One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks
Abstract
:1. Introduction
2. Methods
2.1. Setup of the ANN
2.2. Image Acquisitition and Data
2.3. Images Preprocessing
2.4. Cloud Locating and Cloud Movement Program
2.5. Creation and Training of the AllPicture Program and RingPicture Program
2.6. Validation of the New Model
3. Results
3.1. Analysis of One-Hour-Ahead Results
3.2. Analysis of the Daily Integrated Irradiation
3.3. Analysis of the Statistical Sampling
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hofmann, M.; Riechelmann, S.; Crisosto, C.; Mubarak, R.; Seckmeyer, G. Improved synthesis of global irradiance with one-minute resolution for PV system simulations. Int. J. Photoenergy 2014. [Google Scholar] [CrossRef]
- Statistiken. 2007. Available online: https://www.volker-quaschning.de/datserv/pv-welt/index.php (accessed on 9 February 2018).
- Bundesnetzagentur (2013). Available online: https://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetundGas/Unternehmen_Institutionen/ErneuerbareEnergien/ZahlenDatenInformationen/zahlenunddaten-node.html (accessed on 17 February 2018).
- Mathiesen, P.; Kleissl, J. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States. Sol. Energy 2011, 85, 967–977. [Google Scholar] [CrossRef]
- Martínez, L.M.; Vargas, M.; Rubio, F.R. Vision-Based System for the Safe Operation of a Solar Power Tower Plant; Springer: Berlin, Germany, 2002. [Google Scholar]
- Zhen, Z.; Wang, Z.; Wang, F.; Mi, Z.; Li, K. Research on a cloud image forecasting approach for solar power forecasting. Energy Procedia 2017, 142, 362–368. [Google Scholar] [CrossRef]
- Alonso, M.J.; Batlles, F.J.; Portillo, C. Solar irradiance forecasting at one-minute intervals for different sky conditions using sky camera images. Energy Convers. Manag. 2015, 105, 1166–1177. [Google Scholar] [CrossRef]
- Marquez, R.; Coimbra, C.F.M. Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy 2013, 91, 327–336. [Google Scholar] [CrossRef]
- Chu, Y.; Pedro, H.T.C.; Nonnenmacher, L.; Inman, R.H.; Liao, Z.; Coimbra, C.F.M. A Smart image-based cloud detection system for intrahour solar irradiance forecasts. J. Atmos. Ocean. Technol. 2014, 31, 1995–2007. [Google Scholar] [CrossRef]
- Chi, W.C.; Bryan, U.; Matthew, L.; Anthony, D.; Jan, K.; Janet, S.; Byron, W. Intra-hour forecasting with a total sky imager at the uc san diego solar energy testbed. Sol. Energy 2011, 85, 2881–2893. [Google Scholar]
- Wu, J.; Keong, C.C. Prediction of hourly solar radiation using a novel hybrid model of arma and tdnn. Sol. Energy 2011, 85, 808–817. [Google Scholar]
- Kamadinata, J.O.; Tan, L.K.; Tohru, S. Global Solar Radiation Prediction Methodology using Artificial Neural Networks for Photovoltaic Power Generation Systems. Smartgreens 2017. [Google Scholar] [CrossRef]
- Almeida, M.P.; Perpinán, O.; Navarrete, L. PV power forecast using a nonparametric PV model. Sol. Energy 2015, 115, 354–368. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Richard, P.; Sergey, K.; James, S.; Karl, H.J.; David, R.; Thomas, E.H. Validation of short and medium term operational solar radiation forecasts in the US. Sol. Energy 2010, 84, 2161–2172. [Google Scholar] [Green Version]
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Prog. Energy Combust. Sci. 2008, 34, 547–632. [Google Scholar] [CrossRef]
- Yang, H.Y.; Ye, H.; Wang, G.Z. Applications of chaos theory to load forecasting in power system. Relay 2005, 33, 26–30. [Google Scholar]
- Tohsing, K.; Schrempf, M.; Riechelmann, S.; Schilke, H.; Seckmeyer, G. Measuring high-resolution sky luminance distributions with a CCD camera. Appl. Opt. 2013, 52, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Anon. Available online: http://www.kippzonen.com/Product/13/CMP11-Pyranometer#.WXi1sK3qh-U (accessed on 23 May 2018).
- Yamashita, M.; Yoshimura, M.; Nakashizuka, T. Cloud Cover Estimation using Multitemporal Hemisphere Imageries. Inter. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2004, 35, 826–829. [Google Scholar]
- Schrempf, M. Entwicklung eines Algorithmus zur Wolkenerkennung in Digitalbildern des Himmels. Master’s Thesis, Institut für Meteorologie und Klimatologie, Hanover, Germany, 2012. [Google Scholar]
- Estimation, F. Full Vectorization of Solar Azimuth and Elevation Estimation-File Exchange-MATLAB Central. Available online: https://de.mathworks.com/matlabcentral/fileexchange/48594-full-vectorization-of-solar azimuth-and-elevation-estimation (accessed on 21 July 2015).
- Yang, J.; Lu, W.; Ma, Y.; Yao, W. An automated cirrus cloud detection method for a ground-based cloud image. J. Atmos. Ocean. Technol. 2012, 29, 527–537. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, L.; Zhang, Z.; Wang, C.; Xiao, B. Automatic cloud detection for all-sky images using superpixel segmentation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 354–358. [Google Scholar]
- Hadja, M.D.; Philippe, L.; Mathieu, D. Solar irradiation forecasting: State-of-the-art and proposition for future developments for small-scale insular grids. In Proceedings of the WREF 2012-World Renewable Energy Forum, Denver, CO, USA, 13–17 May 2012; pp. 1–8. [Google Scholar]
Step | Task | Input | Output |
---|---|---|---|
Step 1 (a) | Extraction of parameters from all-sky images as input for next steps. |
| |
Extraction of two extra inputs for next steps |
| ||
Step 1 (b) | Cloud Locating and Cloud Movement program (works with an ANN) |
| Cloud position one minute ahead |
Step 2 (a) | Creation of the AllPicture program (preconditioning for seasonal and diurnal variations) | For each image:
| GHISim |
Step 2 (b) | Creation of the RingPicture program | For each ring:
| GHISimFinal |
Step 3 | Validation |
|
|
ANN Programs | No. of Input Parameters | No. of Hidden Layers | No. of Neurons in the First Hidden Layer | No. of Neurons in the Second Hidden Layer | No. of Output Neurons |
---|---|---|---|---|---|
Cloud Locating and Cloud Movement program | 8 | 2 | 4 | 2 | 1 |
AllPicture program | 9 | 2 | 7 | 5 | 1 |
RingPicture program | 9 | 2 | 7 | 5 | 1 |
Simulation day | Models to compare | With Information from the Last Picture | When the Last Picture Does Not Provide Information Anymore | ||||||
---|---|---|---|---|---|---|---|---|---|
Day | Model | Minutes | RMSE (Wh/m2) | R2 | MAE (Wh/m2) | Minutes | RMSE (Wh/m2) | R2 | MAE (Wh/m2) |
18 Sepetember 2014 | ANN | 11 | 7 | 0.92 | 5 | 49 | 77 | 0.52 | 61 |
Persist | 14 | 0.85 | 12 | 69 | 0.38 | 98 | |||
14 August 2015 | ANN | 22 | 12 | 0.99 | 8 | 38 | 111 | 0.77 | 90 |
Persist | 111 | 0.77 | 74 | 149 | 0.13 | 116 | |||
21 August 2015 | ANN | 32 | 21 | 0.92 | 10 | 28 | 49 | 0.55 | 39 |
Persist | 51 | 0.58 | 29 | 72 | 0.17 | 65 | |||
10 Jane 2015 | ANN | 10 | 4 | 0.78 | 3 | 50 | 20 | 0.42 | 16 |
Persist | 7 | 0.71 | 6 | 14 | 0.64 | 13 |
Day | Hour | Total Measured Energy (Wh/m2) | Total Simulated Energy (Wh/m2) | Difference (Wh/m2) | RMSE (Wh/m2) | R2 | MAE (Wh/m2) |
---|---|---|---|---|---|---|---|
18 September 2014 | 14:01–15:00 | 414.8 | 412.3 | 2.5 | 69 | 0.61 | 50 |
14 August 2015 | 12:01–13:00 | 510 | 521 | 11 | 91 | 0.79 | 62 |
21 August 2015 | 16:01–17:00 | 197 | 203 | 6 | 37 | 0.84 | 24 |
10 January 2015 | 10:01–11:00 | 15 | 24 | 9 | 19 | 0.38 | 14 |
Model | RMSE (Wh/m2) | R2 | MAE (Wh/m2) |
---|---|---|---|
ANN | 65 | 0.98 | 30 |
Persistence | 91 | 0.91 | 63 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crisosto, C.; Hofmann, M.; Mubarak, R.; Seckmeyer, G. One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks. Energies 2018, 11, 2906. https://doi.org/10.3390/en11112906
Crisosto C, Hofmann M, Mubarak R, Seckmeyer G. One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks. Energies. 2018; 11(11):2906. https://doi.org/10.3390/en11112906
Chicago/Turabian StyleCrisosto, Cristian, Martin Hofmann, Riyad Mubarak, and Gunther Seckmeyer. 2018. "One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks" Energies 11, no. 11: 2906. https://doi.org/10.3390/en11112906
APA StyleCrisosto, C., Hofmann, M., Mubarak, R., & Seckmeyer, G. (2018). One-Hour Prediction of the Global Solar Irradiance from All-Sky Images Using Artificial Neural Networks. Energies, 11(11), 2906. https://doi.org/10.3390/en11112906