PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study
Abstract
:1. Introduction
1.1. PV Systems for Unmanned Electric Aircrafts
1.2. State of the Art and History Perspectives
1.3. Theoretical Examination
2. Materials and Methods
2.1. Boost DC/DC Power Converter Design
2.2. Fixed-Wing Radio-Controlled Aircraft Model Design and its Modifications
3. Results and Discussion
3.1. Uniform Flight Tests
3.2. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zsiborács, H.; Bai, A.; Popp, J.; Gabnai, Z.; Pályi, B.; Farkas, I.; Hegedűsné Baranyai, N.; Veszelka, M.; Zentkó, L.; Pintér, G. Change of Real and Simulated Energy Production of Certain Photovoltaic Technologies in Relation to Orientation, Tilt Angle and Dual-Axis Sun-Tracking. A Case Study in Hungary. Sustainability 2018, 10, 1394. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar energy for future world: A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Pudney, P.; Howlett, P. Critical Speed Control of a Solar Car. Optim. Eng. 2002, 3, 97–107. [Google Scholar] [CrossRef]
- Solar Impulse Project. Available online: http://www.solarimpulse.com/ (accessed on 20 August 2018).
- Romeo, G.; Frulla, G. Heliplat: High-altitude very-long endurance solar-powered UAV for telecommunication and Earth observation applications. Aeronaut. J. 2004, 108, 277–293. [Google Scholar] [CrossRef]
- Shiau, J.-K.; Ma, D.-M.; Chiu, C.-W.; Shie, J.-R. Optimal sizing and cruise speed determination for a solar-powered airplane. J. Aircr. 2010, 47, 622–629. [Google Scholar] [CrossRef]
- Reinders, A.H.M.E.; Verlinden, P.J.; van Sark, W.G.J.H.M.; Freundlich, A. Photovoltaic Solar Energy: From Fundamentals to Applications; John Wiley & Sons: London, UK, 2016. [Google Scholar]
- Mkahl, R.; Sidi Moh, A.N.; Wack, M. Modeling and Simulation of Standalone Photovoltaic Charging Stations for Electric Vehicles. In Proceeding of the International Conference on Computer Communication and Information Sciences, and Engineering, Coimbatore, India, 8 January 2015. [Google Scholar]
- Pintér, G.; Heged Baranyai, N.; Wiliams, A.; Zsiborács, H. Study of Photovoltaics and LED Energy Efficiency: Case Study in Hungary. Energies 2018, 11, 790. [Google Scholar] [CrossRef]
- Rahim, M.; Yoshino, J.; Yasuda, T. Evaluation of solar radiation abundance and electricity production capacity for application and development of solar energy. Int. J. Energy Environ. 2012, 3, 687–700. [Google Scholar]
- Zhu, X.; Li, N.; Sun, Y.; Zhang, H.; Wang, K.; Tsai, S.B. A Study on the Strategy for Departure Aircraft Pushback Control from the Perspective of Reducing Carbon Emissions. Energies 2018, 11, 2473. [Google Scholar] [CrossRef]
- Zhu, X.; Guo, Z.; Hou, Z.; Gao, X.; Zhang, J. Parameter’s sensitivity analysis and design optimization of solar-powered airplanes. Aircr. Eng. Aerosp. Technol. 2016, 88, 550–560. [Google Scholar] [CrossRef]
- Spangelo, S.C.; Gilbert, E.G. Power optimization of solar-powered aircraft with specified closed ground tracks. J. Aircr. 2013, 50, 232–238. [Google Scholar] [CrossRef]
- Rodriguez, J.B.; Morales, G.C.; Benavides, E.M. A First Approach to Solar Aviation with the Use of Axiomatic Design. Procedia CIRP 2015, 34, 186–192. [Google Scholar] [CrossRef]
- Noth, A.; Siegwart, R.; Engel, W. Design of Solar Powered Airplanes for Continuous Flight. Available online: https://www.ethz.ch/content/dam/ethz/special-interest/mavt/robotics-n-intelligent-systems/asl-dam/documents/projects/Design_Skysailor.pdf (accessed on 20 August 2018).
- Leutenegger, S.; Jabas, M.; Siegwart, R.Y. Solar Airplane Conceptual Design and Performance Estimation. J. Intell. Robot. Syst. 2011, 61, 545–561. [Google Scholar] [CrossRef]
- Noth, A. Design of Solar Powered Airplanes for Continuous Flight. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2008. Available online: http://http://www.sky-sailor.ethz.ch/docs/Conceptual_Design_of_Solar_Powered_Airplanes_for_continuous_flight.pdf (accessed on 20 August 2018).
- Bruscoli, S. Airfoil optimization for a solar powered aircraft. Master’s Thesis, Universita Degli Studi di Pisa, Pisa, Italy, 2011. [Google Scholar]
- Noth, A.; Engel, W.; Siegwart, R. Flying Solo and Solar to Mars. IEEE Robot. Autom. Mag. 2006, 13, 44–52. [Google Scholar] [CrossRef]
- Bӧswald, M.; Govers, Y.; Vollan, A.; Basien, M. Solar Impulse—How to validate the numerical model of a superlight aircraft with A340 dimensions. In Proceedings of the International Conference on Noise & Vibration Engineering, Leuven, Belgium, 20–22 October 2010. [Google Scholar]
- Shiau, J.-K.; Wei, Y.-C.; Lee, M.-Y. Fuzzy controller for a voltage-regulated solar-powered mppt system for hybrid power system applications. Energies 2015, 8, 3292–3312. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S. A New MPPT Algorithm Based on ANN in Solar PV Systems. In Lecture Notes in Electrical Engineering; Springer: Berlin, Germany, 2011. [Google Scholar]
- Commercial Radio-Controlled Aircraft Arrow. Available online: http://www2.arnes.si/~cetim6/plans/arrowlayout.pdf (accessed on 20 August 2018).
- Rakesh, C.; Sunil Kumar, N. Design and Analysis of Solar Powered RC Aircraft. IJES 2015, 4, 29–41. [Google Scholar]
- Buchireddy, K.R.; Aneesh, P.; Bhanu, K.; Natarjan, M. Design Analysis of Solar-Powered Unmanned Aerial Vehicle. J. Aerosp. Technol. Manag. 2016, 8, 397–407. [Google Scholar]
- Espinoza-Fraire, T.; Dzul, A.; Cortes-Martinez, F.; Giernacki, W. Real-time Implementation and Flight Tests using Linear and Nonlinear Controllers for Fixed-wing Miniature Aerial Vehicle (MAV). Int. J. Control Autom. Syst. 2018, 16, 392–396. [Google Scholar] [CrossRef]
- Baschel, S.; Koubli, E.; Roy, J.; Gottschalg, R. Impact of Component Reliability on Large Scale Photovoltaic Systems’ Performance. Energies 2018, 11, 1579. [Google Scholar] [CrossRef]
- Mirbagheri Golroodbari, S.Z.; de Waal, A.C.; van Sark, W. Improvement of Shade Resilience in Photovoltaic Modules Using Buck Converters in a Smart Module Architecture. Energies 2018, 11, 250. [Google Scholar] [CrossRef]
- Bright, J.M.; Smith, C.J.; Taylor, P.G.; Crook, R. Stochastic generation of synthetic minutely irradiance time series derived from mean hourly weather observation data. Sol. Energy 2015, 115, 229–242. [Google Scholar] [CrossRef]
- Durisch, W.; Keller, J.; Bulgheroni, W.; Keller, L.; Fricker, H. Solar irradiation measurements in Jordan and comparisons with Californian and Alpine data. Appl. Energy 1995, 55, 111–124. [Google Scholar] [CrossRef]
- Di Piazza, A.; Di Piazza, M.C.; Vitale, G. Statistical Processing of Data Coming from a Photovoltaic Plant for Accurate Energy Planing. RE&PQJ 2008, 1, 654–658. [Google Scholar]
- European Commission, Photovoltaic Geographical Information System. Available online: http://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#PVP (accessed on 20 August 2018).
- Nižetić, S.; Duić, N.; Papadopulos, A.M.; Tina, G.M.; Grubišić-Čabo, F. Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect. Energy 2015, 90, 1171–1179. [Google Scholar] [CrossRef]
- Boxwell, M. Solar Electricity Handbook 2017 Edition. Available online: http://solarelectricityhandbook.com/solar-irradiance.html (accessed on 20 August 2018).
- Meek, D.W. Estimation of maximum possible daily global solar radiation. Agric. For. Meteorol. 1997, 87, 223–241. [Google Scholar] [CrossRef]
- Brecl, K.; Topic, M. Photovoltaics (PV) System Energy Forecast on the Basis of the Local Weather Forecast: Problems, Uncertainties and Solutions. Energies 2018, 11, 1143. [Google Scholar] [CrossRef]
- Valavanis, K.; Vachtsevanos, G. Handbook of Unmanned Aerial Vehicles; Springer: Berlin, Germany, 2015. [Google Scholar]
- Kumar, A.; Asha, G.H. Aquila (The Solar Powered Drone). IJIEEE 2016, 4, 36–43. [Google Scholar]
- Algarín, C.R.; Taborda Giraldo, J.; Rodríguez Álvarez, O. Fuzzy Logic Based MPPT Controller for a PV System. Energies 2017, 10, 2036. [Google Scholar] [CrossRef]
- Pandey, A.; Dasgupta, N.; Mukerjee, A.K. A Simple Single-Sensor MPPT Solution. IEEE Trans. Power Electron. 2007, 22, 698–700. [Google Scholar] [CrossRef]
- Petrone, G.; Spagnuolo, G.; Vitelli, M. Distributed Maximum Power Point Tracking: Challenges and Commercial Solutions. Automatika 2012, 53, 128–141. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Shao, S.; Lu, L.; Liu, X.; Zhu, H. A New PV Array Fault Diagnosis Method Using Fuzzy C-Mean Clustering and Fuzzy Membership Algorithm. Energies 2018, 11, 238. [Google Scholar] [CrossRef]
- Gutiérrez Galeano, A.; Bressan, M.; Jiménez Vargas, F.; Alonso, C. Shading Ratio Impact on Photovoltaic Modules and Correlation with Shading Patterns. Energies 2018, 11, 852. [Google Scholar] [CrossRef]
- Kropp, T.; Schubert, M.; Werner, J.H. Quantitative Prediction of Power Loss for Damaged Photovoltaic Modules Using Electroluminescence. Energies 2018, 11, 1172. [Google Scholar] [CrossRef]
- Gaglia, A.G.; Lykoudis, S.; Argiriou, A.A.; Balarasa, C.A.; Dialynas, E. Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece. Renew. Energy 2017, 101, 236–243. [Google Scholar] [CrossRef]
Time (min) | Battery Voltage (VBAT) | Current (A) | Consumed Charge (mAh) | Trip (km) |
---|---|---|---|---|
0 | 16.8 | 0 | 0 | 0 |
1 | 16.2 | 3.3 | 137 | 1.1 |
2 | 16.1 | 2.2 | 203 | 1.8 |
3 | 16.0 | 2.3 | 275 | 2.5 |
4 | 15.9 | 2.3 | 353 | 3.2 |
5 | 15.9 | 2.2 | 421 | 3.8 |
6 | 15.6 | 2.0 | 486 | 4.5 |
7 | 15.4 | 2.1 | 557 | 5.2 |
8 | 15.2 | 1.9 | 625 | 5.9 |
9 | 15.2 | 1.8 | 695 | 6.4 |
10 | 15.1 | 1.7 | 760 | 7.0 |
11 | 15.1 | 1.6 | 803 | 7.7 |
12 | 15.0 | 1.7 | 849 | 8.3 |
13 | 15.0 | 1.8 | 889 | 9.1 |
14 | 14.9 | 1.7 | 934 | 9.9 |
15 | 14.9 | 1.7 | 976 | 10.6 |
Time (min) | Battery Voltage (VBAT) | Current (A) | Consumed Charge (mAh) | Trip (km) |
---|---|---|---|---|
0 | 16.3 | 0 | 0 | 0 |
1 | 15.5 | 3.6 | 140 | 0.9 |
2 | 15.5 | 2.4 | 207 | 1.6 |
3 | 15.4 | 3 | 253 | 2.2 |
4 | 15.3 | 1.8 | 365 | 2.7 |
5 | 15.3 | 1.3 | 383 | 3.4 |
6 | 15.2 | 1.7 | 452 | 4.0 |
7 | 15.1 | 2.2 | 490 | 4.6 |
8 | 15.0 | 1.8 | 594 | 5.2 |
9 | 15.0 | 1.4 | 624 | 5.8 |
10 | 14.9 | 1.8 | 721 | 6.4 |
11 | 14.8 | 1.7 | 752 | 7.0 |
12 | 14.8 | 1.6 | 783 | 7.6 |
13 | 14.7 | 1.8 | 857 | 8.2 |
14 | 14.7 | 1.5 | 885 | 8.7 |
15 | 14.6 | 1.6 | 915 | 9.4 |
UAV Type | Consumption (mAh) | Average Current (mA) | Mass (g) | Consumption Savings (%) | Mass Growth/Consumption Ratio (g/%) |
---|---|---|---|---|---|
Plane without PV System | 976 | 2300 | 774 | - | - |
PV Module | ≈−150 | ≈−600 | 293 | - | - |
Plane with PV System | 915 | 2150 | 1067 | 6.25 | 46.88 g/% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kranjec, B.; Sladic, S.; Giernacki, W.; Bulic, N. PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study. Energies 2018, 11, 2648. https://doi.org/10.3390/en11102648
Kranjec B, Sladic S, Giernacki W, Bulic N. PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study. Energies. 2018; 11(10):2648. https://doi.org/10.3390/en11102648
Chicago/Turabian StyleKranjec, Bojan, Sasa Sladic, Wojciech Giernacki, and Neven Bulic. 2018. "PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study" Energies 11, no. 10: 2648. https://doi.org/10.3390/en11102648
APA StyleKranjec, B., Sladic, S., Giernacki, W., & Bulic, N. (2018). PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study. Energies, 11(10), 2648. https://doi.org/10.3390/en11102648