# Integration of Photovoltaic Power Units to Power Distribution System through Modular Multilevel Converter

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modelling of GC-MMC

_{u}, i

_{l}, V

_{Ci_u}, V

_{Ci_l}are upper/lower values for arm currents and capacitor voltages receptively. Moreover, d

_{i}V

_{dc}and V

_{a}are gating signal of the upper gate of the i-th cell, DC-link voltage and phase a voltage separately.

## 3. Fuzzy-Sliding Mode Control (FSMC) of GC-MMC

_{dc-ref}is the reference dc-link voltage and V

_{dc}is the actual dc-link voltage. The PV array’s voltage is remained close to a reference dc-link voltage. Then, the power control is implemented. To achieve this goal, current control strategy based on fuzzy sliding mode control is established. The details of suggested current controller are explained as follow.

_{dp_ref}, i

_{qp_ref}, i

_{dn_ref}and i

_{qp_ref}are reference currents of symmetrical dq components, respectively.

_{c,ref}is the reference SM capacitor voltage.

_{c,j}for each SM is obtained by the formula below:

_{k,j}is arm current and T

_{s}is the control time period.

_{ref}is a vector which it is included the reference values for state variables.

_{eq}+ k

_{w}·sgn(s)

_{w}is the switching gain.

## 4. Simulation Results and Analysis

## 5. Experimental Results

_{dc}≈ 20 V, it is expected the average value across any submodule at any given time, when the sorting algorithm is active, should be approximately 10.

_{fc}and the number of rule bases during designing of the fuzzy controller and it influences on both simulation and experimental results. From the simulation result, it is evident that the controller is capable to reduce the impact of the external events such as asymmetric grid voltage fault and it is very important during connection of photovoltaic systems to weak grid. From the simulation results, it can be observed that the proposed current controllers let retaining power as requested by the DC current source during and after the event. Despite the unbalance of AC voltages, the AC current controller can balance the resulting AC currents. As a result, the active as well as reactive powers start oscillating with double frequency of AC grid. Thanks to the developed current controller, the applied event is damped by the stored energy inside the MMC and consequently does not disturb the DC current and voltage.

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Martinez-Rodrigo, F.; Ramirez, D.; Rey-Boue, A.B.; de Pablo, S.; Herrero-de Lucas, L.C. Modular Multilevel Converters: Control and Applications. Energies
**2017**, 10, 1709. [Google Scholar] [CrossRef] - Marquardt, R. Modular Multilevel Converter topologies with DC-Short circuit current limitation. In Proceedings of the 8th International Conference on Power Electronics—ECCE Asia, Jeju, Korea, 30 May–3 June 2011; pp. 1425–1431. [Google Scholar]
- Song, Q.; Liu, W.; Li, X.; Rao, H.; Xu, S.; Li, L. A steady-state analysis method for a modular multilevel converter. IEEE Trans. Power Electron.
**2013**, 28, 3702–3713. [Google Scholar] [CrossRef] - Moranchel, M.; Bueno, E.; Sanz, I.; Rodríguez, F.J. New approaches to circulating current controllers for modular multilevel converters. Energies
**2017**, 10, 86. [Google Scholar] [CrossRef] - Moon, J.W.; Kim, C.S.; Park, J.W.; Kang, D.W.; Kim, J.M. Circulating current control in MMC under the unbalanced voltage. IEEE Trans. Power Deliv.
**2013**, 28, 1952–1959. [Google Scholar] [CrossRef] - Saeedifard, M.; Iravani, R. Dynamic performance of a modular multilevel back-to-back HVDC system. IEEE Trans. Power Deliv.
**2010**, 25, 2903–2912. [Google Scholar] [CrossRef] - Deng, F.; Chen, Z. A control method for voltage balancing in modular multilevel converters. IEEE Trans. Power Electron.
**2014**, 29, 66–76. [Google Scholar] [CrossRef] - Qin, J.; Saeedifard, M. Predictive control of a modular multilevel converter for a back-to-back HVDC system. IEEE Trans. Power Deliv.
**2012**, 27, 1538–1547. [Google Scholar] - Deng, Y.; Wang, Y.; Teo, K.H.; Harley, R.G. A Simplified Space Vector Modulation Scheme for Multilevel Converters. IEEE Trans. Power Electron.
**2016**, 31, 1873–1886. [Google Scholar] [CrossRef] - Yao, W.; Hu, H.; Lu, Z. Comparisons of Space-Vector Modulation and Carrier-Based Modulation of Multilevel Inverter. IEEE Trans. Power Electron.
**2008**, 23, 45–51. [Google Scholar] [CrossRef] - Li, X.; Song, Q.; Liu, W.; Rao, H.; Xu, S.; Li, L. Protection of Nonpermanent Faults on DC Overhead Lines in MMC-Based HVDC Systems. IEEE Trans. Power Deliv.
**2013**, 28, 483–490. [Google Scholar] [CrossRef] - Nami, A.; Liang, J.; Dijkhuizen, F.; Demetriades, G.D. Modular Multilevel Converters for HVDC Applications: Review on Converter Cells and Functionalities. IEEE Trans. Power Electron.
**2015**, 30, 18–36. [Google Scholar] [CrossRef] - Mehrasa, M.; Pouresmaeil, E.; Taheri, S.; Vechiu, I.; Catalão, J.P.S. Novel Control Strategy for Modular Multilevel Converters Based on Differential Flatness Theory. IEEE J. Emerg. Sel. Top. Power Electron.
**2018**, 6, 888–897. [Google Scholar] [CrossRef] - Mehrasa, M.; Pouresmaeil, E.; Akorede, M.F.; Zabihi, S.; Catalão, J.P.S. Function-based modulation control for modular multilevel converters under varying loading and parameters conditions. IET Gener. Transm. Distrib.
**2017**, 11, 3222–3230. [Google Scholar] [CrossRef] - Mehrasa, M.; Pouresmaeil, E.; Zabihi, S.; Vechiu, I.; Catalao, J.P.S. A multi-loop control technique for the stable operation of modular multilevel converters in HVDC transmission systems. Int. J. Electr. Power Energy Syst.
**2018**, 96, 194–207. [Google Scholar] [CrossRef] - Deng, Y.; Harley, R.G. Space-Vector Versus Nearest-Level Pulse Width Modulation for Multilevel Converters. IEEE Trans. Power Electron.
**2015**, 30, 2962–2974. [Google Scholar] [CrossRef] - Hajizadeh, A.; Norum, L.E.; Ahadpour shal, A. Nonlinear Control Structure of Grid Connected Modular Multilevel Converters. In Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPQ’17), Málaga, Spain, 4–6 April 2017. [Google Scholar]
- Slotine, J.E.; Li, W. Applied Nonlinear Control; Prentice-Hall: Upper Saddle River, NJ, USA, 1991. [Google Scholar]
- Rong-Jong, W. Fuzzy sliding-mode control using adaptive tuning technique. IEEE Trans. Ind. Electron.
**2007**, 54, 586–594. [Google Scholar] - Ghiasi, M.I.; Golkar, M.A.; Hajizadeh, A. Lyapunov Based-Distributed Fuzzy-Sliding Mode Control for Building Integrated-DC Microgrid with Plug-In Electric Vehicle. IEEE Access
**2017**, 5, 7746–7752. [Google Scholar] [CrossRef]

**Figure 10.**Dynamic response (generated active and reactive powers and capacitor voltage) of the GC-MMC during unbalanced voltage sag.

u_{fs} | $\mathit{s}$ | |||||||
---|---|---|---|---|---|---|---|---|

$\dot{s}$ | PB | PM | PS | ZE | NS | NM | NB | |

PB | NB | NB | NB | ZE | ZE | ZE | ZE | |

PM | NB | NB | NB | ZE | ZE | ZE | PS | |

PS | NB | NB | NM | ZE | ZE | PS | PM | |

ZE | NB | NM | NS | ZE | PS | PM | PB | |

NS | NM | NS | ZE | ZE | PM | PB | PB | |

NM | NS | ZE | ZE | ZE | PB | PB | PB | |

NB | ZE | ZE | ZE | ZE | PB | PB | PB |

Nominal Parameters | |
---|---|

SM capacitor initial voltage | 5892 V |

Rated line-line voltage | 10 kV |

Number of Cells per arm | 6 |

Arm inductance | 1.59 mH |

Arm resistance | 0.04 mΩ |

Cell capacitance | 100 µF |

Rated frequency | 60 Hz |

Carrier frequency | 600 Hz |

Real power reference | 0.05 MW |

Reactive power reference | 0.2 MVAr |

k_{fs} | 20 |

δ | 10% of rated values |

ε | 25% of rated value |

Arm inductance | 5 mH |

DC link voltage | 20 V |

Cell capacitance | 3.3 mF |

Rated frequency | 50 Hz |

Carrier frequency | 2000 Hz |

Sampling frequency | 10 kHz |

k_{fs} | 15 |

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Hakimi, S.M.; Hajizadeh, A. Integration of Photovoltaic Power Units to Power Distribution System through Modular Multilevel Converter. *Energies* **2018**, *11*, 2753.
https://doi.org/10.3390/en11102753

**AMA Style**

Hakimi SM, Hajizadeh A. Integration of Photovoltaic Power Units to Power Distribution System through Modular Multilevel Converter. *Energies*. 2018; 11(10):2753.
https://doi.org/10.3390/en11102753

**Chicago/Turabian Style**

Hakimi, Seyed Mehdi, and Amin Hajizadeh. 2018. "Integration of Photovoltaic Power Units to Power Distribution System through Modular Multilevel Converter" *Energies* 11, no. 10: 2753.
https://doi.org/10.3390/en11102753