Economic Feasibility of Wave Energy Farms in Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Geographic Phase
2.3. Energy Phase
2.4. Economic Phase
2.5. Restrictions Phase
2.6. Case Study
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lindroth, S.; Leijon, M. Offshore wave power measurements—A review. Renew. Sustain. Energy Rev. 2011, 15, 4274–4285. [Google Scholar] [CrossRef]
- Falcão, A.F.O. Wave energy utilization: A review of the technologies. Renew. Sustain. Energy Rev. 2010, 14, 899–918. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Bhattacharjee, J.; Tello, M.; Pietra, L. Review and Classification of Wave Energy Converters; Guedes Soares, C., Garbatov, Y., Sutulo, S., Santos, T.A., Eds.; Taylor & Francis Group: Oxfordshire, UK, 2012. [Google Scholar]
- OWC Pico Plant Web Page OWC Pico Plant. Available online: http://www.pico-owc.net/cms.php?page=542&wnsid=dbb177dd9668f08318207830330904df (accessed on 5 September 2018).
- Caballero Santos, C. Estudio de Plantas de Producción de Energías Renovables con Aprovechamiento de la Energía del Mar. Bachelor’s Thesis, Universidad Carlos III de Madrid, Madrid, Spain, 2011. [Google Scholar]
- Clément, A.; McCullen, P.; Falcão, A.F.O. Wave energy in Europe: Current status and perspectives. Renew. Sustain. Energy Rev. 2002, 6, 405–431. [Google Scholar] [CrossRef]
- Sperboy Sperboy Webpage. Available online: http://www.sperboy.com (accessed on 1 September 2018).
- Ocean Linx Ocean Linx Wavepage. Available online: http://www.oceanlinx.com/ (accessed on 5 September 2018).
- Arena, F.; Romolo, A.; Malara, G.; Fiamma, V.; Laface, V. The First Full Operative U-OWC Plants in the Port of Civitavecchia. In ASME 2017 36th International Conference on Ocean Offshore & Arctic Engineering, Volume 10: Ocean Renewable Energy; ASME: New York, NY, USA, 2017; p. V010T09A022. [Google Scholar]
- Weinstein, A.; Fredrikson, G.; Jane, M.; Group, P.; Denmark, K.N.R. AquaBuOY—The Offshore Wave Energy Converter Numerical Modeling and Optimization; IEEE: San Diego, USA, 2003; pp. 1854–1859. [Google Scholar]
- Baddour, E. Energy from Waves and Tidal Currents. Available online: http://s3.amazonaws.com/zanran_storage/tecnet.pte.enel.it/ContentPages/106131895.pdf (accessed on 18 September 2018).
- Magagna, D.; Uihlein, A. Ocean energy development in Europe: Current status and future perspectives. Int. J. Mar. Energy 2015, 11, 84–104. [Google Scholar] [CrossRef]
- Wavebob Wavebob Webpage. Available online: http://www.wavebob.com (accessed on 1 September 2018).
- Carcas, M.C. The OPD Pelamis WEC: Current status and onward programme. Int. J. Ambient. Energy 2003, 24, 21–28. [Google Scholar] [CrossRef]
- Rusu, E.; Guedes Soares, C. Coastal impact induced by a Pelamis wave farm operating in the Portuguese nearshore. Renew. Energy 2013, 58, 34–49. [Google Scholar] [CrossRef]
- McCabe, A.P.; Bradshaw, A.; Meadowcroft, J.A.C.; Aggidis, G. Developments in the design of the PS Frog Mk 5 wave energy converter. Renew. Energy 2006, 31, 141–151. [Google Scholar] [CrossRef]
- Ruellan, M.; Ben Ahmed, H.; Multon, B.; Josset, C.; Babarit, A.; Clement, A. Design Methodology for a SEAREV Wave Energy Converter. IEE Trans. Energy Convers. 2010, 25, 760–767. [Google Scholar] [CrossRef]
- Awsocean Awsocean Webpage. Available online: http://www.awsocean.com/ (accessed on 1 September 2018).
- AW-Energy Web Page AW-Energy. Available online: http://aw-energy.com/about-waveroller/wave-farms (accessed on 1 September 2018).
- Babarit, A.; Hals, J.; Muliawan, M.J.; Kurniawan, A.; Moan, T.; Krokstad, J. Numerical benchmarking study of a selection of wave energy converters. Renew. Energy 2012, 41, 44–63. [Google Scholar] [CrossRef]
- Pérez-Collazo, C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef]
- Veigas, M.; López, M.; Iglesias, G. Assessing the optimal location for a shoreline wave energy converter. Appl. Energy 2014, 132, 404–411. [Google Scholar] [CrossRef]
- Page, W.D.W. Wave Dragon Technology. Available online: http://www.wavedragon.net (accessed on 7 September 2016).
- Ram, K.; Narayan, S.; Ahmed, M.R.; Nakavulevu, P.; Lee, Y.H. In situ near-shore wave resource assessment in the Fiji Islands. Energy Sustain. Dev. 2014, 23, 170–178. [Google Scholar] [CrossRef]
- Kramer, M.M.; Marquis, L.; Frigaard, P. Performance Evaluation of the Wavestar Prototype. In Proceedings of the 9th EWTEC 2011: Proceedings of the 9th European Wave and Tidal Conference, Southampton, UK, 5–9 September 2011. [Google Scholar]
- Elwood, D.; Yim, S.C.; Prudell, J.; Stillinger, C.; von Jouanne, A.; Brekken, T.; Brown, A.; Paasch, R. Design, construction, and ocean testing of a taut-moored dual-body wave energy converter with a linear generator power take-off. Renew. Energy 2010, 35, 348–354. [Google Scholar] [CrossRef]
- Falcão, A.F.O.; Cândido, J.J.; Justino, P.A.P.; Henriques, J.C.C. Hydrodynamics of the IPS buoy wave energy converter including the effect of non-uniform acceleration tube cross section. Renew. Energy 2012, 41, 105–114. [Google Scholar] [CrossRef]
- Veigas, M.; Carballo, R.; Iglesias, G. Wave and offshore wind energy on an island. Energy Sustain. Dev. 2014, 22, 57–65. [Google Scholar] [CrossRef]
- Liu, Z.; Qu, N.; Han, Z.; Zhang, J.; Zhang, S.; Li, M.; Shi, H. Study on energy conversion and storage system for a prototype buoys-array wave energy converter. Energy Sustain. Dev. 2016, 34, 100–110. [Google Scholar] [CrossRef]
- Martinelli, L.; Zanuttigh, B.; Kofoed, J.P. Selection of design power of wave energy converters based on wave basin experiments. Renew. Energy 2011, 36, 3124–3132. [Google Scholar] [CrossRef]
- Martinelli, L.; Zanuttigh, B.; Kofoed, J.P. Statistical analysis of power production from OWC type wave energy converters. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; pp. 295–303. [Google Scholar]
- Zanuttigh, B.; Martinelli, L.; Castagnetti, M.; Ruol, P.; Kofoed, J.P.; Frigaard, P. Integration of wave energy converters into coastal protection schemes. In Proceedings of the 3rd International Conference on Ocean Energy, Bilbao, Spain, 6–8 October 2010; pp. 1–7. [Google Scholar]
- Arena, F.; Barbaro, G.; Fiamma, V.; Laface, V.; Malara, G.; Romolo, A.; Strati, F.M. Resonant Wave Energy Converters: Concept development. Energia Ambiente e Innovazione 2015, 61, 52–57. [Google Scholar]
- Pizer, D.J.; Retzler, C.; Henderson, R.M.; Cowieson, F.L.; Shaw, M.G.; Dickens, B.; Hart, R. Pelamis WEC—Recent advances in the numerical and experimental modelling programme. In Proceedings of the 6th European Wave and Tidal Energy Conference, Glasgow, UK, 29 August–2 September 2005. [Google Scholar]
- Yemm, R.; Pizer, D.; Retzler, C.; Henderson, R. Pelamis: Experience from concept to connection. Philos. Trans. A. Math. Phys. Eng. Sci. 2012, 370, 365–380. [Google Scholar] [CrossRef] [PubMed]
- Kofoed, J.P.; Frigaard, P.; Friis-Madsen, E.; Sørensen, H.C. Prototype testing of the wave energy converter wave dragon. Renew. Energy 2006, 31, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Rusu, E.; Guedes Soares, C. Numerical Modelling to Estimate the Spatial Distribution of the Wave Energy in the Portuguese Nearshore. Renew. Energy 2009, 34, 1501–1516. [Google Scholar] [CrossRef]
- Bozzi, S.; Archetti, R.; Passoni, G. Wave electricity production in Italian offshore: A preliminary investigation. Renew. Energy 2014, 62, 407–416. [Google Scholar] [CrossRef]
- Iuppa, C.; Cavallaro, L.; Foti, E.; Vicinanza, D. Potential wave energy production by different wave energy converters around Sicily. J. Renew. Sustain. Energy 2015, 7, 061701. [Google Scholar] [CrossRef]
- Guedes Soares, C.; Bento, A.R.; Goncalves, M.; Silva, D.; Martinho, P. Numerical evaluation of the wave energy resource along the Atlantic European coast. Comput. Geosci. 2014, 71, 37–49. [Google Scholar] [CrossRef]
- Vannucchi, V.; Cappietti, L. Wave energy assessment and performance estimation of state of the artwave energy converters in italian hotspots. Sustainability 2016, 8, 1300. [Google Scholar] [CrossRef]
- Dalton, G.J. Non-technical barriers to wave energy in Europe. In Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 7–10 September 2009; pp. 1–28. [Google Scholar]
- Dalton, G.J.; Alcorn, R.; Lewis, T. Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America. Renew. Energy 2010, 35, 443–455. [Google Scholar] [CrossRef]
- O’Connor, M.; Lewis, T.; Dalton, G. Techno-economic performance of the Pelamis P1 and Wavestar at different ratings and various locations in Europe. Renew. Energy 2013, 50, 889–900. [Google Scholar] [CrossRef]
- Iglesias, G.; López, M.; Carballo, R.; Castro, A.; Fraguela, J.A.; Frigaard, P. Wave energy potential in Galicia (NW Spain). Renew. Energy 2009, 34, 2323–2333. [Google Scholar] [CrossRef]
- Veigas, M.; López, M.; Romillo, P.; Carballo, R.; Castro, A.; Iglesias, G. A proposed wave farm on the Galician coast. Energy Convers. Manag. 2015, 99, 102–111. [Google Scholar] [CrossRef]
- Beels, C.; Troch, P.; Kofoed, J.P.; Frigaard, P.; Vindahl Kringelum, J.; Carsten Kromann, P.; Heyman Donovan, M.; De Rouck, J.; De Backer, G. A methodology for production and cost assessment of a farm of wave energy converters. Renew. Energy 2011, 36, 3402–3416. [Google Scholar] [CrossRef]
- O’Connor, M.; Lewis, T.; Dalton, G. Operational expenditure costs for wave energy projects and impacts on financial returns. Renew. Energy 2013, 50, 1119–1131. [Google Scholar] [CrossRef] [Green Version]
- Silva, D.; Bento, A.R.; Martinho, P.; Guedes Soares, C. High Resolution local wave energy modelling in the Iberian Peninsula. Energy 2015, 91, 1099–1112. [Google Scholar] [CrossRef]
- Silva, D.; Martinho, P.; Guedes Soares, C. Wave energy distribution along the Portuguese continental coast based on a thirty three years hindcast. Renew. Energy 2018, 127, 1064–1075. [Google Scholar] [CrossRef]
- Bento, A.R.; Rusu, E.; Martinho, P.; Guedes Soares, C. Assessment of the changes induced by a wave farm in the nearshore wave conditions. Comput. Geosci. 2014, 71, 50–61. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Filgueira-Vizoso, A.; Carral-Couce, L.; Formoso, J.Á.F. Economic feasibility of floating offshore wind farms. Energy 2016, 112, 868–882. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Diaz-Casas, V. Economic influence of location in floating offshore wind farms. Ocean Eng. 2015, 107, 13–22. [Google Scholar] [CrossRef]
- Short, W.; Packey, D.; Holt, T. A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 1995. [Google Scholar]
- Hertenstein, J.H.; Mckinnon, S.M. Solving the puzzle of the cash flow statement. Bus. Horiz. 1997, 40, 69–76. [Google Scholar] [CrossRef]
- Castro-Santos, L.; Prado, G.; Costa, P.; Estanqueiro, A. Methodology to design an economic and strategic offshore wind energy Roadmap in Portugal. In Proceedings of the 10th Deep Sea Wind R&D Conference, Trondheim, Norway, 24–25 January 2013; pp. 168–176. [Google Scholar]
- EMEC Pelamis Wave Power. Available online: http://www.emec.org.uk/about-us/wave-clients/pelamis-wave-power/ (accessed on 7 September 2016).
- Finavera Finavera Webpage. Available online: http://www.finavera.com/ (accessed on 1 September 2018).
- Silva, D.; Rusu, E.; Guedes Soares, C. Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore. Energies 2013, 6, 1344–1364. [Google Scholar] [CrossRef] [Green Version]
Concept | Pelamis | AquaBuOY | Wave Dragon | Units | |
---|---|---|---|---|---|
Number of WECs per line | 7 | 21 | 3 | WECs/line | |
Number of lines | 21 | 21 | 9 | lines | |
Total number of WECs in the farm | 147 | 441 | 27 | - | |
Main dimension | 4 | 6 | 54 | m | |
Power of each WEC | 0.75 | 0.25 | 4 | MW | |
Total power of the farm | 110.25 | 110.25 | 108.00 | MW | |
110,250 | 110,250 | 108,000 | kW |
Scenario | Electric Tariff (€/MWh) |
---|---|
Scenario 1 | 300 |
Scenario 2 | 400 |
Scenario 3 | 600 |
Te (s) Hs (m) | Power Matrix (in kW) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 5.5 | 6 | 6.5 | 7 | 7.5 | 8 | 8.5 | 9 | 9.5 | 10 | 10.5 | 11 | 11.5 | 12 | 12.5 | 13 | |
0.5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 22 | 29 | 34 | 37 | 38 | 38 | 37 | 35 | 32 | 29 | 26 | 23 | 21 | 0 | 0 | 0 |
1.5 | 32 | 50 | 65 | 76 | 83 | 86 | 86 | 83 | 78 | 72 | 65 | 59 | 53 | 47 | 42 | 37 | 33 |
2 | 57 | 88 | 115 | 136 | 148 | 153 | 152 | 147 | 138 | 127 | 116 | 104 | 93 | 83 | 74 | 66 | 59 |
2.5 | 89 | 138 | 180 | 212 | 231 | 238 | 238 | 230 | 216 | 199 | 181 | 163 | 146 | 130 | 116 | 103 | 92 |
3 | 129 | 198 | 260 | 305 | 332 | 340 | 332 | 315 | 292 | 266 | 240 | 219 | 210 | 188 | 167 | 149 | 132 |
3.5 | 0 | 270 | 354 | 415 | 438 | 440 | 424 | 404 | 377 | 362 | 326 | 292 | 260 | 230 | 215 | 202 | 180 |
4 | 0 | 0 | 462 | 502 | 540 | 546 | 530 | 499 | 475 | 429 | 384 | 366 | 339 | 301 | 267 | 237 | 213 |
4.5 | 0 | 0 | 544 | 635 | 642 | 648 | 628 | 590 | 562 | 528 | 473 | 432 | 382 | 356 | 338 | 300 | 266 |
5 | 0 | 0 | 0 | 739 | 726 | 731 | 707 | 687 | 670 | 607 | 557 | 521 | 472 | 417 | 369 | 348 | 328 |
5.5 | 0 | 0 | 0 | 750 | 750 | 750 | 750 | 750 | 737 | 667 | 658 | 586 | 530 | 496 | 446 | 395 | 355 |
6 | 0 | 0 | 0 | 0 | 750 | 750 | 750 | 750 | 750 | 750 | 711 | 633 | 619 | 558 | 512 | 470 | 415 |
6.5 | 0 | 0 | 0 | 0 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 743 | 658 | 621 | 579 | 512 | 481 |
7 | 0 | 0 | 0 | 0 | 0 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 676 | 613 | 584 | 525 |
7.5 | 0 | 0 | 0 | 0 | 0 | 0 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 686 | 622 | 593 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 750 | 690 | 625 |
Tp (s) Hs (m) | Power Matrix (in kW) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
1 | 0 | 0 | 8 | 11 | 12 | 11 | 10 | 8 | 7 | 0 | 0 | 0 | 0 |
1.5 | 0 | 13 | 17 | 25 | 27 | 26 | 23 | 19 | 15 | 12 | 12 | 12 | 7 |
2 | 0 | 24 | 30 | 44 | 49 | 47 | 41 | 34 | 28 | 23 | 23 | 23 | 12 |
2.5 | 0 | 37 | 47 | 69 | 77 | 73 | 64 | 54 | 43 | 36 | 36 | 36 | 19 |
3 | 0 | 54 | 68 | 99 | 111 | 106 | 92 | 77 | 63 | 51 | 51 | 51 | 27 |
3.5 | 0 | 0 | 93 | 135 | 152 | 144 | 126 | 105 | 86 | 70 | 70 | 70 | 38 |
4 | 0 | 0 | 0 | 122 | 176 | 198 | 188 | 164 | 137 | 112 | 91 | 91 | 49 |
4.5 | 0 | 0 | 0 | 223 | 250 | 239 | 208 | 173 | 142 | 115 | 115 | 115 | 62 |
5 | 0 | 0 | 0 | 250 | 250 | 250 | 250 | 214 | 175 | 142 | 142 | 142 | 77 |
5.5 | 0 | 0 | 0 | 250 | 250 | 250 | 250 | 250 | 211 | 172 | 172 | 172 | 92 |
Tp (s) Hs (m) | Power Matrix (in kW) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | |
1 | 160 | 250 | 360 | 360 | 360 | 360 | 360 | 360 | 320 | 280 | 250 | 220 | 180 |
2 | 640 | 700 | 840 | 900 | 1190 | 1190 | 1190 | 1190 | 1070 | 950 | 830 | 710 | 590 |
3 | 0 | 1450 | 1610 | 1750 | 2000 | 2620 | 2620 | 2620 | 2360 | 2100 | 1840 | 1570 | 1310 |
4 | 0 | 0 | 2840 | 3220 | 3710 | 4200 | 5320 | 5320 | 4430 | 3930 | 3440 | 2950 | 2460 |
5 | 0 | 0 | 0 | 4610 | 5320 | 6020 | 7000 | 7000 | 6790 | 6090 | 5250 | 3950 | 3300 |
6 | 0 | 0 | 0 | 0 | 6720 | 7000 | 7000 | 7000 | 7000 | 7000 | 6860 | 5110 | 4200 |
7 | 0 | 0 | 0 | 0 | 0 | 7000 | 7000 | 7000 | 7000 | 7000 | 7000 | 6650 | 5740 |
Tp (s) Hs (m) | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.63 | 0.41 | 0.93 | 1.26 | 0.70 | 0.38 | 0.11 | 0.06 | 0 | 0.03 | 0.02 | 0 | 0 |
2 | 2.43 | 5.93 | 3.38 | 5.67 | 6.77 | 8.50 | 7.23 | 2.68 | 0.06 | 0.77 | 0.22 | 0.06 | 0.02 |
3 | 0.01 | 1.27 | 6.20 | 2.07 | 1.10 | 2.79 | 7.73 | 6.05 | 0.07 | 2.19 | 0.41 | 0.22 | 0.04 |
4 | 0 | 0 | 0.44 | 2.98 | 0.58 | 0.38 | 1.55 | 3.66 | 0.07 | 2.28 | 0.39 | 0.24 | 0.03 |
5 | 0 | 0 | 0 | 0.53 | 1.10 | 0.30 | 0.25 | 1.11 | 0.03 | 1.57 | 0.30 | 0.24 | 0.01 |
6 | 0 | 0 | 0 | 0.02 | 0.23 | 0.54 | 0.09 | 0.13 | 0.01 | 0.68 | 0.47 | 0.19 | 0.05 |
7 | 0 | 0 | 0 | 0 | 0.02 | 0.16 | 0.20 | 0.03 | 0.01 | 0.09 | 0.11 | 0.22 | 0.04 |
Type of WEC | IRR | NPV |
---|---|---|
Wave Dragon | 4.74% | −67.56 M€ |
Pelamis | 11.94% | −561.52 M€ |
AquaBuOY | −50.94% | 2732.93 M€ |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Santos, L.; Silva, D.; Bento, A.R.; Salvação, N.; Guedes Soares, C. Economic Feasibility of Wave Energy Farms in Portugal. Energies 2018, 11, 3149. https://doi.org/10.3390/en11113149
Castro-Santos L, Silva D, Bento AR, Salvação N, Guedes Soares C. Economic Feasibility of Wave Energy Farms in Portugal. Energies. 2018; 11(11):3149. https://doi.org/10.3390/en11113149
Chicago/Turabian StyleCastro-Santos, Laura, Dina Silva, A. Rute Bento, Nadia Salvação, and C. Guedes Soares. 2018. "Economic Feasibility of Wave Energy Farms in Portugal" Energies 11, no. 11: 3149. https://doi.org/10.3390/en11113149