Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores)
Abstract
1. Introduction
2. Material and Methods
2.1. Seismic Data
2.2. Advanced Processing and Inversion Modelling
2.3. BSR-Derived Geothermal Gradient
2.4. Estimate of Gas Hydrate and Free Gas Concentrations
3. Results
3.1. Velocity Model and PreSDM Sections
3.2. BSR-Derived Geothermal Gradient
3.3. Estimate of Gas Hydrate and Free Gas Concentration
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kennett, J.P.; Cannariato, K.G.; Hendy, I.L.; Behl, R.J. Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis. In Methane Hydrates in Quaternary Climate Change: The Clathrate Gun Hypothesis; American Geophysical Union: Washington, DC, USA, 2003; pp. 1–217. [Google Scholar]
- Milkov, A.V. Global estimates of hydrate—Bound gas in marine sediments: How much is really out there? Earth Sci. Rev. 2004, 66, 183–197. [Google Scholar] [CrossRef]
- Moridis, G.J.; Collett, T.S.; Boswell, R.; Hancock, S.; Rutqvist, J.; Santamarina, C.; Kneafsey, T.; Reagan, M.; Pooladi-Darvish, T.M.; Kowalsky, M. Gas Hydrates as a Potential Energy Source: State of Knowledge and Challenges. Adv. Biofuels Bioprod. 2013, 977–1033. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2014: Synthesis Report; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; pp. 1–151. ISBN 978-92-9169-143-2. [Google Scholar]
- Kvenvolden, K.A. Natural gas hydrate: Background and history of discovery. In Natural Gas Hydrate in Oceanic and Permafrost Environments; Max, M.D., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 9–16. ISBN 978-94-011-4387-5. [Google Scholar]
- Burwicz, L.E.; Rüpke, B.H.; Wallmann, K. Estimation of the global amount of submarine gas hydrates formed via microbial methane formation based on numerical reaction-transport modeling and a novel parameterization of Holocene sedimentation. Geochim. Cosmochim. Acta 2011, 75, 4562–4576. [Google Scholar] [CrossRef]
- Wallmann, K.; Pinero, E.; Burwicz, E.; Haeckel, M.; Hensen, C.; Dale, A.; Ruepke, L. The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach. Energies 2013, 5, 2449–2498. [Google Scholar] [CrossRef]
- Marin-Moreno, H.; Giustiniani, M.; Tinivella, U.; Pinero, E. The challenges of quantifying the carbon stored in Arctic marine gas hydrate. Mar. Pet. Geol. 2016, 71, 76–82. [Google Scholar] [CrossRef]
- Hyndman, R.D.; Spence, G.D. A seismic study of methane hydrate marine bottom-simulating-reflectors. J. Geophys. Res. 1992, 97, 6683–6698. [Google Scholar] [CrossRef]
- Mienert, J.; Bünz, S. Bottom Simulating Seismic Reflectors (BSR). Encyclopedia of Marine. Geosciences 2017, 62–67. [Google Scholar] [CrossRef]
- Bangs, N.L.; Brown, K.M. Regional heat flow in the vicinity of the Chile Triple Junction constrained by the depth of the bottom simulating reflector. In Proceedings of the Ocean Drilling Program, Scientific Results; Lewis, S.D., Behrmann, J.H., Musgrave, R.J., Cande, S.C., Eds.; Ocean Drilling Program: College Station, TX, USA, 1995; Volume 141, pp. 253–258. [Google Scholar] [CrossRef]
- Brown, K.M.; Bangs, N.L.; Froelich, P.N.; Kvenvolden, K.A. The nature, distribution, and origin of gas hydrate in the Chile Triple Junction region. Earth Planet. Sci. Lett. 1996, 139, 471–483. [Google Scholar] [CrossRef]
- Diaz–Naveas, J. Sediment Subduction and Accretion at the CHILEAN Convergent Margin between 35° and 40°S. Ph.D. Dissertation, University of Kiel, Kiel, Germany, 1999; pp. 1–130. [Google Scholar]
- Grevemeyer, I.; Diaz–Naveaz, J.L.; Ranero, C.R.; Villenger, H.W. Ocean Drilling Program Scientific Party. Heat Flow over the descending Nazca plate in Central Chile, 32° S to 41° S: Observations from ODP Leg 202 and the occurrence of natural gas hydrates. Earth Planet. Sci. Lett. 2003, 213, 285–298. [Google Scholar] [CrossRef]
- Morales, E. Methane hydrates in the Chilean continental margin. Electron. J. Biotechnol. 2003, 6, 80–84. [Google Scholar] [CrossRef]
- Vargas–Cordero, I.C. Gas Hydrate Occurrence and Morpho—Structures along Chilean Margin. Ph.D. Dissertation, University of Trieste, Trieste, Italy, 2009; pp. 1–138. [Google Scholar]
- Vargas-Cordero, I.; Tinivella, U.; Accaino, F.; Loreto, M.F.; Fanucci, F. Thermal state and concentration of gas hydrate and free gas of Coyhaique Chilean Margin (44°30′S). Mar. Pet. Geol. 2010, 27, 1148–1156. [Google Scholar] [CrossRef]
- Vargas-Cordero, I.; Tinivella, U.; Accaino, F.; Fanucci, F.; Loreto, M.F.; Lascano, M.E.; Reichert, C. Basal and Frontal Accretion Processes versus BSR Characteristics along the Chilean Margin. J. Geophys. Res. 2011, 2011, 846101. [Google Scholar] [CrossRef]
- Vargas Cordero, I.; Tinivella, U.; Villar Muñoz, L.; Giustiniani, M. Gas hydrate and free gas estimation from seismic analysis offshore Chiloé island (Chile). Andean Geol. 2016, 43, 263–274. [Google Scholar] [CrossRef]
- Villar-Muñoz, L.; Behrmann, J.H.; Diaz-Naveas, J.; Klaeschen, D.; Karstens, J. Heat flow in the southern Chile forearc controlled by large-scale tectonic processes. Geo-Mar. Lett. 2014, 34, 185–198. [Google Scholar] [CrossRef]
- Bangs, N.L.; Sawyer, D.S.; Golovchenko, X. Free gas at the base of the gas hydrate zone in the vicinity of the Chile triple Junction. Geology 1993, 21, 905–908. [Google Scholar] [CrossRef]
- Rodrigo, C.; Gonzalez–Fernández, A.; Vera, E. Variability of the bottom-simulating reflector (BSR) and its association with tectonic structures in the Chilean margin between Arauco Gulf (37°S) and Valdivia (40°S). Mar. Geophys. Res. 2009, 30, 1–19. [Google Scholar] [CrossRef]
- Tinivella, U.; Carcione, J.M. Estimation of gas hydrate concentration and free gas saturation from log and seismic data. Lead. Edge 2001, 20, 200–203. [Google Scholar] [CrossRef]
- Bünz, S.; Mienert, J. Acoustic imaging of gas hydrate and free gas at the Storegga Slide. J. Geophys. Res. 2004, 109, 1–15. [Google Scholar] [CrossRef]
- Lee, M.W.; Hutchinson, D.R.; Collett, T.S.; Dillon, W.P. Seismic velocities for hydrate-bearing sediments using weighted equation. J. Geophys. Res. Solid Earth 1996, 101, 20347–20358. [Google Scholar] [CrossRef]
- Dvorkin, J.; Nur, A. Elasticity of high-porosity sandstones: Theory for two North Sea data sets. Geophysics 1996, 61, 1363–1370. [Google Scholar] [CrossRef]
- Ecker, C.; Dvorkin, J.; Nur, A. Sediments with gas hydrates: Internal structure from seismic AVO. Geophysics 1998, 63, 1659–1669. [Google Scholar] [CrossRef]
- Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T.S. Elastic wave velocity in marine sediments with gas hydrates: Effective medium modelling. Geophys. Res. Lett. 1999, 26, 2021–2024. [Google Scholar] [CrossRef]
- Chand, S.; Minshull, T.A.; Gei, D.; Carcione, J.M. Elastic velocity models for gas hydrate bearing sediments a comparison. Geophys. J. Int. 2004, 159, 573–590. [Google Scholar] [CrossRef]
- Tinivella, U. A method for estimating gas hydrate and free gas concentrations in marine sediments. Boll. Geofis. Teor. Appl. 1999, 40, 19–30. [Google Scholar]
- Tinivella, U. The seismic response to overpressure versus gas 638 hydrate and free gas concentration. J. Seism. Explor. 2002, 11, 283–305. [Google Scholar]
- Tinivella, U.; Lodolo, E. The Blake Ridge bottom simulating reflector transect: Tomographic velocity field and theoretical models to estimate hydrate quantities. In Proceedings of the Ocean Drilling Program, Scientific Results; Paull, C.K., Matsumoto, R., Wallace, P.J., Dillon, W.P., Eds.; Ocean Drilling Program: College Station, TX, USA, 2000; Volume 164, pp. 273–281. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. Bottom simulating reflectors: Seismic velocities and AVO effects. Geophysics 2000, 65, 54–67. [Google Scholar] [CrossRef]
- Carcione, J.M.; Tinivella, U. The seismic response to overpressure: A modelling study based on laboratory, well and seismic data. Geophys. Prospect. 2001, 49, 523–539. [Google Scholar] [CrossRef]
- Angermann, D.; Klotz, J.; Reiberg, C. Space—Geodetic estimation of the Nazca—South American Euler vector. Earth Planet. Sci. Lett. 1999, 171, 329–334. [Google Scholar] [CrossRef]
- Kendrick, E.; Bevis, M.; Smalley, R., Jr.; Brooks, B.; Vargas, R.C.; Lauría, E.; Fortes, L.P.S. The Nazca–South America Euler vector and its rate of change. J. South Am. Earth Sci. 2003, 16, 125–131. [Google Scholar] [CrossRef]
- Cohen, J.K.; Stockwell, J.W. CWP/SU: Seismic Unix Release 4.0: A free Package for Seismic Research and Processing; Center for Wave Phenomena, Colorado School of Mines: Golden, CO, USA, 2008; pp. 1–153. [Google Scholar]
- Tinivella, U.; Loreto, M.F.; Accaino, F. Regional versus detailed velocity analysis to quantify hydrate and free gas in marine sediments: The south Shetland margin target study. Geol. Soc. Spec. Publ. 2009, 319, 103–119. [Google Scholar] [CrossRef]
- Loreto, M.F.; Tinivella, U.; Accaino, F.; Giustiniani, M. Gas hydrate reservoir characterization by geophysical data analysis (offshore Antarctic Peninsula). Energies. 2011, 4, 39–56. [Google Scholar] [CrossRef]
- Yilmaz, O. Seismic Data Analysis: Processing, Inversion and Interpretation of Seismic Data, 2nd ed.; Society of Exploration Geophysicists: Tulsa, OK, USA, 2001; pp. 1–2027. ISBN 978-1-56080-094-1. [Google Scholar]
- Liu, Z.; Bleistein, N. Migration velocity analysis: Theory and an iterative algorithm. Geophysics 1995, 60, 142–153. [Google Scholar] [CrossRef]
- Grevemeyer, I.; Villinger, H. Gas hydrate stability and the assessment of heat flow through continental margins. Geophys. J. Int. 2001, 145, 647–660. [Google Scholar] [CrossRef]
- Dickens, G.R.; Quinby-Hunt, M.S. Methane hydrate stability in seawater. Geophys. Res. Lett. 1994, 21, 2115–2118. [Google Scholar] [CrossRef]
- Sloan, E.D. Clathrate Hydrates of Natural Gases, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 1–641. ISBN 0824799372. [Google Scholar]
- Froelich, P.N.; Kvenvolden, K.A.; Torres, M.E.; Waseda, A.; Didyk, BM.; Lorenson, T.D. Geochemical evidence for gas hydrate in sediment near the Chile triple junction. In Proceedings of the Ocean Drilling Program, Scientific Results; Lewis, S.D., Behrmann, J.H., Musgrave, R.J., Cande, S.C., Eds.; Ocean Drilling Program: College Station, TX, USA, 1995; Volume 141, pp. 276–286. [Google Scholar] [CrossRef]
- Hamilton, E.L. Sound velocity gradients in marine sediments. J. Acoust. Soc. Am. 1979, 65, 909–922. [Google Scholar] [CrossRef]
- Mix, A.C.; Tiedemann, R.; Blum, P.; Abrantes, F.F.; Benway, H.; Cacho-Lascorz, I.; Chen, M.; Delaney, M.L.; Flores, J.A.; Giosan, L.; Holbourn, A.E.; et al. Proceeding ODP Initial Reptorts 202; Ocean Drilling Program: College Station, TX, USA, 2003. [Google Scholar] [CrossRef]
- Marsaglia, K.M.; Torrez, X.V.; Padilla, I.; Rimkus, K.C. Provenance of Pleistocene and Pliocene sand and sandstone, ODP leg 141, Chile margin. In Proceedings of the Ocean Drilling Program, Scientific Results; Lewis, S.D., Behrmann, J.H., Musgrave, R.J., Cande, S.C., Eds.; Ocean Drilling Program: College Station, TX, USA, 1995; Volume 141, pp. 133–151. [Google Scholar] [CrossRef]
- Loreto, F.M.; Tinivella, U.; Ranero, C.R. Evidence for fluid circulation, overpressure and tectonic style along the Southern Chilean margin. Tectonophysics 2007, 429, 183–200. [Google Scholar] [CrossRef]
- Rabassa, J.; Clapperton, C. Quaternary glaciations of the Southern Andes, Quaternary glaciations in the Southern Hemisphere. Quat. Sci. Rev. 1990, 9, 153–174. [Google Scholar] [CrossRef]
- Accaino, F.; Bohm, G.; Brancolini, G. Analysis of Antarctic glaciations by seismic reflection and refraction tomography. Mar. Geol. 2005, 216, 145–154. [Google Scholar] [CrossRef]
- Loreto, M.F.; Tinivella, U. Gas hydrate versus geological features: The South Shetland case study. Mar. Pet. Geol. 2012, 36, 164–171. [Google Scholar] [CrossRef]
- Boobalan, A.J.; Ramanujam, N. Triggering mechanism of gas hydrate dissociation and subsequent sub marine landslide and ocean wide Tsunami after Great Sumatra—Andaman 2004 earthquake. Arch. Appl. Sci. Res. 2013, 5, 105–110. [Google Scholar]




| Seismic Line | Modelledm Layers (Top-Bottom) | Number of Iterations |
|---|---|---|
| RC2901-727 | Seawater-seafloor | 4 |
| Seafloor-BSR | 30 | |
| BSR-BGR | 10 | |
| SO161-29 | Seawater-Seafloor | 6 |
| Seafloor-Horizon 1 | 25 | |
| Horizon 1-BSR | 45 | |
| BSR-BGR | BGR not recognisable |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iván, V.-C.; Umberta, T.; Lucía, V.-M. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores). Energies 2017, 10, 2154. https://doi.org/10.3390/en10122154
Iván V-C, Umberta T, Lucía V-M. Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores). Energies. 2017; 10(12):2154. https://doi.org/10.3390/en10122154
Chicago/Turabian StyleIván, Vargas-Cordero, Tinivella Umberta, and Villar-Muñoz Lucía. 2017. "Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores)" Energies 10, no. 12: 2154. https://doi.org/10.3390/en10122154
APA StyleIván, V.-C., Umberta, T., & Lucía, V.-M. (2017). Gas Hydrate and Free Gas Concentrations in Two Sites inside the Chilean Margin (Itata and Valdivia Offshores). Energies, 10(12), 2154. https://doi.org/10.3390/en10122154

