Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube
Abstract
:1. Introduction
2. Experimental Setup and Procedure
Description of the Experimental Set Up and Experimental Procedure
3. Data Reduction
4. Uncertainty Analysis
5. Results and Discussion
5.1. Solar Intensity with Time
5.2. Effect of Nail Twist Pitch Ratio on Useful Heat Gain
5.3. Effect of Nail Twist Pitch Ratio on Water Outlet Temperature and Water Temperature in the Water Storage Tank
5.4. Effect of the Nail Twist Pitch Ratio on Hourly Solar Energy Collected
5.5. Effect of Nail Twist Pitch Ratio on Hourly Solar Energy Stored in the Water Storage Tank
5.6. Effect of Nail Twist Pitch Ratio on Temperature Rise Parameter
5.7. Effect of Nail Twist Pitch Ratio on Instantaneous Efficiency
5.8. Effect of Nail Twist Pitch Ratio on Charging Efficiency
5.9. Effect of Nail Twist Pitch Ratio of Overall Thermal Efficiency
6. Conclusions
Author Contributions
Conflicts of Interest
Nomenclatures
Af | Absorber tube flow cross-sectional area (m2) |
Aap | Reflector aperture area (m2) |
cp | Specific heat (J·kg−1 °C−1) |
Di | Absorber tube inner diameter (m) |
Do | Absorber tube outer diameter (m) |
dn | Nail diameter (m) |
Ec | Hourly solar energy collected (kJ) |
Est | Hourly solar energy stored (kJ) |
Ib | Solar intensity (W·m−2) |
Ih | Hourly solar intensity (kJ·m−2 h−1) |
kf | Thermal conductivity (W·m−1 °C−1) |
leff | Effective length of nail, leff = (ln − t) (m) |
ln | Length of nail (m) |
Lp | absorber tube length (m) |
m | Mass flow rate of water (kg·s−1) |
mst | Mass of water in the water storage tank (kg) |
P | Twist pitch of nail type twisted tape (m) |
Q | Useful heat gain (W) |
t | Thickness of nail type twisted tape (m) |
Tb | Bulk mean temperature (°C) |
Tb,st | Bulk mean temperature of water in the water storage tank, (°C) |
Ti | Water inlet temperature (°C) |
To | Water outlet temperature (°C) |
Tp | Absorber tube surface temperature (°C) |
Tst | Water temperature in the water storage tank (°C) |
TRP | Temp. rise parameter (m2 °C W−1) |
uf | Velocity of water (m·s−1) |
Vf | Volumetric water flow rate (m3) |
w | Width of nail type twisted tape (m) |
Yn | Nail twist pitch ratio (P leff−1) |
Greek Symbols | |
ρf | Density of water (kg·m−3) |
ηi | Instantaneous efficiency |
ηch | Charging efficiency |
ηo | Overall thermal efficiency |
Abbreviations | |
CPCSWH | Cylindrical parabolic concentrating solar water heater |
NTT | Nail type twisted tape |
PCR | Parabolic concentrating reflector |
Subscripts | |
J | At any time interval |
j + 1 | One hour time interval from jth time |
References
- Huang, B.J.; Wung, T.Y.; Nieh, S. Thermal analysis of black liquid cylindrical parabolic collector. Sol. Energy 1979, 22, 221–224. [Google Scholar] [CrossRef]
- Heiti, R.V.; Thodos, G. An experimental parabolic cylindrical concentrator: Its construction and thermal performance. Sol. Energy 1983, 30, 483–485. [Google Scholar] [CrossRef]
- Hamad, F.A.W. The performance of a cylindrical parabolic solar concentrator. Energy Convers. Manag. 1988, 28, 251–256. [Google Scholar] [CrossRef]
- Mullick, S.C.; Nanda, S.K. An improved technique for computing the heat loss factor of a tubular absorber. Sol. Energy 1989, 42, 1–7. [Google Scholar] [CrossRef]
- Kothdiwala, A.F.; Norton, B.; Eames, P.C. The effect of variation of angle of inclination on the performance of low-concentration-ratio compound parabolic concentrating solar collectors. Sol. Energy 1995, 55, 301–309. [Google Scholar] [CrossRef]
- Eskin, N. Transient performance analysis of cylindrical parabolic concentrating collector comparison with experimental results. Energy Convers. Manag. 1999, 40, 175–191. [Google Scholar] [CrossRef]
- Eck, M.; Hirsch, T. Dynamics and control of parabolic trough collector loops with direct steam generation. Sol. Energy 2007, 81, 268–279. [Google Scholar] [CrossRef]
- Kim, Y.; Han, G.; Seo, T. An evaluation on thermal performance of CPC solar collector. Int. Commun. Heat Mass Transf. 2008, 35, 446–457. [Google Scholar] [CrossRef]
- Oommen, R.; Jayaraman, S. Development and performance analysis of compound parabolic solar concentrators with reduced gap losses oversized reflector. Energy Convers. Manag. 2001, 42, 1379–1399. [Google Scholar] [CrossRef]
- El Fadar, A.; Mimet, A.; Perez-Garcia, M. Modeling and performance study of a continuous adsorption refrigeration system driven by parabolic trough solar collector. Sol. Energy 2009, 83, 850–861. [Google Scholar] [CrossRef]
- Padilla, R.V.; Demirkaya, G.; Goswami, D.Y.; Stefanakos, E.; Rahman, M.M. Heat transfer analysis of parabolic trough solar receiver. Appl. Energy 2011, 88, 5097–5110. [Google Scholar] [CrossRef]
- Gang, P.; Guiqiang, L.; Xi, Z.; Jie, J.; Yuehong, S. Experimental study and exergetic analysis of a CPC-type solar water heater system using higher-temperature circulation in winter. Sol. Energy 2012, 86, 1280–1286. [Google Scholar] [CrossRef]
- Kumaresan, G.; Sridhar, R.; Velraj, R. Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy 2012, 47, 395–402. [Google Scholar] [CrossRef]
- Reddy, K.S.; Ravi Kumar, K. Solar collector field design and viability analysis of stand-alone parabolic trough power plants for Indian conditions. Energy Sustain. Dev. 2012, 16, 456–470. [Google Scholar] [CrossRef]
- Ceylan, I.; Ergun, A. Thermodynamic analysis of a new design of temperature controlled parabolic trough collector. Energy Convers. Manag. 2013, 74, 505–510. [Google Scholar] [CrossRef]
- Syed Jafar, K.; Sivaraman, B. Thermal performance of solar parabolic trough collector using nanofluid and the absorber with nail twisted tapes inserts. Int. Energy J. 2014, 14, 189–198. [Google Scholar]
- Mwesigye, A.; Ochende, T.B.; Meyer, J.P. Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios. Energy 2014, 73, 606–617. [Google Scholar] [CrossRef]
- Khanna, S.; Sharma, V. Effect of number of supports on the bending of absorber tube of parabolic trough concentrator. Energy 2015, 93, 1788–1803. [Google Scholar] [CrossRef]
- Jaramillo, O.A.; Borunda, M.; Velazquez-Lucho, K.M.; Robles, M. Parabolic trough solar collector for low enthalpy processes: An analysis of the efficiency enhancement by using twisted tape inserts. Renew. Energy 2016, 93, 125–141. [Google Scholar] [CrossRef]
- Liang, H.; You, S.; Zhang, H. Comparison of three optical models and analysis of geometric parameters for parabolic trough solar collectors. Energy 2016, 96, 37–47. [Google Scholar] [CrossRef]
- Fuqiang, W.; Zhexiang, T.; Xiangtao, G.; Jianyu, T.; Huaizhi, H.; Bingxi, L. Heat transfer performance enhancement and thermal strain restrain of tube receiver for parabolic trough solar collector by using asymmetric outward convex corrugated tube. Energy 2016, 114, 275–292. [Google Scholar] [CrossRef]
- Bortolato, M.; Dugaria, S.; Col, D.D. Experimenta study of a parabolic trough solar collector with flat bar-and-plate absorber during direct steam generation. Energy 2016, 116, 1039–1050. [Google Scholar] [CrossRef]
- Zhao, D.; Xu, E.; Wang, Z.; Yu, Q.; Xu, L.; Zhu, L. Influences of installation and tracking errors on the optical performance of a solar parabolic trough collector. Renew. Energy 2016, 94, 197–212. [Google Scholar] [CrossRef]
- Zou, B.; Dong, J.; Yao, Y.; Jiang, Y. A detailed study on the optical performance of parabolic trough solar collectors with Monte Carlo Ray Tracing method based on theoretical analysis. Sol. Energy 2017, 147, 189–201. [Google Scholar] [CrossRef]
- Fraidenraich, N.; de O.P. Filho, M.H.; de C. Vilela, O. A new approach for obtaining angular acceptance function of non-perfect parabolic concentrating collectors. Sol. Energy 2017, 147, 455–462. [Google Scholar] [CrossRef]
- Kline, S.J.; McKlintock, F.A. Describing uncertainties in single-sample experiments. Mech. Eng. 1953, 75, 3–8. [Google Scholar]
Sl. No. | Parameter | Value |
---|---|---|
1 | Reflector aperture area | 2.036 m2 |
3 | Length of absorber tube | 1.220 m |
4 | Inner diameter of absorber tube | 0.023 m |
5 | Outer diameter of absorber tube | 0.025 m |
6 | Width of NTT | 0.020 m |
7 | Thickness of NTT | 0.0012 m |
8 | Length of nail | 0.020 m |
9 | Diameter of nail | 0.004 m |
10 | Effective length of nail | 0.0188 m |
Sl. No. | Instruments | Accuracy |
---|---|---|
1 | Water flow sensor (model: YF-S201, Seametrics Inc., Kent, WA, USA) | ±10% |
2 | Digital anemometer (model: AVM-03, Metravi, Kolkata, India) | ±3% (for wind velocity) ±2 °C (for temperature) |
3 | Pyranometer integrated with solar power meter (model: TM-207, Tenmars Electronics Co., Ltd., Tapei, Taiwan) | ±0.499% |
4 | Thermocouple (Radix Electrosystems Pvt. Ltd., Pune, India) | ±0.4% |
5 | Pressure transducer (model: 3100, Setra Systems, Boxborough, MA, USA) | ±0.25% |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhakta, A.K.; Panday, N.K.; Singh, S.N. Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube. Energies 2018, 11, 204. https://doi.org/10.3390/en11010204
Bhakta AK, Panday NK, Singh SN. Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube. Energies. 2018; 11(1):204. https://doi.org/10.3390/en11010204
Chicago/Turabian StyleBhakta, Amit K., Nitesh K. Panday, and Shailendra N. Singh. 2018. "Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube" Energies 11, no. 1: 204. https://doi.org/10.3390/en11010204
APA StyleBhakta, A. K., Panday, N. K., & Singh, S. N. (2018). Performance Study of a Cylindrical Parabolic Concentrating Solar Water Heater with Nail Type Twisted Tape Inserts in the Copper Absorber Tube. Energies, 11(1), 204. https://doi.org/10.3390/en11010204