Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations
Abstract
1. Introduction
2. Problem Formulation
2.1. Generator Model
2.2. TCSC Model
2.3. SVC Model
3. Main Results
3.1. Robust MFCC Design
3.2 Time-Delay MFCC Design
4. Numerical Simulations
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Klein, M.; Rogers, G.; Kundur, P. A fundamental study of inter-area oscillations in power systems. IEEE Trans. Power Syst. 1991, 6, 914–921. [Google Scholar] [CrossRef]
- Kamwa, I.; Grondin, G.; Hebert, Y. Wide-area measurement based stabilizing control of large power systems—A decentralized/hierarchical approach. IEEE Trans. Power Syst. 2001, 16, 136–153. [Google Scholar] [CrossRef]
- Paserba, J. Analysis and Control of Power System Oscillations; CIGRE Special Publication 38.01.07, Technical Brochure III; International Council on Large Electric Systems (CIGRE): Paris, France, 1996. [Google Scholar]
- Tedesco, F.; Casavola, A. Fault-tolerant distributed load/frequency supervisory strategies for networked multi-area microgrids. Int. J. Robust Nonlinear Control 2014, 24, 1380–1402. [Google Scholar] [CrossRef]
- Magdy, E.; Sallam, A.; McCalley, J.; Fouad, A.A. Damping controller design for power system oscillation. IEEE Trans. Power Syst. 1996, 11, 767–773. [Google Scholar]
- De Oliveira, R.V.; Kuiava, R.; Ramos, R.A.; Bretas, N.G. Automatic tuning method for the design of supplementary damping controllers for flexible alternating current transmission system devices. IET Gener. Transm. Distrib. 2009, 3, 919–929. [Google Scholar] [CrossRef]
- Simfukwe, D.D.; Pal, B.C.; Jabr, R.A.; Martins, N. Robust and low-order design of flexible AC transmission systems and power system stabilisers for oscillation damping. IET Gener. Transm. Distrib. 2012, 6, 445–452. [Google Scholar] [CrossRef]
- Sanchez-Gasca, J.J. Coordinated control of two FACTS devices for damping interarea oscillations. IEEE Trans. Power Syst. 1998, 13, 428–434. [Google Scholar] [CrossRef]
- Noroozian, L.; Angquist, L.; Ghandhari, M.; Andersson, G. Improving power system dynamics by series-connected FACTS devices. IEEE Trans. Power Deliv. 1997, 12, 1635–1641. [Google Scholar] [CrossRef]
- Phadke, A.G. Synchronized phasor measurements in power system. IEEE Comput. Appl. Power 1993, 6, 10–15. [Google Scholar] [CrossRef]
- Deng, J.; Li, C.; Zhang, X.-P. Coordinated Design of Multiple Robust FACTS Damping Controllers: A BMI-Based Sequential Approach with Multi-Model Systems. IEEE Trans. Power Syst. 2015, 30, 3150–3159. [Google Scholar] [CrossRef]
- Leon, A.E.; Solsona, J.A. Power Oscillation Damping Improvement by Adding Multiple Wind Farms to Wide-Area Coordinating Controls. IEEE Trans. Power Syst. 2014, 29, 1356–1364. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, W.; Wu, Q.H.; Wen, J.Y.; Cheng, S.J. Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans. Power Syst. 2012, 27, 932–941. [Google Scholar] [CrossRef]
- Wei, Y.; Jiang, L.; Wen, J.; Wu, Q.H.; Cheng, S. Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays. IEEE Trans. Power Syst. 2014, 29, 318–329. [Google Scholar]
- Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V. Linear Matrix Inequalities in System and Control Theory; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1994. [Google Scholar]
- Gahinet, P.; Nemirovski, A. LMI Control Toolbox for Use with MATLAB; Mathworks Inc.: Natick, MD, USA, 1995. [Google Scholar]
- Wu, M.; He, Y. Robust Control of Time-Delay System; Science Press: Beijing, China, 2007. [Google Scholar]
- Anderson, P.M.; Fouad, A.A. Power System Control and Stability; IEEE Press: Piscataway, NJ, USA, 1994. [Google Scholar]
- Hingorani, N.G.; Gyugyi, L. Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems; IEEE Press: New York, NY, USA, 2000. [Google Scholar]
- Del Rosso, D.; Canizares, C.A.; Dona, V.M. A study of TCSC controller design for power system stability improvement. IEEE Trans. Power Syst. 2003, 18, 1487–1496. [Google Scholar] [CrossRef]
- Zhou, K.; Doyle, J.C.; Golver, K. Robust and Optimal Control; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Pal, B.C.; Coonick, A.H.; Jaimoukha, I.M.; El-Zobaidi, H. A linear matrix inequality approach to robust damping control design in power systems with superconducting magnetic energy storage device. IEEE Trans. Power Syst. 2000, 15, 356–362. [Google Scholar] [CrossRef]
- Kung, S.; Lin, D.W. Optimal Hankel-norm model reductions: Multivariable systems. IEEE Trans. Autom. Control 1981, 26, 832–852. [Google Scholar] [CrossRef]
- Chiali, M.; Bretas, P.G. H∞ design with pole placement constraints: An LMI approach. IEEE Trans. Autom. Control 1996, 41, 358–367. [Google Scholar] [CrossRef]
- Xu, S.Y.; Sun, H.D.; Li, B.Q.; Bu, G.Q. Wide-Area Robust Decentralized Coordinated Control of HVDC Power System Based on Polytopic System Theory. Math. Probl. Eng. 2015, 2015, 510216. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Geromel, J.C.; Bernussou, J. Design of dynamic output feedback decentralized controllers via a separation procedure. Int. J. Control 2000, 73, 371–381. [Google Scholar] [CrossRef]
- Wu, M.; He, Y.; She, J.H.; Liu, G.P. Delay-dependent criteria for robust stability of time-varying delay systems. Automatica 2004, 40, 1435–1439. [Google Scholar] [CrossRef]
- Han, K.; Kim, H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 2002, 6, 580–593. [Google Scholar] [CrossRef]
- Bellen, A.; Maset, S. Numerical solution of constant coefficient linear delay differential equations as abstract Cauchy problems. Numer. Math. 2000, 84, 351–374. [Google Scholar] [CrossRef]
- Astrom, K.J.; Wittenmark, B. Computer-Controlled Systems-Theory and Design, 3rd ed.; Tsinghua University Press: Beijing, China, 2002; pp. 100–110. [Google Scholar]
Modes | −0.018 ± j3.528 | −0.728 ± j6.324 | −0.789 ± j6.356 |
Frequency/Hz | 0.562 | 1.006 | 1.012 |
Damping Ratio | 0.524% | 11.443% | 12.319% |
Description | Modes | Frequency/Hz | Damping Ratio | |
---|---|---|---|---|
Case 1 | Base Case | −0.018 ± j3.528 | 0.562 | 0.524% |
−0.728 ± j6.324 | 1.006 | 11.443% | ||
−0.789 ± j6.356 | 1.012 | 12.319% | ||
Case 2 | Load 1: −100 MW Load 2: +100 MW | −0.008 ± j3.362 | 0.535 | 0.231% |
−0.728 ± j6.291 | 1.002 | 11.495% | ||
−0.779 ± j6.340 | 1.009 | 12.194% | ||
Case 3 | Load 1: +100 MW Load 2: −100 MW | −0.028 ± j3.628 | 0.578 | 0.7614% |
−0.725 ± j6.350 | 1.011 | 11.339% | ||
−0.795 ± j6.364 | 1.012 | 12.402% |
Description | Modes | Frequency/Hz | Damping Ratio | |
---|---|---|---|---|
Case 1 | Base Case | −0.675 ± j3.482 | 0.554 | 19.0319% |
−0.715 ± j6.401 | 1.018 7 | 11.0982% | ||
−0.816 ± j6.241 | 0.993 3 | 12.958% | ||
Case 2 | Load 1: −100 MW Load 2: +100 MW | −0.699 ± j3.329 | 0.529 9 | 20.5334% |
−0.711 ± j6.371 | 1.013 9 | 11.0872% | ||
−0.809 ± j6.232 | 0.991 8 | 12.8706% | ||
Case 3 | Load 1: +100 MW Load 2: −100 MW | −0.633 ± j3.552 | 0.565 3 | 17.5471% |
−0.716 ± j6.420 | 1.021 8 | 11.0898% | ||
−0.817 ± j6.247 | 0.994 2 | 12.9673% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Yang, Y.; Peng, K.; Li, L.; Hayat, T.; Alsaedi, A. Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations. Energies 2017, 10, 2130. https://doi.org/10.3390/en10122130
Xu S, Yang Y, Peng K, Li L, Hayat T, Alsaedi A. Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations. Energies. 2017; 10(12):2130. https://doi.org/10.3390/en10122130
Chicago/Turabian StyleXu, Shiyun, Ying Yang, Kaixiang Peng, Linlin Li, Tasawar Hayat, and Ahmed Alsaedi. 2017. "Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations" Energies 10, no. 12: 2130. https://doi.org/10.3390/en10122130
APA StyleXu, S., Yang, Y., Peng, K., Li, L., Hayat, T., & Alsaedi, A. (2017). Wide Area Coordinated Control of Multi-FACTS Devices to Damp Power System Oscillations. Energies, 10(12), 2130. https://doi.org/10.3390/en10122130