Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector
Abstract
:1. Introduction
2. Conceptual Framework: Dynamic Efficiency of Public Policy and Exports
3. The Model
4. Data and Methodology
5. Empirical Analysis
5.1. Testing Panel Frameworks
5.2. Model Specification and Empirical Test
6. Discussion
6.1. Summary and Policy Implications
6.2. Limitations and Future Research
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Finon, D.; Perez, Y. The social efficiency of instruments of promotion of renewable energies: A transaction-cost perspective. Ecol. Econ. 2007, 62, 77–92. [Google Scholar] [CrossRef]
- Hass, R.; Resch, G.; Panzer, C.; Busch, S.; Ragwitz, M.; Held, A. Efficiency and effectiveness of promotion systems for electricity generation from renewable energy sources—Lessons from EU countries. Energy 2011, 36, 2186–2193. [Google Scholar] [CrossRef]
- Del Río, P. The dynamic efficiency of feed-in tariffs: The impact of different design elements. Energy Policy 2012, 41, 139–151. [Google Scholar] [CrossRef]
- Held, F.; Haas, R.; Ragwitz, M. On the success of policy strategies for the promotion of electricity from renewable energy sources in the EU. Energy Environ. 2006, 17, 849–868. [Google Scholar] [CrossRef]
- Lund, P.D. Effects of energy policies on industry expansion in renewable energy. Renew. Energy 2009, 34, 53–64. [Google Scholar] [CrossRef]
- Bürer, M.J.; Wüsternhagen, R. Which renewable energy policy is a venture capitalist’s best friend? Empirical evidence from a survey of international cleantech investors. Energy Policy 2009, 37, 4997–5006. [Google Scholar] [CrossRef]
- Verbruggen, A.; Lauber, V. Assessing the performance of renewable electricity support instruments. Energy Policy 2012, 45, 635–644. [Google Scholar] [CrossRef]
- Jha, V. Trade Flows, Barriers and Market Drivers in Renewable Energy Supply Goods: The Need to Level the Playing Field; ICTSD Trade and Environment Issue Paper 10; International Centre for Trade and Sustainable Development: Geneva, Switzerland, 2009. [Google Scholar]
- Sung, B. Public policy supports and export performance of bioenergy technologies: A dynamic approach. Renew. Sustain. Energy Rev. 2015, 24, 477–495. [Google Scholar] [CrossRef]
- Midttun, A.; Gautesen, K. Feed in or certificates, competition or complementarity? Combining a static efficiency and a dynamic innovation perspective on the greening of the energy industry. Energy Policy 2007, 35, 1419–1422. [Google Scholar] [CrossRef]
- Johnstone, N.; Haščič, L.; Popp, D. Renewable energy policies and technological innovation: Evidence based on patent counts. Environ. Resour. Econ. 2010, 45, 133–155. [Google Scholar] [CrossRef]
- Johnstone, N.; Haščič, L.; Poirier, J.; Hemar, M.; Michel, C. Environmental policy stringency and technological innovation: Evidence from survey data and patent counts. Appl. Econ. 2012, 44, 2157–2170. [Google Scholar] [CrossRef]
- Costantini, V.; Crespi, F.; Martini, C.; Pennacchio, L. Demand-pull and technology-push public support for eco-innovation: The case of the biofuels sector. Res. Policy 2015, 44, 577–595. [Google Scholar] [CrossRef]
- Zachmann, G.; Serwaah, A.; Peruzzi, M. When and How to Support Renewables? Letting the Data Speak; Working Paper 2014/01; Bruegel: Brussels, Belgium, 2014. [Google Scholar]
- Arent, D.J.; Wise, A.; Gelman, R. The status and prospects of renewable energy for combating global warming. Energy Econ. 2011, 33, 584–593. [Google Scholar] [CrossRef]
- Söderholm, D.; Klaassen, G. Wind power in Europe: A simultaneous innovation-diffusion model. Environ. Resour. Econ. 2007, 36, 163–190. [Google Scholar] [CrossRef]
- Del Río, P.; Bleda, M. Theoretical Approaches to Dynamic Efficiency in Policy Contexts: The Case of Renewable Electricity. In The Dynamics of Economic and Environmental Systems; Costantini, V., Mazzanti, M., Eds.; Springer: Rotterdam, The Netherlands, 2013; pp. 45–60. [Google Scholar]
- Organization for Economic Co-operation and Development (OECD). Dynamic Efficiencies in Merger Analysis; OECD: Paris, France, 2007. [Google Scholar]
- Fu, X.; Yang, Q.G. Exploring the cross-country gap in patenting: A stochastic frontier approach. Res. Policy 2009, 38, 1303–1313. [Google Scholar] [CrossRef]
- Hirshleifer, D.; Hsu, P.-H.; Li, D. Innovative efficiency and stock returns. J. Financ. Econ. 2013, 107, 632–654. [Google Scholar] [CrossRef] [Green Version]
- Jayamaha, A.; Mula, J.M. Productivity and efficiency measurement technologies: Identifying the efficiency of techniques for financial institutions in developing countries. J. Emerg. Trends Econ. Manag. Sci. 2012, 2, 454–460. [Google Scholar]
- Hall, B.H.; Oriani, R. Does the market value R&D investment by European firms? Evidence from a panel of manufacturing firms in France, Germany, and Italy. Int. J. Ind. Organ. 2006, 24, 971–993. [Google Scholar]
- Duqi, A.; Torluccio, G. Can R&D expenditures affect firm market value? An empirical analysis of a panel of European listed firms. In Bank Performance Risk and Firm Financing; Molyneux, P., Ed.; Palgrave Macmillan: England, UK, 2011; pp. 215–241. [Google Scholar]
- Conte, A.; Scheweizer, P.; Dierx, A.; Ilzkovitz, F. An Analysis of the Efficiency of Public Spending and National Policies in the Error of R&D; Occasional Paper 54; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Costantini, V.; Crespi, F. Environmental regulation and the export dynamics of energy technologies. Ecol. Econ. 2008, 66, 447–460. [Google Scholar] [CrossRef]
- Sung, B.; Song, W.-Y. Causality between public policies and exports of renewable energy technologies. Energy Policy 2013, 55, 95–104. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopt, S.; Norris, M.; Zhang, Z. Productivity growth, technical progress and efficiency change in industrialized countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Costantini, V.; Mazzanti, M. On the green and innovative side of trade competitiveness? The impact of environmental policies and innovation on EU exports. Res. Policy 2012, 41, 132–153. [Google Scholar] [CrossRef]
- Porter, M.E.; Van der Linde, C. Toward a new conception of the environment-competiveness relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef]
- Albrizio, S.; Kozluk, T.; Zipperer, V. Environmental policies and productivity growth: Evidence across industries and firms. J. Environ. Econ. Manag. 2017, 81, 209–226. [Google Scholar] [CrossRef]
- Groba, F. Determinants of Trade with Solar Energy Technology Components: Evidence on the Porter Hypothesis? Discussion Papers 1163; German Institute for Economic Research: Berlin, German, 2011. [Google Scholar]
- Groba, F. Environmental Regulation, Solar Energy Technology Components and International Trade—An Empirical Analysis of Structure and Drives. Presented at the World Renewable Energy Congress, Linköping, Sweden, 8–13 May 2011; pp. 3670–3677. [Google Scholar]
- Smith, P.C.; Street, A.A. Measuring the efficiency of public services: The limits of analysis. J. R. Stat. Soc. Ser. A 2005, 168, 401–417. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). World Energy Outlook 2016; OECD/IEA: Paris, France, 2016. [Google Scholar]
- Kahia, M.; Kadria, M.; Ben Aissa, M.S.; Lanouar, C. Modeling the treatment effect of renewable energy policies on economic growth: Evaluation from MENA countries. J. Clean. Prod. 2017, 149, 845–855. [Google Scholar] [CrossRef]
- Ru, P.; Zhi, Q.; Zhang, F.; Zhong, X.; Li, J.; Su, J. Behind the development of technology: The transition of innovation modes in China’s wind turbine manufacturing industry. Energy Policy 2012, 43, 58–69. [Google Scholar] [CrossRef]
- Shen, Y.-C.; Chou, C.J.; Lin, G.T.G. The portfolio of renewable energy sources for achieving the three E policy goal. Energy 2011, 36, 2589–2598. [Google Scholar] [CrossRef]
- Bernard, A.B.; Jensen, J.B.; Redding, S.J.; Schott, P.K. Firms in international trade. J. Econ. Perspect. 2007, 21, 105–130. [Google Scholar] [CrossRef]
- Costantini, J.; Melitz, M. The Dynamics of Firm-Level Adjustment to Trade Liberalization. In The Organization of Firms in a Global Economy; Helpman, E., Marin, D., Verdier, T., Eds.; Harvard University Press: Cambridge, MA, USA, 2007; pp. 15–36. [Google Scholar]
- Melitz, M.J. The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef]
- Schumpeter, J. Capitalism, Socialism and Democracy; Harper: New York, NY, USA, 1942. [Google Scholar]
- Leitner, K.H. Innovations Management; Lecture Notes; Vienna University of Technology: Vienna, Austria, 2005. [Google Scholar]
- Kahouli-Brahmi, S. Testing for the presence of some features of increasing returns to adoption factors in energy system dynamics: An analysis via the learning curve approach. Ecol. Econ. 2009, 68, 1195–1212. [Google Scholar] [CrossRef]
- Negro, S.O.; Alkemade, F.; Hekkert, M.P. Why does renewable energy diffuse so slowly? A review of innovation system problems. Renew. Sustain. Energy Rev. 2012, 16, 3836–3846. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, H.; Zou, D. Exuberance in China’s renewable energy investment: Rationality, capital structure and implications with firm level evidence. Energy Policy 2016, 95, 468–478. [Google Scholar] [CrossRef]
- Lin, B.; Yang, L. Efficiency effect of changing investment structure on China’s power industry. Renew. Sustain. Energy Rev. 2014, 39, 403–411. [Google Scholar] [CrossRef]
- Kirzner, I. How Markets Work: Disequilibrium, Entrepreneurship and Discovery; Hobart Paper No. 133; Institute of Economic Affairs: London, UK, 1997. [Google Scholar]
- Abhyankar, R. The government of India’s role in promoting innovation through policy initiatives for entrepreneurship development. Technol. Innov. Manag. Rev. 2014, 4, 11–17. [Google Scholar]
- Cumming, D.; Li, D. Public policy, entrepreneurship, and venture capital in the United States. J. Corp. Financ. 2013, 23, 345–367. [Google Scholar] [CrossRef] [Green Version]
- Lewin, P. Entrepreneurial opportunity as the potential to create value. Rev. Aust. Econ. 2005, 28, 1–15. [Google Scholar]
- De Soto, J.H. The Theory of Dynamic Efficiency; Routledge: New York, NY, USA, 2009. [Google Scholar]
- Nill, J.; Kemp, R. Evolutionary approaches for sustainable innovation policies: From niche to paradigm? Res. Policy 2009, 38, 668–680. [Google Scholar] [CrossRef]
- Mihaiui, D.M.; Opeana, A.; Cristescu, M.P. Efficiency, effectiveness and performance of the public sector. Rom. J. Econ. Forecast. 2010, 4, 132–147. [Google Scholar]
- Barros, C.P.; Alves, C. An empirical analysis of productivity growth in a Portuguese retail chain using Malmquist productivity index. J. Retail. Consum. Sc. 2004, 11, 269–278. [Google Scholar] [CrossRef]
- Price, C.W.; Weyman-Jones, T. Malmquist indices of productivity change in the UK gas industry before and after privatisation. Appl. Econ. 1996, 28, 29–39. [Google Scholar] [CrossRef]
- Nicolli, F.; Vona, F. Heterogeneous policies, heterogeneous technologies: The case of renewable energy. Energy Econ. 2016, 56, 190–204. [Google Scholar] [CrossRef]
- He, Y.; Xu, Y.; Pang, Y.; Tian, H.; Wu, R. A regulatory policy to promote renewable energy consumption in China: Review and future evolutionary path. Renew. Energy 2016, 89, 695–705. [Google Scholar] [CrossRef]
- Kilinc-Ata, N. The evaluation of renewable energy policies across EU countries and US states: An econometric approach. Energy Sustain. Dev. 2016, 31, 83–90. [Google Scholar] [CrossRef]
- Hills, J.M.; Michalena, E. Renewable energy pioneers are threatened by EU policy reform. Renew. Energy 2017, 108, 26–36. [Google Scholar] [CrossRef]
- Zachmann, G.; Serwaah-Panin, A.; Peruzzi, M. When and How to Support Renewables?—Letting the Data Speak. In Green Energy and Efficiency. An Economic Perspective; Ansuategi, A., Delgado, J., Galarraga, I., Eds.; Springer: Cham, Switzerland, 2015; pp. 291–332. [Google Scholar]
- Bosetti, V.; Carraro, C.; Massetti, E.; Sgobbi, A.; Tavoni, M. Optimal energy investment and R&D strategies to stabilize atmospheric greenhouse gas concentrations. Resour. Energy Econ. 2009, 31, 123–137. [Google Scholar]
- Kobos, P.H.; Erickson, J.D.; Drennen, T.E. Technological learning and renewable energy costs: Implications for US renewable energy policy. Energy Policy 2006, 34, 1645–1658. [Google Scholar] [CrossRef]
- Popp, D.; Hascic, I.; Medhl, N. Technology and the diffusion of renewable energy. Energy Econ. 2011, 33, 648–662. [Google Scholar] [CrossRef]
- Bointner, R. Innovation in the energy sector: Lessons learnt from R&D expenditures and patents in selected IEA countries. Energy Policy 2014, 73, 733–747. [Google Scholar]
- Popp, D. Induced innovation and energy prices. Am. Econ. Rev. 2002, 92, 160–180. [Google Scholar] [CrossRef]
- Botta, E.; Kózluk, T. Measuring Environmental Policy Stringency in OECD Countries: A Composite Index Approach; OECD Economics Department Working Paper No. 1177; OECD: Paris, France, 2014. [Google Scholar]
- De serres, A.; Murtin, F.; Nicoletti, G. A Framework for Assessing Green Growth Policies; OECD Economic Department Working Paper; OECD: Paris, France, 2010. [Google Scholar]
- Jarque, C.M.; Bera, A.K. A test for normality of observation and regression residual. Int. Stat. Rev. 1987, 55, 163–172. [Google Scholar] [CrossRef]
- Brown, R.L.; Durbin, J.; Evans, J.M. Technologies for testing the constancy of regression relationships over time. J. R. Stat. Soc. B 1975, 37, 149–192. [Google Scholar]
- Breusch, T.; Pagan, A. The LM Test and its application to model specification in econometrics. Rev. Econ. Stud. 1989, 47, 239–254. [Google Scholar] [CrossRef]
- Breitung, J. The local power of some unit root tests for panel data. Adv. Econom. 2001, 15, 161–177. [Google Scholar]
- Carrion-i-Silvestre, J.L.; Del Barrio-Castro, T.; Lópes-Bazo, E. Breaking the panels: An application to the GDP per capita. Econom. J. 2005, 8, 159–175. [Google Scholar] [CrossRef]
- Pesaran, H.M. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Banerjee, A.; Carrion-i-Silvestre, J.L. Cointegration in Panel Data with Breaks and Cross-Section Dependence; Working Paper No. 591; European Central Bank: Frankfurt am Main, Germany, 2006. [Google Scholar]
- Westerlund, J. Testing for error correction in panel data. Oxf. Bull. Econ. Stat. 2007, 69, 709–748. [Google Scholar] [CrossRef]
- Baum, C.F. Residual diagnostics for cross-section time series regression models. Stata J. 2001, 1, 101–104. [Google Scholar]
- Greene, W. Econometric Analysis; Prentice-Hall: Upper Saddle River, NJ, USA, 2000. [Google Scholar]
- Engle, R.; Granger, C.W.J. Cointegration and error correction: Representation, estimation, and testing. Econometrica 1987, 55, 251–276. [Google Scholar] [CrossRef]
- Shmueli, G. To explain or to predict? Stat. Sci. 2010, 25, 289–310. [Google Scholar] [CrossRef]
- Kao, C.; Chiang, M. On the estimation and inference of a cointegrated regression in panel data. Adv. Econ. 2000, 15, 179–222. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled mean group estimation of dynamic heterogeneous panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Roodman, D. How to extabond 2: An introduction to difference and system GMM in stata. Stata J. 2009, 9, 86–136. [Google Scholar]
- Sarafidis, V.; Yamagata, T.; Robertson, D. A test for cross section dependence for a linear dynamic panel model with regressors. J. Econom. 2009, 148, 149–161. [Google Scholar] [CrossRef]
- Anderson, T.W.; Hsiao, C. Formulation and estimation of dynamic models using panel data. J. Econom. 1982, 18, 570–606. [Google Scholar] [CrossRef]
- Arellano, M.; Bond, S. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef]
- Nickell, S. Biases in dynamic models with fixed effects. Econometrica 1981, 49, 1417–1426. [Google Scholar] [CrossRef]
- Judson, R.H.; Owen, A.L. Estimating dynamic panel data models: A guide for macroeconomists. Econ. Lett. 1999, 65, 9–15. [Google Scholar] [CrossRef]
- Bruno, G. Approximating the bias of the LSDV estimator for dynamic unbalanced panel data models. Econ. Lett. 2005, 87, 361–366. [Google Scholar] [CrossRef]
- Baltagi, H.B. Econometric Analysis of Panel Data, 3rd ed.; John Willey & Sons, Ltd.: Chichester, UK, 2005. [Google Scholar]
- Popp, D. Innovation in climate policy models: Implementing lessons from the economics of R&D. Energy Econ. 2006, 28, 596–609. [Google Scholar]
- Baccini, L.; Urpelainen, J. Legislative fractionalization and partisan shifts to the left increase the volatility of public R&D expenditures. Energy Policy 2012, 46, 49–57. [Google Scholar]
- Grubb, M. Technology innovation and climate change policy: An overview of issues and options. Keio Econ. Stud. 2004, 41, 103–132. [Google Scholar]
- Bauen, A.; Berndes, G.; Junginger, M.; Londo, M.; Vuille, F.; Ball, R.; Bole, T.; Chudziak, C.; Faaij, A.; Mozaffarian, H. Bioenergy: A Sustainable and Reliable Energy Source. A Review of Status and Prospects; International Energy Agency: Paris, France, 2009. [Google Scholar]
- Ambec, S.; Cohen, M.A.; Elgie, S.; Lanoie, P. The Porter Hypothesis at 20: Can Environmental Regulation Enhance Innovation and Competitiveness? Discussion Paper No. 11-01; Resources for the Future: Washington, DC, USA, 2011. [Google Scholar]
- Kanda, W.; Mejia-Dugand, S.; Hjelm, O. Governmental export promotion initiatives: Awareness, participation, and perceived effectiveness among Swedish environmental technology firms. J. Clean. Prod. 2015, 98, 222–228. [Google Scholar] [CrossRef]
- Adams, P.W.; Hammond, G.P.; McManus, M.C.; Mezzullo, W.G. Barriers to and drivers for UK bioenergy development. Renew. Sustain. Energy Rev. 2011, 15, 1217–1227. [Google Scholar] [CrossRef]
- Domac, J.; Richards, K.; Risovic, S. Socio-economic drivers in implementing bioenergy projects. Biomass Bioenergy 2005, 28, 97–106. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A. Drivers promoting renewable energy: A dynamic panel approach. Renew. Sustain. Energy Rev. 2011, 15, 1601–1608. [Google Scholar] [CrossRef]
- McKay, H. Environmental, economic, social and political drivers for increasing use of wood fuel as a renewable resource in Britain. Biomass Bioenergy 2006, 30, 308–315. [Google Scholar] [CrossRef]
Country | Variable | Mean | SD | MIN | MAX | Skewness | Kurtosis | J-B |
---|---|---|---|---|---|---|---|---|
Australia | EX | 6.330 | 0.476 | 5.730 | 7.153 | 0.326 | 1.596 | 1.679 |
DE | 0.464 | 0.435 | 0.000 | 1.160 | 0.230 | 1.591 | 1.556 | |
EPS | 0.345 | 0.621 | −0.780 | 1.313 | −0.269 | 2.295 | 0.557 | |
Austria | EX | 5.990 | 0.903 | 4.362 | 7.020 | −0.429 | 1.956 | 1.294 |
DE | 0.437 | 0.508 | 0.000 | 1.479 | 0.774 | 2.312 | 2.037 | |
EPS | 0.898 | 0.204 | 0.617 | 1.202 | 0.023 | 1.619 | 1.351 | |
Canada | EX | 6.501 | 0.624 | 5.110 | 7.284 | −0.775 | 2.828 | 1.727 |
DE | 0.453 | 0.515 | 0.000 | 2.037 | 1.675 | 6.207 | 15.240 *** | |
EPS | 0.422 | 0.738 | −0.780 | 1.349 | −0.103 | 1.524 | 1.572 | |
Denmark | EX | 5.625 | 0.850 | 4.273 | 7.311 | 0.123 | 2.216 | 0.478 |
DE | 0.828 | 0.283 | 0.529 | 1.655 | 1.502 | 5.319 | 10.230 *** | |
EPS | 1.031 | 0.247 | 0.682 | 1.404 | 0.169 | 1.889 | 0.954 | |
Finland | EX | 4.832 | 0.604 | 4.078 | 5.862 | 0.470 | 1.632 | 1.953 |
DE | 0.470 | 0.515 | 0.000 | 1.699 | 0.775 | 2.749 | 1.750 | |
EPS | 0.831 | 0.337 | 0.303 | 1.246 | −0.236 | 1.482 | 1.789 | |
France | EX | 7.713 | 0.575 | 6.524 | 8.410 | −0.476 | 2.294 | 0.995 |
DE | 0.725 | 0.359 | 0.000 | 1.350 | −0.407 | 3.315 | 0.541 | |
EPS | 0.740 | 0.442 | 0.136 | 1.308 | −0.012 | 1.333 | 1.969 | |
Germany | EX | 8.530 | 0.695 | 7.259 | 9.386 | −0.595 | 2.230 | 1.423 |
DE | 0.811 | 0.187 | 0.457 | 1.104 | −0.367 | 2.199 | 0.835 | |
EPS | 0.914 | 0.189 | 0.617 | 1.144 | −0.326 | 1.520 | 1.852 | |
Italy | EX | 7.527 | 0.444 | 6.833 | 8.129 | 0.026 | 1.430 | 1.748 |
DE | 0.654 | 0.492 | 0.000 | 2.009 | 0.980 | 4.564 | 4.460 | |
EPS | 0.657 | 0.304 | 0.303 | 1.044 | 0.166 | 1.204 | 2.361 | |
Japan | EX | 8.440 | 0.380 | 7.588 | 8.907 | −0.863 | 2.958 | 2.115 |
DE | 0.529 | 0.411 | 0.000 | 1.127 | −0.036 | 1.901 | 0.858 | |
EPS | 0.555 | 0.258 | 0.287 | 1.252 | 1.592 | 4.924 | 9.808 *** | |
The Netherlands | EX | 7.468 | 1.055 | 4.909 | 8.176 | −1.090 | 3.642 | 3.661 |
DE | 0.706 | 0.468 | 0.000 | 1.544 | −0.099 | 2.160 | 0.527 | |
EPS | 0.813 | 0.395 | 0.206 | 1.419 | 0.434 | 1.577 | 1.439 | |
Norway | EX | 4.807 | 1.103 | 2.276 | 6.392 | −0.914 | 3.177 | 2.392 |
DE | 0.575 | 0.511 | 0.000 | 1.676 | 0.434 | 2.297 | 0.884 | |
EPS | 0.542 | 0.445 | 0.020 | 1.181 | 0.245 | 1.583 | 1.592 | |
Spain | EX | 6.140 | 0.822 | 4.434 | 7.369 | −0.243 | 2.347 | 0.469 |
DE | 0.543 | 0.401 | 0.000 | 1.081 | −0.435 | 1.562 | 2.002 | |
EPS | 0.847 | 0.218 | 0.446 | 1.098 | −0.573 | 2.169 | 1.421 | |
Sweden | EX | 5.993 | 0.650 | 4.529 | 6.797 | −0.738 | 2.587 | 1.665 |
DE | 0.729 | 0.566 | 0.000 | 2.282 | 1.108 | 4.334 | 4.742 | |
EPS | 0.802 | 0.411 | 0.040 | 1.206 | −0.968 | 2.352 | 2.952 | |
Switzerland | EX | 6.413 | 0.387 | 5.566 | 6.992 | −0.878 | 3.323 | 2.261 |
DE | 0.780 | 0.458 | 0.000 | 1.452 | −0.089 | 2.150 | 0.532 | |
EPS | 0.833 | 0.223 | 0.523 | 1.203 | 0.720 | 2.056 | 2.103 | |
The United Kingdom | EX | 7.492 | 0.436 | 6.438 | 8.052 | −1.126 | 3.808 | 4.062 |
DE | 0.689 | 0.496 | 0.000 | 1.718 | 0.648 | 3.197 | 1.218 | |
EPS | 0.475 | 0.559 | −0.207 | 1.285 | −0.013 | 1.492 | 1.610 | |
The Unites States of America | EX | 8.529 | 0.642 | 7.354 | 9.497 | −0.016 | 1.950 | 0.781 |
DE | 0.778 | 0.203 | 0.445 | 1.193 | 0.231 | 2.639 | 0.243 | |
EPS | 0.485 | 0.410 | 0.048 | 1.152 | 0.434 | 1.415 | 2.314 |
Variables | EX | DE | EPS | ||||
---|---|---|---|---|---|---|---|
Pesaran CADF test z (t-bar) stat. | (A) | 0.522 | −3.636 *** | 0.695 | −4.224 *** | −2.081 * | −2.194 ** |
(B) | −1.169 | −4.319 *** | −0.292 | −2.673 *** | −2.304 | −4.202 *** |
Statistics | With Trend | Without Trend | ||||
---|---|---|---|---|---|---|
Value | Z | Robust p-Value | Value | Z | Robust p-Value | |
−3.004 | −2.262 | 0.057 | −2.796 | −3.304 | 0.011 | |
−7.136 | 3.545 | 0.198 | −8.303 | 3.545 | 0.011 | |
−10.829 | −1.861 | 0.062 | −11.519 | −4.515 | 0.009 | |
−6.446 | 2.392 | 0.268 | −8.249 | 1.706 | 0.017 |
Estimators | Variables | |
---|---|---|
DE | EPS | |
Coefficients | 0.939 (8.18) [0.115] | 0.426 (2.870) [0.148] |
Panel A: Bias-Corrected LSDVC Estimation | |||||||
Independent Variables | (I) Initial (AH) | (II) Initial (AB) | |||||
Dependent Variables | Dependent Variables | ||||||
0.190 (0.039) *** | 0.007 (0.105) | 0.010 (0.041) | 0.191 (0.038) *** | 0.105 (0.077) | 0.008 (0.033) | ||
0.086 (0.031) *** | 0.101 (0.078) | −0.030 (0.029) | 0.086 (0.031) *** | 0.006 (0.103) | −0.024 (0.024) | ||
0.508 (0.063) *** | 0.133 (0.158) | 0.896 (0.109) *** | 0.506 (0.062) *** | 0.135 (0.154) | 0.826 (0.052) *** | ||
0.695 (0.038) *** | −0.004 (0.087) | −0.074 (0.033) ** | 0.694 (0.038) *** | 0.001 (0.085) | −0.080 (0.026) *** | ||
Panel B: Statistical Values for Panel Causality Tests | |||||||
Independent Variables | Dependent Variable | Dependent Variable | |||||
Short run | - | 0.000 | 0.070 | - | 0.000 | 0.060 | |
7.620 *** | - | 1.080 | 7.680 *** | - | 0.960 | ||
64.180 *** | 0.710 | - | 64.180 *** | 0.770 | - | ||
Long run | ECT | 330.340 *** | 0.000 | 4.860 * | 331.830 *** | 0.000 | 9.120 *** |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sung, B.; Song, W.-Y. Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector. Energies 2017, 10, 2131. https://doi.org/10.3390/en10122131
Sung B, Song W-Y. Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector. Energies. 2017; 10(12):2131. https://doi.org/10.3390/en10122131
Chicago/Turabian StyleSung, Bongsuk, and Woo-Yong Song. 2017. "Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector" Energies 10, no. 12: 2131. https://doi.org/10.3390/en10122131
APA StyleSung, B., & Song, W.-Y. (2017). Does Dynamic Efficiency of Public Policy Promote Export Prformance? Evidence from Bioenergy Technology Sector. Energies, 10(12), 2131. https://doi.org/10.3390/en10122131