#
Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

#### 1.1. Thermal Energy Storage

m | mass | (kg), |

${T}_{i}$ | initial temperature | (K), |

${T}_{f}$ | final temperature | (K), |

${c}_{p}$ | specific heat capacity | (${\mathrm{Jkg}}^{-1}$${\mathrm{K}}^{-1}$). |

#### 1.2. The Application of Peltier Coolers in the Cooling System

## 2. Methods

#### 2.1. Accumulation Device

#### 2.2. Photovoltaic System in Combination with the Thermoelectric Coolers

${P}_{m}$ | performance of a PV panel | (W), |

${P}_{rad}$ | power of solar radiation | (W), |

E | intensity of solar radiation | (${\mathrm{Wm}}^{-2}$), |

${A}_{c}$ | surface of the PV panels | (${\mathrm{m}}^{2}$). |

#### 2.3. Operation of the Technology

#### 2.3.1. Heating of Thermal Panels by Electric Heating Foils

#### 2.3.2. Heating of Thermal Panels from the Hot Water Tank

#### 2.3.3. Cooling of Thermal Panels from the Cold Water Tank

#### 2.3.4. Cooling of Thermal Panels by Thermoelectric Coolers

#### 2.3.5. Removing of Heat or Cold from the Thermal Panels

#### 2.4. Measurement

$Nu$ | Nusselt number | (-), |

${c}_{p}$ | specific heat capacity | (${\mathrm{Jkg}}^{-1}$${\mathrm{K}}^{-1}$), |

$\Delta \theta $ | temperature difference | (°C), |

g | gravitational acceleration | (${\mathrm{ms}}^{-2}$), |

β | thermal expansion | (${\mathrm{K}}^{-1}$), |

l | characteristic dimension | (m), |

η | dynamic viscosity | (Pa·s), |

ν | kinematic viscosity | (${\mathrm{m}}^{2}$${\mathrm{s}}^{-1}$), |

λ | coefficient of thermal conductivity | (${\mathrm{Wm}}^{-1}$${\mathrm{K}}^{-1}$), |

${h}_{C}$ | convective heat transfer coefficient | (${\mathrm{Wm}}^{-2}$${\mathrm{K}}^{-1}$). |

${h}_{T}$ | radiative heat transfer coefficient | (${\mathrm{Wm}}^{-2}$${\mathrm{K}}^{-1}$), |

ε | emissivity | (-), |

${\phi}_{12}$ | the difference of radiation angles between | |

the two object. In this case, ${\phi}_{12}=1$ | (-), | |

σ | Stefan-Boltzmann constant | (${\mathrm{Wm}}^{-2}$${\mathrm{K}}^{-4}$), |

g | gravitational acceleration | (${\mathrm{ms}}^{-2}$), |

T | thermodynamic temperature | (K). |

θ | initial temperature | (°C), |

${\theta}_{i}$ | temperature reached | (°C), |

${\theta}_{\infty}$ | temperature stabilization | (°C), |

$Bi$ | Biot number | (-), |

$Fo$ | Fourier number | (-). |

h | heat transfer coefficient | (${\mathrm{Wm}}^{-2}$${\mathrm{K}}^{-1}$), |

l | characteristic dimension | (m), |

λ | coefficient of thermal conductivity | (${\mathrm{Wm}}^{-1}$${\mathrm{K}}^{-1}$), |

a | thermal conductivity | (${\mathrm{m}}^{2}$${\mathrm{s}}^{-1}$), |

τ | time constant | (s). |

ρ | density | (kg·${\mathrm{m}}^{-3}$), |

V | volume | (${\mathrm{m}}^{3}$), |

A | area | (${\mathrm{m}}^{2}$). |

${\theta}_{t}$ | temperature in time t | (°C), |

${\theta}_{0}$ | initial temperature | (°C), |

${\theta}_{a}$ | ambient temperature | (°C), |

t | elapsed time | (s), |

τ | time constant | (s). |

## 3. Results and Discussion

## 4. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## Abbreviations

AC | Alternating current |

COP | Coefficient of performance |

CWT | Cold water tank |

DC | Direct current |

EER | Energy efficiency rating |

HP | Heat pump |

HVAC | Heating, ventilation and air conditioning |

HWT | Hot water tank |

LON | Local operating network |

PCM | Phase change material |

PV | Photovoltaic |

TEC | Thermoelectric cooler |

TES | Thermal energy storage |

## References

- Zhou, D.; Zhao, C.Y.; Tian, Y. Review on thermal energy storage with phase change materials (PCMs) in building applications. Appl. Energy
**2012**, 92, 593–605. [Google Scholar] [CrossRef] [Green Version] - Abedin, A.H.; Rosen, A.M. A critical review of thermochemical energy storage systems. Open Renew. Energy J.
**2011**, 4, 42–46. [Google Scholar] [CrossRef] - Socaciu, L.G. Thermal Energy Storage with Phase Change Material. Leonardo Electr. J. Pract. Technol.
**2012**, 75–98. Available online: http://lejpt.academicdirect.org/A20/get_htm.php?htm=075_098 (accessed on 30 October 2016). [Google Scholar] - Demirbas, M.F. Thermal energy storage and phase change materials: An overview. Energy Sour. Part B Econ. Plan. Policy
**2006**, 1, 85–95. [Google Scholar] [CrossRef] - Mehling, H.; Cabeza, L.F. Heat and cold storage with PCM. In Heat and Mass Transfer; Springer: Berlin, Germany, 2008; pp. 11–55. [Google Scholar]
- Mondal, S. Phase change materials for smart textiles—An overview. Appl. Therm. Eng.
**2008**, 28, 1536–1550. [Google Scholar] [CrossRef] - RGEES. Phase Change Energy Storage Technology: Heat and Cold Storage with Phase Change (PCM)—An Innovation for Storing Thermal Energy and Temperature Control. Available online: http://www.rgees.com/technology.php (accessed on 30 October 2016).
- Giro-Paloma, J.; Martinez, M.; Cabeza, L.F.; Fernandez, A.I. Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review. Renew. Sustain. Energy Rev.
**2016**. [Google Scholar] [CrossRef] - Kosny, J. PCM-Enhanced Building Components: An Application of Phase Change Materials in Building Envelopes and Internal Structures; Engineering Materials and Processes; Springer: Berlin, Germany, 2015; pp. 64–81. [Google Scholar]
- Castell, A.; Martorell, I.; Medrano, M.; Pérez, G.; Cabeza, L.F. Experimental study of using PCM in brick constructive solutions for passive cooling. Energy Build.
**2010**, 42, 34–40. [Google Scholar] [CrossRef] - Grynning, S.; Goia, F.; Rognik, E.; Time, B. Possibilites for characterization of a PCM window system using large scale measurements. Int. J. Sustain. Build Environ.
**2013**, 2, 56–64. [Google Scholar] [CrossRef] - Pasupathy, A.; Velraj, R.; Seeniraj, R.V. Phase change material-based building architecture for thermal management in residential and commercial establishments. Renew. Sustain. Energy Rev.
**2008**, 12, 39–64. [Google Scholar] [CrossRef] - Memon, S.A. Phase change materials integrated in building walls: A state of the art review. Renew. Sustain. Energy Rev.
**2014**, 31, 870–906. [Google Scholar] [CrossRef] - Lee, K.O.; Medina, M.A.; Sun, X. On the use of plug-and-play walls (PPW) for evaluating thermal enhancement technologies for building enclosures: Evaluation of a thin phase change material (PCM) layer. Energy Build.
**2015**, 86, 86–92. [Google Scholar] [CrossRef] - Kolacek, M.; Sehnalek, S. Heat transfer by forced convection from a vertical PCM plate. WSEAS Trans. Heat Mass Transf.
**2016**, 11, 56–61. [Google Scholar] - Real, A.; García, V.; Domenech, L.; Renau, J.; Montés, N.; Sánchez, F. Improvement of a heat pump based HVAC system with PCM thermal storage for cold accumulation and heat dissipation. Energy Build.
**2014**, 83, 108–116. [Google Scholar] [CrossRef] - Virgone, J.; Trabelsi, A. 2D Conduction simulation of a PCM storage coupled with a heat pump in a ventilation system. Appl. Sci.
**2016**, 6, 193. [Google Scholar] [CrossRef] - Moreno, P.; Castell, A.; Solé, C.; Zsambinski, G.; Cabeza, F. PCM thermal energy storage tanks in heat pump system for space cooling. Energy Build.
**2014**, 82, 399–405. [Google Scholar] [CrossRef] - Fang, G.; Wu, S.; Liu, X. Experimental study on cool storage air-conditioning system with spherical capsules packed bed. Energy Build.
**2010**, 42, 1056–1062. [Google Scholar] [CrossRef] - Liu, M.; Saman, W.; Bruno, F. Validation of a mathematical model for encapsulated phase change material flat slabs for cooling applications. Appl. Therm. Eng.
**2011**, 31, 2340–2347. [Google Scholar] [CrossRef] - Kapsalis, V.; Karamanis, D. Solar thermal energy storage and heat pumps with phase change materials. Appl. Therm. Eng.
**2016**, 99, 1212–1224. [Google Scholar] [CrossRef] - Shukla, A.; Kant, K.; Sharma, A.; Biwole, P.H. Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review. Sol. Energy Mater. Sol. Cells
**2017**, 160, 275–286. [Google Scholar] [CrossRef] - Tritt, T.M. Thermoelectric materials: Principles, structure, properties, and applications. In Encyclopedia of Materials: Science and Technology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Enescu, D.; Virjoghe, E.O. A review on thermoelectric cooling parameters and performance. Renew. Sustain. Energy Rev.
**2014**, 38, 903–916. [Google Scholar] [CrossRef] - Riffat, S.B.; Ma, X. Improving the coefficient of performance of thermoelectric cooling systems: A review. Int. J. Energy Res.
**2004**, 28, 753–768. [Google Scholar] [CrossRef] - Chein, R.; Huang, G. Thermoelectric cooler application in electronic cooling. Appl. Therm. Eng.
**2004**, 24, 2207–2217. [Google Scholar] [CrossRef] - Wu, Y.; Wu, S.; Xiao, L. Performance analysis of photovoltaic—Thermoelectric hybrid system with and without glass cover. Energy Convers. Manag.
**2015**, 93, 151–159. [Google Scholar] [CrossRef] - He, W.; Zhang, G.; Zhang, X.; Ji, J.; Li, G.; Zhao, X. Recent development and application of thermoelectric generator and cooler. Appl. Energy
**2015**, 143, 1–25. [Google Scholar] [CrossRef] - Liu, Z.B.; Zhang, L.; Gong, G.C.; Li, H.X.; Tang, G.F. Review of solar thermoelectric cooling technologies for use in zero energy buildings. Energy Build.
**2015**, 102, 207–216. [Google Scholar] [CrossRef] - Tan, G.; Zhao, D. Study of a thermoelectric space cooling system integrated with phase change material. Appl. Therm. Eng.
**2015**, 86, 187–198. [Google Scholar] [CrossRef] - Sánchez, L.; Sánchez, P.; Lucas, A.D.; Carmona, M.; Rodriguez, J.F. Microencapsulation of PCMs with a polystyrene shell. Colloid Polym. Sci.
**2007**, 12, 1377–1385. [Google Scholar] [CrossRef] - DuPont™ Energain
^{®}PCM Guidebook; DuPont™: Wilmington, DE, USA, 2010. - Chrobak, P.; Sehnalek, S.; Zalesak, M. Verification Options of the Effectiveness for Photovoltaic Panels. Electrorevue, 2014. Available online: http://www.elektrorevue.cz (accessed on 13 March 2016).
- Chrobák, P.; Zálešák, M.; Opluštil, M.; Sehnálek, S.; Vincenec, J. Photovoltaics panels—Economic return based on the real effectiveness. WSEAS Trans. Environ. Dev.
**2014**, 10, 320–328. [Google Scholar] - Habrovansky, T. Control and Monitoring of Heating and Cooling Units in Laboratory of Building Control Systems. Master’s Thesis, Tomas Bata Universitz in Zlín, Zlín, Czech Republic, 2008. [Google Scholar]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; Dewitt, D.P. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Kolacek, M.; Zalesak, M. The parameters of the thermal panel based on a phase change materials. Int. J. Mater.
**2016**, 3, 7–12. [Google Scholar]

**Figure 1.**Sensible heat vs. latent heat and temperature control during the phase change [7].

**Figure 2.**Classes of materials that can be used as phase change materials and their typical ranges of melting temperatures and melting enthalpies [13].

**Figure 11.**PCM with an initial temperature of 9 °C placed in a room with a constant temperature of 23.5 °C.

Mode | PCM (kWh) | PV (kWh) | HP (kWh) | TEC (kWh) | SUM (kWh) |
---|---|---|---|---|---|

Cooling | 1.94 | 1.86 | 1.14 | - | 0.72 |

Heating | 3.71 | 3.40 | 1.11 | - | 2.29 |

TEC | 5.02 | 14.24 | 2.37 | 11.27 | 0.60 |

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Skovajsa, J.; Koláček, M.; Zálešák, M.
Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling. *Energies* **2017**, *10*, 152.
https://doi.org/10.3390/en10020152

**AMA Style**

Skovajsa J, Koláček M, Zálešák M.
Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling. *Energies*. 2017; 10(2):152.
https://doi.org/10.3390/en10020152

**Chicago/Turabian Style**

Skovajsa, Jan, Martin Koláček, and Martin Zálešák.
2017. "Phase Change Material Based Accumulation Panels in Combination with Renewable Energy Sources and Thermoelectric Cooling" *Energies* 10, no. 2: 152.
https://doi.org/10.3390/en10020152