scholar] [CrossRef]
- Liang, Y.; Tang, X.; Zhang, X.; Tian, F.; Sun, Y.; Dong, H. Portable Gas Analyzer Based on Fourier Transform Infrared Spectrometer for Patrolling and Examining Gas Exhaust. J. Spectrosc. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Tang, X.; Liang, Y.; Dong, H.; Sun, Y.; Luo, H. Analysis of Index Gases of Coal Spontaneous Combustion Using Fourier Transform Infrared Spectrometer. J. Spectrosc. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Babikov, Y.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Bizzocchi, L.; Boudon, V.; Brown, L.R.; et al. The HITRAN 2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2013, 130, 4–50. [Google Scholar] [CrossRef] [Green Version]
- Kramida, A.; Ralchenko, Y.; Reader, J.; NIST-ASD-Team. NIST Atomic Spectra Database (Version 5.2). Available online: www.nist.gov/pml/data/asd.cfm (accessed on 24 December 2017).
- Stout, F.; Kalivas, J.H.; Héberger, K. Wavelength Selection for Multivariate Calibration Using Tikhonov Regularization. Appl. Spectrosc. 2007, 61, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Pereira, F.; Bezerra, F.; Junior, S.; Santos, J.; Chabu, I.; Souza, G.; Micerino, F.; Nabeta, S.I. Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations. Energies 2018, 11, 1691. [Google Scholar] [CrossRef]
- Bodzenta, J.; Burak, B.; Gacek, Z.; Jakubik, W.P.; Kochowski, S.; Urbańczyk, M. Thin palladium film as a sensor of hydrogen gas dissolved in transformer oil. Sens. Actuator B 2002, 87, 82–87. [Google Scholar] [CrossRef]
- Cao, D. Gas Chromatography for Analyzing Power Transformer Oil and Approach for Fault Diagnosis; China Electric Power Press: Beijing, China, 2010. [Google Scholar]
- Zhang, Z.; Xiao, D. A Small Vacuum On-line Extraction Technology for the Automatic Chromatographic Analysis of Gas Dissolved in Insulating Oil. Autom. Electr. Power Syst. 2007, 31, 92–96. [Google Scholar]
- Zhao, A.; Tang, X.; Li, W.; Zhang, Z.; Liu, J. The piecewise two points auto-linear correlated correction method for Fourier transform infrared baseline wander. Spectrosc. Lett. 2015, 48, 274–279. [Google Scholar] [CrossRef]
- IEC 60567. Oil-Filled Electrical Equipment-Sampling of Gases and Analysis of Free and Dissolved Gases-Guidance; The International Electrotechnical Commission (IEC): Geneva, Switzerland, 2011. [Google Scholar]
- Griffiths, P.R.; de Haseth, J.A. Fourier Transform Infrared Spectrometery, 2nd ed.; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Tang, X.; Zhang, F.; Wang, W.; Tang, C.; Liang, Y.; Tian, F.; Sun, Y.; Dong, H. Identification and treatment approach for spectral baseline distortion in processing of gas analysis online by Fourier transform infrared spectroscopy. Spectrosc. Lett. 2018, 51, 134–138. [Google Scholar] [CrossRef]
- Zhao, A.X.; Tang, X.J.; Wang, E.Z.; Zhang, Z.H.; Liu, J.H. Quantitative analysis of transformer oil dissolved gases using FTIR. Spectrosc. Spectr. Anal. 2013, 33, 2407–2410. [Google Scholar]
- Liu, X.; Zhou, F.; Huang, F. Research on on-line DGA using FTIR [power transformer insulation testing]. In Proceedings of the International Conference on Power System Technology, Kunming, China, 13–17 October 2002; Volume 3, pp. 1875–1880. [Google Scholar]
- Saha, T.K. Review of modern diagnostic techniques for assessing insulation condition in aged transformers. IEEE Trans. Dielectr. Electr. Insul. 2003, 10, 903–917. [Google Scholar] [CrossRef] [Green Version]
- Yao, C.; Wang, S.; Peng, G.; Li, X.; Zeng, L. A Study on the Measurement Results of Formaldehyde Emissions from SI Engine Fueled with Methanol/Gasoline Blends by FTIR and Chromatography. Automot. Eng. 2014, 7, 804–809. [Google Scholar]
Gases | Detection Limits/(µL/L) | |
---|---|---|
Factory Acceptance Tests | Equipment in Service | |
H2 | 2 | 5 |
Hydrocarbons | 0.1 | 1 |
CO | 5.0 | 25 |
CO2 | 10 | 25 |
Atmospheric gases | 50 | 50 |
Item | Gas | Root Mean Square | Maximal Error | Item | Gas | Root Mean Square | Maximal Error |
---|---|---|---|---|---|---|---|
1 | CH4 | 0.015 | 0.026 | 7 | C3H6 | 0.031 | 0.057 |
2 | C2H6 | 0.008 | 0.034 | 8 | C2H2 | 0.005 | 0.009 |
3 | C3H8 | 0.031 | 0.057 | 9 | C3H4 | 0.036 | 0.068 |
4 | iso-C4H10 | 0.012 | 0.024 | 10 | CO | 0.018 | 0.057 |
5 | n-C4H10 | 0.031 | 0.054 | 11 | CO2 | 0.012 | 0.032 |
6 | C2H4 | 0.015 | 0.033 | - | - | - | - |
Item | Concentration Range/(µL/L) | Maximum Error/(µL/L) or Relative Error | Item | Concentration Range/(µL/L) | Maximum Error/(µL/L) or Relative Error |
---|---|---|---|---|---|
1 | ≤0.3 | 0.18% | 4 | 30–300 | 4.7% |
2 | 0.3–3 | 0.6% | 5 | 300–3000 | 3.5% |
3 | 3–30 | 9.5% | 6 | ≥3000 | 2.2% |
Date | CH4 | C2H6 | C2H4 | C2H2 | CO | CO2 | |
---|---|---|---|---|---|---|---|
19 January | Single | 0.0384 | 0 | 0.1745 | 0 | 0 | 51.73 |
Double | 0.0187 | 0 | 0.2772 | 0 | 0.061 | 39.78 | |
16 February | Single | 0.0011 | 0 | 0.4214 | 0 | 0 | 71.16 |
Double | 0 | 0.0214 | 0.4476 | 0 | 0.048 | 68.13 | |
06 March | Single | 0.1353 | 0 | 0.4749 | 0 | 0.032 | 79.68 |
Double | 0.0888 | 0.0282 | 0.519 | 0 | 0 | 50.55 | |
GC in Lab | 0.11 | 0.01 | 0.42 | 0 | 0.02 | 50.03 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Wang, W.; Zhang, X.; Wang, E.; Li, X. On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry. Energies 2018, 11, 3192. https://doi.org/10.3390/en11113192
Tang X, Wang W, Zhang X, Wang E, Li X. On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry. Energies. 2018; 11(11):3192. https://doi.org/10.3390/en11113192
Chicago/Turabian StyleTang, Xiaojun, Wenjing Wang, Xuliang Zhang, Erzhen Wang, and Xuanjiannan Li. 2018. "On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry" Energies 11, no. 11: 3192. https://doi.org/10.3390/en11113192
APA StyleTang, X., Wang, W., Zhang, X., Wang, E., & Li, X. (2018). On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry. Energies, 11(11), 3192. https://doi.org/10.3390/en11113192