Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing
Abstract
:1. Introduction
2. Experimental
2.1. Raw Material
2.2. Method
2.2.1. Experimental Methods
2.2.2. Analytical Methods
3. Results and Discussion
3.1. Change of Carbon and Salt According to the Pyrolysis Temperature
3.2. Effects of Pyrolysis Temperature on Salt Washing
3.3. Effects Pyrolysis Temperature and Salt on the HHV
3.4. Change in the Pollution Level of Scrubbing Water
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Büyüksönmez, F. Full-scale VOC emissions from green and food waste windrow composting. Compost Sci. Util. 2012, 20, 57–62. [Google Scholar] [CrossRef]
- Banks, C.J.; Chesshire, M.; Heaven, S.; Arnold, R. Anaerobic digestion of source-segregated domestic food waste: Performance assessment by mass and energy balance. Bioresour. Technol. 2011, 102, 612–620. [Google Scholar] [CrossRef] [PubMed]
- EL-Mashad, H.M.; Zhang, R. Biogas production from co-digestion of dairy manure and food waste. Bioresour. Technol. 2010, 101, 4021–4028. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.; Kim, J.-W. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 2010, 408, 3998–4006. [Google Scholar] [CrossRef] [PubMed]
- Bernstad, A.; La Cour Jansen, J. Review of comparative LCAs of food waste management systems–current status and potential improvements. Waste Manag. 2012, 32, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Environment. The State of Waste Generation and Treatment in 2014; Ministry of Environment: Sejong City, Korea, 2014.
- Yun, Y.-S.; Park, J.I.; Suh, M.S.; Park, J.M. Treatment of food wastes using slurry-phase decomposition. Bioresour. Technol. 2000, 73, 21–27. [Google Scholar] [CrossRef]
- Hierholtzer, A.; Akunna, J.C. Modelling sodium inhibition on the anaerobic digestion process. Water Sci. Technol. 2012, 66, 1565–1573. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Chen, T.; Liu, H.; Gao, D.; Zheng, G.; Zhang, J. The effect of salinity and porosity of sewage sludge compost on the growth of vegetable seedlings. Sci. Horticult. 2010, 124, 381–386. [Google Scholar] [CrossRef]
- Rengasamy, P. Soil processes affecting crop production in salt-affected soils. Funct. Plant Biol. 2010, 37, 613–620. [Google Scholar] [CrossRef]
- Buekens, A.; Cen, K. Waste incineration, PVC, and dioxins. J. Mater. Cycles Waste Manag. 2011, 13, 190–197. [Google Scholar] [CrossRef]
- Williams, P.T. Dioxins and furans from the incineration of municipal solid waste: An overview. J. Energy Inst. 2013, 78, 38–48. [Google Scholar] [CrossRef]
- Huang, K.; Inoue, K.; Harada, H.; Kawakita, H.; Ohto, K. Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants. Trans. Nonferrous Metals Soc. China 2011, 21, 1422–1427. [Google Scholar] [CrossRef]
- Li, L.; Diederick, R.; Flora, J.R.V.; Berge, N.D. Hydrothermal carbonization of food waste and associated packaging materials for energy source generation. Waste Manag. 2013, 33, 2478–2492. [Google Scholar] [CrossRef] [PubMed]
- Parshetti, G.K.; Chowdhury, S.; Balasubramanian, R. Hydrothermal conversion of urban food waste to chars for removal of textile dyes from contaminated waters. Bioresour. Technol. 2014, 161, 310–319. [Google Scholar] [CrossRef] [PubMed]
- Han, J.-G.; Lee, J.-Y.; Hong, K.-K.; Lee, J.-Y.; Kim, Y.-W.; Hong, S.-M. Adsorption characteristics of Cu2+ and Zn2+ from aqueous solution using carbonized food waste. J. Mater. Cycles Waste Manag. 2010, 12, 227–234. [Google Scholar] [CrossRef]
- Ahmed, I.I.; Gupta, A.K. Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics. Appl. Energy 2010, 87, 101–108. [Google Scholar] [CrossRef]
- Liu, H.; Ma, X.; Li, L.; Hu, Z.; Guo, P.; Jiang, Y. The catalytic pyrolysis of food waste by microwave heating. Bioresour. Technol. 2014, 166, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Caton, P.A.; Carr, M.A.; Kim, S.S.; Beautyman, M.J. Energy recovery from waste food by combustion or gasification with the potential for regenerative dehydration: A case study. Energy Convers. Manag. 2010, 51, 1157–1169. [Google Scholar] [CrossRef]
- Ministry of Environment (MOE). A Study on Food Waste Reduction Equipment Guidelines and Quality Standard P; Ministry of Environment: Sejong City, Korea, 2009.
- Kim, N.C.; Jang, B.M. Sodium chloride decomposting method in food waste compost using triple salt. J. Korra 2004, 12, 86–94. [Google Scholar]
- Seo, J.Y.; Heo, J.S.; Kim, T.H.; Joo, W.H.; Crohn, D.M. Effect of vermiculite addition on compost produced from Korean food wastes. Waste Manag. 2004, 24, 981–987. [Google Scholar] [CrossRef] [PubMed]
- Raveendran, K.; Ganesh, A.; Khilar, K.C. Pyrolysis characteristics of biomass and biomass components. Fuel 1996, 75, 987–998. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory; Academic Press: London, UK, 2013. [Google Scholar]
- Quyn, D.M.; Wu, H.; Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples. Fuel 2002, 81, 143–149. [Google Scholar] [CrossRef]
- Quyn, D.M.; Wu, H.; Bhattacharya, S.P.; Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part II. Effects of chemical form and valence. Fuel 2002, 81, 151–158. [Google Scholar] [CrossRef]
- Wu, H.; Quyn, D.M.; Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part III. The importance of the interactions between volatiles and char at high temperature. Fuel 2002, 81, 1033–1039. [Google Scholar] [CrossRef]
- Quyn, D.M.; Wu, H.; Hayashi, J.; Li, C.-Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity. Fuel 2003, 82, 587–593. [Google Scholar] [CrossRef]
- Yudovich, Y.E.; Ketris, M.P. Chlorine in coal: A review. Int. J. Coal Geol. 2006, 67, 127–144. [Google Scholar] [CrossRef]
- Nomura, S. Behavior of coal chlorine in cokemaking process. Int. J. Coal Geol. 2010, 83, 423–429. [Google Scholar] [CrossRef]
- Papirer, E.; Lacroix, R.; Donnet, J.-B.; Nansé, G.; Fioux, P. XPS study of the halogenation of carbon black—Part 2. Chlorination. Carbon 1995, 33, 63–72. [Google Scholar] [CrossRef]
- Bartocci, P.; Barbanera, M.; D’Amico, M.; Laranci, P.; Cavalaglio, G.; Gelosia, M.; Ingles, D.; Bidini, G.; Buratti, C.; Cotana, F.; et al. Thermal degradation of driftwood: Determination of the concentration of sodium, calcium, magnesium, chlorine and sulfur containing compounds. Waste Manag. 2016. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.-R.; Li, W.; Guo, H.-Q.; Li, B.-Q.; Bai, Z.-Q.; Hu, R.-S. XPS study on the change of carbon-containing groups and sulfur transformation on coal surface. J. Fuel Chem. Technol. 2011, 39, 81–84. [Google Scholar]
- Wang, L.; Shinohara, T.; Zhang, B.-P. XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution. Appl. Surf. Sci. 2010, 256, 5807–5812. [Google Scholar] [CrossRef]
- Lu, J.; Luo, M.; Lei, H.; Li, C. Epoxidation of propylene on NaCl-modified silver catalysts with air as the oxidant. Appl. Catal. A Gen. 2002, 237, 11–19. [Google Scholar] [CrossRef]
- Kimmel, Y.C.; Esposito, D.V.; Birkmire, R.W.; Chen, J.G. Effect of surface carbon on the hydrogen evolution reactivity of tungsten carbide (WC) and Pt-modified WC electrocatalysts. Int. J. Hydrogen Energy 2012, 37, 3019–3024. [Google Scholar] [CrossRef]
- Angin, D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol. 2013, 128, 593–597. [Google Scholar] [CrossRef] [PubMed]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A review on biomass as a fuel for boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Gorbaty, M.L.; Kelemen, S.R. Characterization and reactivity of organically bound sulfur and nitrogen fossil fuels. Fuel Process. Technol. 2001, 71, 71–78. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.; Zuo, W.; Chen, L.; Cui, Y.; Tan, T. Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environ. Sci. Technol. 2013, 47, 3498–3505. [Google Scholar] [PubMed]
- Liu, H.; Zhang, Y.; Li, R.; Sun, X.; Désilets, S.; Abou-Rachid, H.; Jaidann, M.; Lussier, L.S. Structural and morphological control of aligned nitrogen-doped carbon nanotubes. Carbon 2010, 48, 1498–1507. [Google Scholar] [CrossRef]
Classification | Composition Ratio (Weight %) | Processing Methods of Food Ingredients | |
---|---|---|---|
Food Ingredients | Processing Method | ||
Grains | 16 | Rice (16) | |
Vegetables | 51 | Napa cabbage (9) | Cutting width less than 100 mm. |
Potato (20) | Chop into 5 mm size pieces. | ||
Onion (20) | |||
Daikon (2) | |||
Fruits | 14 | Apple (7) | Split into 8 pieces in lengthwise. |
Mandarin/Orange (7) | |||
Meat and Fish | 19 | Meat (4) | Cutting width around 3 cm. |
Fish (12) | Split into 4 pieces. | ||
Eggshell (3) | |||
Total | 100 | 100 |
Temperature | Ultimate Analysis % by Weight | Proximate Analysis % by Weight | Weight Reduction Ratio % by Weight | |||||
---|---|---|---|---|---|---|---|---|
C | H | N | S | O | Others | NaCl | ||
Dried | 47.5 | 12.2 | 2.9 | 1.4 | 29.7 | 6.3 | 8.9 | 33 |
200 °C | 43.2 | 8.3 | 3.5 | 1.3 | 33.9 | 9.9 | 14.6 | 36.8 |
250 °C | 44.9 | 8.6 | 3.6 | 1.1 | 30.7 | 11.1 | 14.9 | 38.3 |
300 °C | 47.4 | 6.1 | 3.9 | 1.2 | 18.7 | 22.9 | 20.8 | 56.9 |
400 °C | 43.1 | 3.0 | 2.9 | 0.9 | 10.1 | 39.8 | 31.7 | 71.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-E.; Jo, J.-H.; Kim, S.-M.; Yoo, Y.-S. Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing. Energies 2017, 10, 210. https://doi.org/10.3390/en10020210
Lee Y-E, Jo J-H, Kim S-M, Yoo Y-S. Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing. Energies. 2017; 10(2):210. https://doi.org/10.3390/en10020210
Chicago/Turabian StyleLee, Ye-Eun, Jun-Ho Jo, Sun-Min Kim, and Yeong-Seok Yoo. 2017. "Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing" Energies 10, no. 2: 210. https://doi.org/10.3390/en10020210
APA StyleLee, Y.-E., Jo, J.-H., Kim, S.-M., & Yoo, Y.-S. (2017). Recycling Possibility of the Salty Food Waste by Pyrolysis and Water Scrubbing. Energies, 10(2), 210. https://doi.org/10.3390/en10020210