Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models
Abstract
:1. Introduction
2. A Hybrid Spatio-Temporal Forecasting Model
2.1. Spatial Modelling Using the Kriging Technique
2.2. Probabilistic Forecasting for Solar Power Using a Naïve Bayes Classifier
3. Experimental Study: Probabilistic Forecasting of Solar Power Outputs in South Korea
3.1. Estimating Weather Data at Solar Farm “A” Using the Kriging Technique
3.2. Probabilistic Forecasting for Solar Power Using a Naïve Bayes Classifier Technique
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- International Renewable Energy Agency. Renewable Capacity Highlights 2018. Available online: https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2018/Mar/RE_capacity_highlights_2018.pdf (accessed on 25 September 2018).
- PJM. PJM’s Evolving Resource Mix and System Reliability. 2017. Available online: https://www.pjm.com/~/media/library/reports-notices/special-reports/20170330-appendix-to-pjms-evolving-resource-mix-and-system-reliability.ashx (accessed on 20 September 2018).
- Chow, C.W.; Urquhart, B.; Lave, M.; Dominguez, A.; Kleissl, J.; Shields, J.; Washom, B. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy tested. Sol. Energy 2011, 85, 2881–2893. [Google Scholar] [CrossRef]
- Yang, H.; Kurtz, B.; Nguyen, D.; Urquhart, B.; Chow, C.W.; Ghonima, M.; Kleissl, J. Solar irradiance forecasting using a ground-based sky imager developed at UC San Diego. Sol. Energy 2014, 103, 502–524. [Google Scholar] [CrossRef]
- Perez, R.; Kivalov, S.; Schlemmer, J.; Hemker, K.; Hoff, T. Parameterization of site-specific short-term irradiance variability. Sol. Energy 2011, 85, 1343–1353. [Google Scholar] [CrossRef]
- Inman, R.H.; Hugo, T.C.P.; Carlos, F.M.C. Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 2013, 535–576. [Google Scholar] [CrossRef]
- NYISO. Solar Impact on Grid Operations—An Initial Assessment. 2016. Available online: http://www.nyiso.com/public/webdocs/markets_operations/services/planning/Documents_and_Resources/Special_Studies/Special_Studies_Documents/Solar%20Integration%20Study%20Report%20Final%20063016.pdf (accessed on 20 September 2018).
- Pelland, S.; Galanis, G.; Kallos, G. Solar and photovoltaic forecasting through post-processing of the global environmental multiscale numerical weather prediction model. Prog. Photovolt. Res. Appl. 2013, 21, 284–296. [Google Scholar] [CrossRef]
- Marquez, R.; Coimbra, C.F.M. Forecasting of global and direct solar irradiance using stochastic learning methods, ground experiments and the NWS database. Sol. Energy 2011, 85, 746–756. [Google Scholar] [CrossRef]
- Yang, D.; Jirutitijaroen, P.; Walsh, W.M. Hourly solar irradiance time series forecasting using cloud cover index. Sol. Energy 2012, 86, 3531–3543. [Google Scholar] [CrossRef]
- NREL. National Solar Radiation Data Base. Available online: https://rredc.nrel.gov/solar/old_data/nsrdb/ (accessed on 25 September 2018).
- Mandal, P.; Madhira, S.T.S.; Haque, A.U.; Meng, J.; Pineda, R.L. Forecasting power output of solar photovoltaic system using wavelet transform and artificial intelligence techniques. Procedia Comput. Sci. 2012, 12, 332–337. [Google Scholar] [CrossRef]
- Pedro, H.T.C.; Coimbra, C.F.M. Assessment of forecasting techniques for solar power production with no exogenous inputs. Sol. Energy 2012, 86, 2017–2028. [Google Scholar] [CrossRef]
- Marquez, R.; Pedro, H.T.C.; Coimbra, C.F.M. Hybrid solar forecasting method uses satellite imaging and ground telemetry as inputs to ANNs. Sol. Energy 2013, 92, 176–188. [Google Scholar] [CrossRef]
- Le, D.D.; Berizzi, A.; Bovo, C.; Ciapessoni, E.; Cirio, D.; Pitto, A.; Gross, G. A Probabilistic Approach to Power System Security Assessment under Uncertainty. In Proceedings of the 2013 IREP Symposium-Bulk Power Dynamics and Control, Rethymno, Greece, 25–30 August 2013. [Google Scholar]
- Murata, A.; Ohtake, H.; Oozeki, T. Modeling of uncertainty of solar Irradiance forecasts on numerical weather predictions with the estimation of multiple confidence intervals. Renew. Energy 2018, 117, 193–201. [Google Scholar] [CrossRef]
- Ramakrishna, R.; Scaglione, A.; Vittal, V. A Stochastic Model for Short-Term Probabilistic Forecast of Solar Photo-Voltaic Power. In Proceedings of the Asilomar Conference on Signals, Systems and Computers 2016, Pacific Grove, CA, USA, 6–9 November 2016. [Google Scholar]
- Abuella, M.; Chowdhury, B. Hourly probabilistic forecasting of solar power. In Proceedings of the 2017 North American Power Symposium, Morgantown, WV, USA, 17–19 September 2017. [Google Scholar]
- Lauret, P.; David, M.; Hugo, T.C.P. Probabilistic Solar Forecasting using Quantile Regression Models. Energies 2017, 10, 1591. [Google Scholar] [CrossRef]
- Massidda, L.; Marrocu, M. Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting. Energies 2018, 11, 1763. [Google Scholar] [CrossRef]
- Mohammed, A.A.; Aung, Z. Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation. Energies 2016, 9, 1017. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J. GEFCom2014 Probabilistic Solar Power Forecasting based on k-Nearest Neighbor and Kernel Density Estimator. In Proceedings of the IEEE International Conference on Power & Energy Society General Meeting, Denver, CO, USA, 26–30 July 2015. [Google Scholar]
- Hong, T.; Pinson, P.; Zareipour, H.; Troccoli, A.; Rob, J.H. Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond. Int. J. Forecast. 2016, 32, 896–913. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Sharma, P.; Irwin, D.; Shenoy, P. Predicting Solar Generation from Weather Forecasts Using Machine Learning. Smart Grid Communications. In Proceedings of the 2011 IEEE International Conference, Brussels, Belgium, 17–20 October 2011. [Google Scholar]
- Zafarani, R.; Eftekharnejad, S.; Patel, U. Assessing the Utility of Weather Data for Photovoltaic Power Prediction 2018. Available online: https://arxiv.org/pdf/1802.03913.pdf (accessed on 23 September 2018).
- Nomiyama, F.; Asai, J.; Murakami, T.; Murata, J. A study on global solar radiation forecasting using weather forecast data. Circuits and Systems. In Proceedings of the 2011 IEEE 54th International Midwest Symposium, Seoul, Korea, 7–10 August 2011. [Google Scholar]
- Stein, M.L. Interpolation of Spatial Data: Some Theory for Kriging; Springer: New York, NY, USA, 1999. [Google Scholar]
- Cressie, N. Spatial Prediction and Ordinary Kriging. Math. Geol. 1988, 20, 405–421. [Google Scholar] [CrossRef]
- Yamamoto, J.K. An Alternative Measure of the Reliability of Ordinary Kriging Estimates. Math. Geol. 2000, 32, 489–509. [Google Scholar] [CrossRef]
- Bracale, A.; Caramia, P.; Carpinelli, G.; Fazio, A.R.D.; Ferruzzi, G. A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control. Energies 2013, 6, 733–747. [Google Scholar] [CrossRef] [Green Version]
- Visscher, R.D.; Delouille, V.; Dupont, P.; Deledalle, C.A. Supervised classification of solar features using prior information. J. Space Weather Space Clim. 2015, 5, A34. [Google Scholar] [CrossRef] [Green Version]
- Quek, Y.T.; Woo, W.L.; Logenthiran, T. A naïve Bayes Classification Approach for Short-Term Forecast of Photovoltaic System. In Proceedings of the Sustainable Energy and Environmental Sciences, Singapore, 6–7 May 2017. [Google Scholar]
- Davig, T.; Hall, A.S. Recession Forecasting Using Bayesian Classification. Available online: https://www.kansascityfed.org/publications/research/rwp/articles/2016/recession-forecasting-bayesian-classification (accessed on 25 September 2018).
- Raschka, S. Naïve Bayes and Text Classification 1–Introduction and Theory. 2014. Available online: https://arxiv.org/abs/1410.5329 (accessed on 10 September 2018).
- Kim, S.B.; Han, K.S.; Rim, H.C.; Myaeng, S.H. Some Effective Techniques for Naïve Bayes Text Classification. IEEE Trans. Knowl. Data Eng. 2006, 18, 1457–1466. [Google Scholar]
- Gayathri, A.; Revathi, M.; Velmurugan, J. A survey on Weather forecasting by Data Mining. IJARCCE 2016, 5, 298–300. [Google Scholar]
- Widiss, R.; Porter, K. A Review of Variable Generation Forecasting in the West. Available online: https://www.nrel.gov/docs/fy14osti/61035.pdf (accessed on 20 September 2018).
- Dolara, A.; Grimaccia, F.; Leva, S.; Mussetta, M. Comparison of Training Approaches for Photovoltaic Forecasts by Means of Machine Learning. Appl. Sci. 2018, 8, 228. [Google Scholar] [CrossRef]
Name | Longitude | Latitude |
---|---|---|
MET1 | 37.57 | 126.96 |
MET2 | 37.47 | 126.92 |
MET3 | 37.27 | 126.98 |
MET4 | 37.33 | 127.94 |
MET5 | 37.90 | 127.73 |
MET6 | 37.67 | 128.71 |
MET7 | 37.80 | 128.85 |
MET8 | 37.75 | 128.89 |
MET9 | 36.77 | 126.49 |
MET10 | 36.63 | 127.44 |
MET11 | 36.37 | 127.37 |
MET12 | 34.81 | 126.38 |
MET13 | 35.28 | 126.47 |
MET14 | 35.84 | 127.11 |
MET15 | 35.37 | 127.12 |
MET16 | 35.17 | 126.89 |
MET17 | 34.94 | 127.69 |
MET18 | 34.62 | 126.76 |
MET19 | 34.76 | 127.21 |
MET20 | 35.42 | 126.69 |
MET21 | 35.10 | 129.03 |
MET22 | 36.22 | 127.99 |
MET23 | 36.57 | 128.70 |
MET24 | 36.43 | 129.04 |
MET25 | 35.51 | 127.74 |
MET26 | 35.81 | 129.20 |
MET27 | 35.32 | 128.28 |
MET28 | 35.16 | 128.04 |
MET29 | 35.22 | 128.67 |
MET30 | 35.22 | 128.89 |
Solar Farm | 35.22 | 126.31 |
Neighbor Point | Weight | Neighbor Point | Weight | Neighbor Point | Weight |
---|---|---|---|---|---|
MET1 | 0.016438 | MET11 | 0.018432 | MET21 | 0.017088 |
MET2 | 0.018829 | MET12 | 0.123704 | MET22 | 0.024010 |
MET3 | 0.017793 | MET13 | 0.379523 | MET23 | 0.020570 |
MET4 | 0.023736 | MET14 | 0.021432 | MET24 | 0.020350 |
MET5 | 0.023736 | MET15 | 0.020195 | MET25 | 0.021448 |
MET6 | 0.015201 | MET16 | -0.01156 | MET26 | 0.023946 |
MET7 | 0.012228 | MET17 | 0.020206 | MET27 | 0.017606 |
MET8 | 0.012259 | MET18 | 0.008242 | MET28 | 0.015003 |
MET9 | 0.024126 | MET19 | 0.022546 | MET29 | 0.014557 |
MET10 | 0.019265 | MET20 | 0.026276 | MET30 | 0.012812 |
Neighbor Point | Error (%) |
---|---|
MET1 | 15.2875 |
MET4 | 19.6477 |
MET9 | 19.2359 |
MET13 | 15.0040 |
MET22 | 15.1128 |
Month | NMAE (%) | Month | NMAE (%) |
---|---|---|---|
January | 5.159702 | July | 3.017107 |
February | 4.423764 | August | 2.969330 |
March | 5.136241 | September | 3.212500 |
April | 4.444066 | October | 4.488025 |
May | 3.479961 | November | 4.068056 |
June | 3.540152 | December | 3.355083 |
Operation Entity | 2013 Value |
---|---|
CASIO | MAE < 8% |
Idaho Power | MAE < 6.5% |
Xcel Energy | MAE < 9.8% |
Month | Proposed Model | Persistence |
---|---|---|
January | 5.159702 | 6.0136 |
February | 4.423764 | 7.7273 |
March | 5.136241 | 7.0781 |
April | 4.444066 | 9.9371 |
May | 3.479961 | 7.6248 |
June | 3.540152 | 9.3845 |
July | 3.017107 | 5.6085 |
August | 2.969330 | 4.6752 |
September | 3.212500 | 6.8424 |
October | 4.488025 | 9.2645 |
November | 4.068056 | 7.6265 |
December | 3.355083 | 7.0162 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nam, S.; Hur, J. Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models. Energies 2018, 11, 2982. https://doi.org/10.3390/en11112982
Nam S, Hur J. Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models. Energies. 2018; 11(11):2982. https://doi.org/10.3390/en11112982
Chicago/Turabian StyleNam, Seungbeom, and Jin Hur. 2018. "Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models" Energies 11, no. 11: 2982. https://doi.org/10.3390/en11112982
APA StyleNam, S., & Hur, J. (2018). Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models. Energies, 11(11), 2982. https://doi.org/10.3390/en11112982