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Abstract: Aiming at damping the inter-area oscillations of power systems, the present study proposes
a wide-area decentralized coordinated control framework, where the upper-level controller is
designed to coordinate the lower-level multiple FACTS devices. Based on the polytopic differential
inclusion method, the derived controller adopts a decentralized structure and it is guaranteed to
be robust to meet the demand of operation under multiple operating conditions. Since time delay
of wide area signal transmission is inevitable, in what follows, the quantum evolution algorithm
(QEA) method is introduced to find an optimal solution of the time-delay coordinated controller.
In this regard, the stability of the system with a prescribed time delay is guaranteed and the system
damping ratio is increased. Effectiveness and applicability of the proposed controller design methods
have been demonstrated through numerical simulations.

Keywords: wide-area measurement system; FACTS devices; coordinated control; time delay;
damping controllers; robustness

1. Introduction

With the rapid development of power systems, in recent years, the complexity of system structure
and operating modes has been greatly increased [1] and the continuous and increasing demand of
electrical energy consumption has greatly influenced the power system performance. In the operation
of power systems, the insufficient damping of electromechanical oscillations is known to be a major
constraint [2]. Such oscillations can be distinguished into two types, local oscillations that occur
when generators in the same area oscillate with respect to each other and inter-area oscillations
occurring among machines in different areas. If no adequate damping is available, the oscillations may
cause operational limitations of power transmission capacity, or bring about the system separation,
which in some cases may lead to blackouts [3-5].

Flexible AC Transmission System (FACTS) devices, including static var compensator (SVC),
thyristor controlled series compensator (TCSC), static synchronous compensator (STATCOM) and so
on, possess the rapid and reliable regulation property [6]. Since the construction of modern power
grid demands the improvement of power flow distribution, system stability and transmission capacity
in a flexible and reliable way, FACTS devices have been put into practical application and achieved
satisfying control effects either act by modulating the reactive power or the active power or both [7].
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FACTS controllers are located in the network where the controllability and observability of the
inter-area oscillations are better. Generally speaking, FACTS devices exist in the power system are
individually designed and installed for different targets due to local control and lack of coordination.
Accordingly, a coordinated action among various FACTS devices is needed for the damping of
inter-area oscillations and how to coordinately control the multi-FACTS devices to achieve greater
effectiveness and at the same time, avoid adverse interaction that may occur between FACTS controllers
have become an important research topic. Combined with modern control theory, the multi-FACTS
coordinated control (MFCC) aiming at different control objectives has gained rich achievements over
the past years [8,9]. In order to further improve system stability with the help of global information
from wide-area measurement systems (WAMS) [10], more recently, the study of wide-area coordinated
control is gradually increasing. However, it is noted that the study of MFCC based on WAMS
is comparatively less, among which, reference [11] designs a controller that coordinates multiple
robust FACTS damping controllers based on a BMI sequential approach. It indicates that MFCC can
remarkably enhance system stability and at the same time, eliminate the negative interaction among
devices and they also demonstrate the necessity of coordination.

Among the existing literature of MFCC, the control strategies are normally designed over
a single dynamic model obtained from the linearization of system equations around one of
the specific equilibria. Since system parameter matrices will change along with the variation of
operating conditions, the derived control strategy should be guaranteed for each operating condition
simultaneously, which leads to the complicatedness of calculation process. In this regard, how to meet
the demand of operation under multiple cases is an important issue to be solved. On the other hand,
time delays caused by the usage of communication networks to transfer the remote signal in the data
transferring process is inevitable in WAMS, which will degrade the system performance or may even
cause instability of the closed-loop system [12,13]. As a consequence, in a coordinated control strategy,
it is of great significance to minimize the effect of time-delay [14]. Common methods of designing
controllers to deal with the delay impact include equivalent treatment of time delay, robust control
based on Linear Matrix Inequality (LMI) [15,16] and so on. However, for such robust coordinated
controllers, the effect of time delay has seldom been taken into account in the previous literatures.

Based on the above considerations, the present study proposes a wide-area decentralized
coordinated control framework for multiple FACTS devices. Aiming at realizing different control
objectives, the upper-level coordinated controller is designed as both a robust dynamic output feedback
controller and a time-delay output feedback controller. The polytopic differential inclusion method is
introduced such that the derived dynamic output feedback controller is robust to various operating
conditions. Moreover, the system damping ratio has been taken into account in the controller design
strategy such that the system is capable to be operated under strong damping modes. In order to design
the time-delay MFCC such that the stability of the system with a prescribed time delay is guaranteed,
the sufficient condition of time-delay stability criterion proposed in [17] can be utilized. However,
since the unknown objective parameters are coupled in the matrix inequalities, they cannot be solved
by the LMI control toolbox in Matlab (R2016a, MathWorks, Natick, MA, USA). Aimed at deriving
the controller parameter matrix, the quantum evolution algorithm (QEA) method is introduced to
find an optimal solution. In this regard, the stability of the system with a prescribed time delay is
guaranteed and the system damping ratio is increased. Validity and applicability of the proposed
coordinated control algorithms are demonstrated in a two-area four-generator system. Simulation
results demonstrate that the under robust coordinated control, the controlled power system successfully
runs in strong damping modes in four different operating conditions and the algorithm exhibits good
control effect in a wide range of time-delay.

2. Problem Formulation

In order to make preparation for the MFCC design, this section presents the MFCC framework
based on WAMS. In the proposed framework, as is shown in Figure 1, a coordinated controller receives
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the WAMS information and carries out calculation based on the state and output variable measured by
WAMS data platform. The control instruction is then derived to be assigned to each FACTS device.

Decentralized control
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Coordinated control
Figure 1. Coordinated control among FACTS devices based on WAMS.

By allocating the derived control signal as auxiliary input variables, the coordinated control
among FACTS devices is then realized. For each FACTS device, the coordinated control variable u
is received as a part of the controller input signal. It will be transmitted to the controller together
with the local variable. Compared with local control, the wide-area coordination scheme is able to
achieve global control through coordination control in a better way but it requires the entire system
information, which may to some extent, influence the speed and accuracy of control.

In what follows, we give a brief description of some aspects involved in the power system model
used in this work. For the sake of simplicity, the dynamic devices considered in this study mainly
include generators and FACTS devices.

2.1. Generator Model

The generator is represented as a dynamic model equipped with a rapid excitation, whose model
is described as:

i = wo(w; — 1)
wi = %[me - Er/iildi - Ef/iil’ii — Di(wi =1)]
@D
El = Téo,- [Efa, — (xay = ) L, — Eq ]
fd [ Efg, + Ka(Veeti — V1)

fori=1,2,...,n,where nis the number of synchronous generators. Referred to the generator i, ¢; is the
rotor angle, w; is the rotor speed with respect to a synchronous reference, E;i is the quadrature-axis
transient voltage, E d; is the field voltage, V4 is the terminal bus voltage magnitude. The definitions of
the electrical quantities in Equation (1) can be found in [18].

2.2. TCSC Model

TCSC is a device constituted by a series capacitor bank with fixed value and a Thyristor-Controlled
Reactor (TCR) [19]. It is installed directly in the transmission system and its equivalent reactance can
be varied by adjusting the fire angle of the thyristors. In order to guarantee the additional damping
supply to the inter-area oscillations of interest, a supplementary controller is required. TCSC is usually
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represented by a first order linear model in small signal stability studies [20], which is also adopted in
the present study. The block diagram of the adopted TCSC with a supplementary controller is given
in Figure 2.

max

]
14T, jC'BTCSC

min

Figure 2. Dynamic model of TCSC.

The dynamic model based on Figure 2 can be written as:

Bl = Ki(Pref - Pt)
B2 - Bl + Kp(Pref - Pt) (2)
Brcsc = (B2 + Bresco)/ To

where Brcsc is the deviation of the equivalent TCSC reactance with respect to the nominal value,
Brcsco is the reference for the desired reactance deviation (from its nominal value) in steady state,
Bj is the stabilizing signal from the proposed supplementary controller, B; is an intermediate variable
and Ty is the device time constant. K, and K; are the gains of the PI control loop; Py and P are the
active power reference and the active power of the TCSC control line, respectively.

2.3. SVC Model

SVC is one of the most widely applied FACTS devices which can maintain voltage stability and
at the same time, improve the system damping. In this study, the control block of SVC mathematical
formulation is shown in Figure 3.

max

K B . 1
1+Ts 1+Tys Bove
*+1B

SVCo min

Figure 3. Dynamic model of SVC.

whose dynamical model is described as:
By = 4-[~B1 + K(Viet — V)] 3)
Bsvc = 7 [B1 — Bsvc]

where Bgyc is the equivalent susceptance output of SVC, Bgyy is the steady-state susceptance of
SVC, B is an intermediate variable and K is the gain of controller measurement. T; and Tj are time
constants, Vi, is the reference voltage and V; is the measurement voltage of the SVC control point.
By integrating Equations (1)-(3), we derive the power system model composed by multiple
generators and FACTS devices. After linearization around an equilibrium point, the state-space
power system model can be represented by a linear time invariant (LTI) model given by a set of
linear equations:
{ X ; ix (; Bu @)
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where x is the n-dimensional state vector, u is the p-dimensional system control input vector and
y is the g-dimensional system output vector. A, B, C are given system parameter matrices with
appropriate dimensions.

Aiming at realizing different control objectives, in this study, the upper-level wide-area
coordinated controller is firstly designed as a robust dynamic output feedback controller. By further
taking the time-delay into account, a time-delay output feedback controller is then proposed.

3. Main Results

During the practical operation of power systems, the state matrix A in Equation (4) may vary along
with the changing of operating modes. In order to ensure the controller robustness to the variation of
operating conditions, in this section, the wide-area MFCC adopts the dynamic output feedback control
strategy for better dynamic characteristics, which is given as:

{ xc = Acxc + Bey 5)
u= chc

where x( is the n-dimensional state vector of controller and Ac, B¢, Cc are parameter matrices to be
determined. Combining with the system dynamical Equation (4), the closed-loop controlled system is
derived as:

X = Ax (6)

where:
A  BCc¢

7
BcC  Ac @

3.1. Robust MFCC Design

Based on the Lyapunov method [21], the problem of stabilizing system Equation (4) by the output
feedback controller Equation (5) can be solved if and only if there exist matrices Ac, B¢, Ccand P > 0
for system Equation (6) such that the following matrix inequality holds:

ATP4+PA <0 8)

In system Equations (6) and (7), the parameter matrix A varies along with the variation of
operating conditions. If system stability under different operating conditions is satisfied simultaneously,
matrix inequality Equation (8) should be guaranteed for each operating condition, which leads to the
complicatedness of calculation process. In order to solve the above-mentioned problem, the robust
damping controller design method proposed in [22] treats the operating condition variation as
uncertainties of nominal systems and the polytopic modeling method is introduced aiming at satisfying
the robustness requirements.

Here, a polytopic model is composed by a series of p typical operating points. More specifically,
under the ith operating condition, parameter matrices of system Equation (6) are presented as A;,
i=1,---,p, which forms vertices of the polytope. The parameter matrices of state equations under
the above p operating conditions compose a set:

D ={A1,A, -, An} )
Construct a polytope (2 whose vertices are composed by elements of set ®:
m

m
QZ{ZS,’Ai,AiGCD,ZS,':l,SiGR,SiZO} (10)

i=1 i=1
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Then for each vertex system, the closed-loop control system with a dynamic output feedback
controller can be written as:

X=A% A = Ai - BCc

BcC  Ac (1

where variables are defined the same as in Equations (6) and (7). In this regard, Equation (8) can be
interpreted as finding a positive definite matrix P and appropriate control parameter matrices Ac, B¢,
Cc such that the following inequalities hold fori =1, -- -, p:

ATP + PA; <0 (12)

Based on the polytopic property, unknown matrices Ac, B¢, Cc that satisfy Equation (12) can
simultaneously stabilize, not limited to the chosen p vertex systems but all of the linear models
included in the polytope. In other words, calculation procedure can be greatly simplified by utilizing
the polytopic model [22].

Remark 1. Power systems are huge dimensional nonlinear dynamical systems and the system state-space
matrices dimensions derived from linearization may leads to great difficulties in calculation. In practice,
only several particular modes are useful for analysis, thus reducing the original systems into lower dimensional
systems is commonly adopted as the first step to controller design and in this regard, critical system operating
modes can be remained. In this study, the Hankel reduction method [23] is chosen for system reduction, which
ensures that the errors of system Hankel singular value are in a relatively small range between the non-reduced
and reduced systems.

In practical situations, power systems may possibly be operated under weak damping modes.
Generally speaking, if and only if the damping ratios of all operation modes are larger than the
damping ratio threshold {p (which is practically chosen as 0.03 or 0.05), then the system is said to
be operated under a strong damping mode. However, condition Equation (12) does not guarantee
a global minimum damping ratio of the system. Accordingly, stability criterion based on damping
ratio can be realized by the pole placing method given in Theorem 1 [24].

Theorem 1. For a given minimum damping ratio {min of closed-loop system Equations (6) and (7), if and only
if there exists a positive definite matrix P such that the following matrix inequality holds

. TTD ~ -~ ST B —
sing(A"P + PA) cos a(éTE PA) —0 3
* sing(A* P+ PA)
where 0 = arccos{, then system Equations (6) and (7) is said to be asymptotically stable and meanwhile,
Cemin > Qo is guaranteed.

Remark 2. Due to the long distances among the generators and FACTS devices, it is desirable to implement
a decentralized structure for damping controllers [25]. On the other hand, in matrix inequality Equation (13),
the parameter matrix A that includes unknown controller parameter matrix variables Ac, Bc, Cc is coupled
with the unknown matrix variable P. Accordingly, Equation (13) turns out to be nonlinear and can only be
solved by iteration, which leads to calculation time consumption and low efficiency. In this regard, reference [26]
proposes a decoupling method of decentralized coordinated controller design, which transforms Equation (13)
into an LMI that is conveniently solvable through Matlab LMI control toolbox.

In this study, the above-mentioned method is extended to the design of a robust MFCC algorithm
for multiple operating modes, which is carried out in the next theorem. Choose p typical operating
points and carry out Hankel order reduction, then we derive the state matrix parameters A;, B and C
of the closed-loop control system Equation (11) fori =1,-- -, p.



Energies 2017, 10, 2130 7 of 17

Theorem 2. If there exist a positive symmetric matrix Y > 0, symmetric matrices P, X and matrices L, F, S
such that LMIs Equations (14) and (15) holds fori =1,--- ,p

sing(A;Y + YA + BL+L"B") coso(YA] — A+ L"B" —BL) | _ (14)
. sinc(A;Y + YAT + BL + LTBT)
011 O O3 Oup
P P * Opn O Oy
> 0, 14 <0 15
P X * * @11 @12 ( )

* % * @22

where ®11 = sing(PW; + WIP), @15 = sino(PA; + WIX + CTFT +5), @13 = cosa(WIP — PW;),
O14 = cos 0(—PA; + WI X+ CTFT +5), @2 = sinc(XA; + WI X+ FC+CTFT), @y = coso(—XA; +
Al.TX — FC+ CTFT), with W; = A; + BCc, then the close-loop system with coordinated controller is said to be
asymptotically stable under operating modesi = 1,- - - , p and the MFCC parameter variables can be obtained
by Ac =U1STP~Tp,Bc = (P—X) 'F,Cc = LY.

Proof. Set Ac, B¢, Cc as diagonal matrices, then the controller added to each generator is related to its
own input and output. Define diagonal matrices

X U
urt x,

Y V
vl vy,

P =

, Pl = (16)

and matrix variables M = VAEUT, P=Y1F= UBc, S = Y- IM, L = CCVT. In combination with
Equation (13), Equation (15) is equivalent to the following LMIs

AY + YAT + BL+L™BT <0 (17)

PA+PBCc+ ATP+CIBcP PA+ ATX + CIBTX +CTFT +5

1
* ATX + XA+ FC+CTFT <0 (18)

where * denotes the symmetric part of the matrix, thus completes the proof. [

3.2. Time-Delay MFCC Design

As is previously mentioned, time delay degrades the dynamic performance and even violates the
stability of a control system. However, the wide-area robust coordinated control algorithm proposed in
the previous subsection has not taken the influence of time-delay into consideration. If the time-delay
is relatively large, the controller may no longer stabilize the system. Moreover, during the design
procedure of a wide-area measurement based controller, it is of great importance to estimate the
maximum allowed time delay 1y that will not cause the loss of system stability. Aiming at eliminating
the time-delay effect, in what follows, the time-delay MFCC will be designed as a dynamic and static
output feedback controller, respectively.

A. Dynamic output feedback controller design

Suppose there is a constant time delay 7 existing in the system output feedback of the output
dynamic feedback controller Equation (5), namely, the controller is given by

xc(t) = Acxc(t) + Bey(t — 1)
{ u(t) = Cexc(t) )

The closed-loop system that includes the power system with FACTS devices, the time-delay MFCC
given in Equation (19), and the wide-area signal transmission time delay 7 is shown as in Figure 4.
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u(r) (1) = Ax(r)+ Bu(r) Ay
¥(0)=Cx(0) |

A _.}

Power System with FACTS dl:\'il:l:!i: 's ~
! stir)

Ve ~

u(r) $o(0) = Ax (0 + Boy(t—1)
u(t)=Cpx.(1)

i =1)
q i

Time-Delay MFCC

Figure 4. Closed-loop time-delay system under dynamic output feedback control.

By combining with the system equation, the closed-loop power system with time-delay is in the
following form

X(t) = AgX(t) + AcX(t —T) (20)

where X is the same as in Equation (7) and the parameter matrices

0 0

A BCc

A:
0 Ac 0

/AT:

The following theorem can be used to determine the time-delay margin 1.

Theorem 3. For the time-delay system Equation (20), if there exist positive definite matrices P, Q, V and
a matrix W such that the following LMI holds

(Ag+ Ar)"P+P(Ag+ Ar) + WT A + ATW+Q —-WTA, ATATV 0 000 (W+P)
* -Q AIAlv o lx00 0
* * -V 0 <70 x *x 0 0 (22)
* * * -V * k% 0

then for all T < 10, system (17) is asymptotically stable.

The proof of Theorem 3 can be found in [15]. By solving Equation (22) through the LMI control
toolbox, the time-delay margin 1 can be conveniently derived.
B. Static output feedback controller considering time-varying delay

In order to eliminate the time delay effect, the MFCC designed in this part adopts a static output
feedback control structure, where the system output variable y is the controller input. Then the output
feedback coordinated controller considering time delay is given as

u(t) = Ky(t —(t)) (23)

where K is the coefficient matrix of controller, T(t) is a time-varying delay, which is a continuous
function of time and satisfies
0<1(t) <u,

T(H)| < B <1 (24)

where « and p are upper bounds of time delay and its rate, respectively. For a constant time delay,
B=0,1(t) =7=na.
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The closed-loop system that includes the power system with FACTS devices, the time-delay MFCC
given in Equation (24), and the time-varying wide-area signal transmission delay 7(t) is shown as in
Figure 5. State equations of the closed-loop power system model with time-delay can be described by

x(t) = Ax(t) + Agx(t — t(t)) (25)

where A; = BKC and the main task of designing a time-delay coordinated controller is to find
a suitable K that stabilizes system Equation (25).

Y

u(t) | (1) = Ax(t) + Bu(?) 0
(0= Cx(0) 5

! ~—_
' Power System with FACTS devices,

| Time-Delay MFCC |
Figure 5. Closed-loop time-delay system under static output feedback control.

In order to guarantee the stability of time-delay system Equation (25), many methods have
been proposed based on the Lyapunov theory. Among these methods, the free-weighting matrices
method proposed in [27] has less conservativeness and the main idea is recalled briefly in the
following theorems.

X1 X2 >0
* X22 -

and any matrices N1 and Ny with appropriate dimensions such that the following matrix inequalities hold

Theorem 4. If there exist matrices P = PT > 0, Q= QT >0,7Z=272T>0X=

PA+ ATP+ Ny + Nf + Q + aXyy PA;— Ny + Nf + aXqpy aATZ

* N, =N —(1-B)Q+aXn, aAlZ | <0  (26)
* * —aZ
Xn X M
* X22 Nl > 0 (27)
* * Z

then the system Equation (25) with time-varying delay is said to be asymptotically stable.

For a time-invariant delay system, set X1, = 0, Xo» = 0 and T = 0 in Theorem 4, then we yield
the following Corollary 1.

Corollary 1. If there exist matrices P = PT>0,0=0"T>0,2=2T>0,X>0,and any matrix N with
appropriate dimension such that the following matrix inequalities hold

PA+ATP+N+NT+Q+1X PA;—N T1A'Z
* -Q tAlZ | <0 (28)
* * —17
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X N

>
. 7 0 (29)

then the system Equation (25) with a constant time delay is said to be asymptotically stable.

Remark 3. Theorem 4 and Corollary 1 present sufficient conditions to determine the stability of closed-loop
systems with time-varying and constant time delay, respectively. However, since the unknown parameters are
coupled in nonlinear matrix Equations (26) and (28), they cannot be solved by the LMI control toolbox in Matlab
(R2016a, MathWorks, Natick, MA, USA). In fact, Corollary 1 only provides a sufficient condition of stability
of Equation (6) for a given t. In order to derive the controller parameter K, the QEA optimum algorithm is
introduced in the following part.

Based on the concept and principles of quantum computing such as a quantum bit and
superposition of states, QEA has been widely applied to seek the appropriate controller coefficients in
control systems (one can refer to [28] for more detailed information). QEA combines the features of
the quantum computation and the evolutionary algorithms, which has unique advantages in deriving
the optimal solution, that is, the small population scale, fast convergence and capability of global
optimization and so on. The basic QEA optimization procedure is shown as in Figure 6.

Individual _— Compare with the Generate the
. Solve the objective : . .
generation based on —»  Measurement [ function —»| previous optimal | quantum rotation
QEA value strategy

Y

Figure 6. QEA optimization procedure.

After the iteration, the optimal value of the objective function can be derived within certain
evolution algebra. Details of the algorithm and iterative parameter setting methods can be found
in [20], where one only needs to set the range of K during application.

During the application of the QEA optimization, the constraint condition can be set as the
existence of solution of Equations (26) and (27), such that the asymptotically stability of the obtained
system is guaranteed. In what follows, for the sake of simplicity, the time-delay is chosen to be
a constant number, and accordingly, the constraint condition can be set as the existence of solution of
Equations (28) and (29) in Corollary 1. However, since multiple sets of feasible solutions may exist,
therefore, by taking the practical demand of power systems into consideration, the objective function
here is set to maximize the minimum system damping ratio. In this regard, the larger the minimum
system damping ratio is, the more stable the system will be. At the same time, in order to make
the control strategy reasonable, we set a minimum threshold of damping ratio (e.g., 7%). Once the
threshold is exceeded, the optimization procedure will come to an end.

Before solving system damping ratio, the eigenvalue A should be derived. The characteristic
equation of time-delay system Equation (25) is

det(Al — A — Age™™) =0 (30)

Equation (24) cannot be solved directly since it is a transcendental equation. To this end, in
this study, the PDE discretization method is adopted for the approximation analysis. The delay
differential equations of system Equation (25) can be converted to a set of Hyperbolic Partial Differential
Equations (H-PDE) under the interconnected boundary conditions. As a consequence, the eigenvalues
of the augmented matrix that obtained through fine discretization on PDE approximate to those of
Equation (28). One can find more specific algorithm introduced in [29]. It should be noted that the
number of Chebyshev discrete nodes needs to be set in this algorithm. Since we only focus on the
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electromechanical modes, it would be precise enough by setting this number within the range of 20~30.
In summary, the flow chart of time-delay MFCC design algorithm is shown in Figure 7.

Solve (30) for the
minimum damping
ratio and eigenvalues

Individual generation Solve LMI (28) and
based on QEA (29) for each individual g

Given a time-delay ©

A

Generate the quantum
rotation calculation
strategy

each the maximum
number of iterations

The solution exists

hl

v

Output the individual
corresponding to the
minimum damping ratio

Figure 7. Flow chart of the controller design algorithm.

4. Numerical Simulations

In order to demonstrate the effectiveness of the two MFCC design algorithms proposed in
the previous sections, consider the following two-area four-generator system shown as in Figure §,
where the system parameters are the same as in [18]. Since the voltage of Bus 7 is the lowest based on
current system operation, an SVC is equipped to increase voltage and at the same time, a TCSC
is equipped in the bus of inter-area system tie-line to remain the stability of power and damp
inter-area oscillations.

> Wide-area MFCC <
MEFCC Input MFCC Input
TCSC Input SVC Input
I e |
| -7 —~ I T T T Lo
I | 1 5 | 6 7 8 9 10 | 11 3 |
| [ | | [ ro
| == e T
| | GEN1 2 : TCSC I 4 GEN3 : |
| |
— ! ! I | —
| | | | I
| GEN 2 - sve,| GEN 4 | |
I | = | I
| |  AREA1 | Load 1 Load2 | AREA2 | |
I o ——— o ———
' |

Figure 8. A four-machine, two area test system equipped with TCSC and SVC.

In virtue of the standard parameter tuning method for SISO controller design [30], the parameters
of the SVC can be derived as K = 100, T; = 0.05, Ty = 0.01; while the parameters of the TCSC can be
derived as Kp = 0.8, K; = 10, Ty = 0.01. Characteristics under the above basic operation mode is derived
as follows.

It is known from Table 1 that there is an inter-area oscillation mode of low damping in the
system, thus in what follows, the proposed MFCC will be applied to improve the system damping
and the effectiveness will be verified. Choose the velocity difference Aw; and Aws of the most
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relevant generators GEN1 and GENS3 for the system output, which is derived through the network
communication system and carry out calculation.

Table 1. Modes Characteristics under the basic operation mode.

Modes —0.018 £j3.528  —0.728 +j6.324
Frequency/Hz 0.562 1.006
Damping Ratio 0.524% 11.443%

—0.789 + j6.356
1.012
12.319%

Since system Equation (6) is a 24th-order dynamic model, it brings about great difficulties to the
calculation of coordinated controllers. In order to speed up calculation, the Hankel reduction method
introduced in Section 3.1 is applied to reduce the system into a 7th-order model. Comparison of the
singular value before and after system reduction is shown in Figure 9. It can be observed from Figure 8
that the two curves almost perfectly in a wide range of frequencies.
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0

-20

40}
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Singular Values (dB)

— - After System Reduction

Before System Reduction

1 ad
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Figure 9. Comparison of Singular Values Before and After System Reduction.

In what follows, the effectiveness of the robust coordinated controller will be verified under
three different operating conditions, built from variations of the load levels (shown as Load 1 and
Load 2 in Figure 4) in both areas. The base case was also taken as a vertex system, the other two vertex
systems are selected as increasing Load 1 by 100 MW while decreasing Load 2 by 100 MW, as well
as decreasing Load 1 by 100 MW while increasing Load 2 by 100 MW, respectively. In this regard,
the electromechanical modes under these three operating modes are given in Table 2.

Table 2. Modes Characteristics under three different cases.

Description Modes Frequency/Hz Damping Ratio

—0.018 +{3.528 0.562 0.524%

Case 1 Base Case —0.728 £j6.324 1.006 11.443%
—0.789 + {6356 1.012 12.319%

—0.008 +j3.362 0.535 0.231%

Casez 7O L —1OOMW —0728 + j6.2o1 1.002 11.495%
oac £ + —0.779 =+ j6.340 1.009 12.194%

—0.028 +3.628 0.578 0.7614%

Case 3 ang 21 +11%% I\I&VV‘\/] —0.725 + j6.350 1.011 11.339%
oac & — —0.795 + 6.364 1.012 12.402%
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It can be observed from Table 2 that, there exists weak damping of inter-area oscillation
modes under the three operating modes. Set the damping ratio threshold as {y = 0.1. The FACTS
coordinated controller design algorithm in Theorem 2 is utilized to increase the system damping
ratio, which guarantees that the minimum damping ratio is larger than 0.1. By solving Equations (14)
and (15), the controller transfer function is derived as follows:

—0.181 x 10%(s + 2.543 4 6.240) (s + 1.327 & 1.769) (s + 0.042) (s + 0.856)

)(

Huls) = (s +3.165 = 6.160j) (s + 2.807 = 3.079j) (s + 1.55642 = 1.219j) (s — 0.017)

Hyy(s) = 1055 103 (s + 2.240 = 6.772j) (s + 2.432 = 4.172j) (s + 0.320) (s + 0.025)
12 (s 4 3.165 + 6.160j) (s 4 2.807 + 3.079j) (s + 1.55642 + 1.219;) (s — 0.017) 31)

gy — 0:135 x 10%(s + 0.630 + 6.553)) (s + 1.626 - 2.041j) (s + 0.030) (s + 1.260)

2(s) = (s + 3.165 % 6.160j) (s + 2.807 & 3.079§) (s + 1.55642 & 1.219j) (s — 0.017)

() 1475 x 103(s + 1.700 + 7.307)) (s + 2.421 £ 3.526j) (s + 0.015) (s + 0.409)

2(s) = (s + 3.165 % 6.160j) (s + 2.807 & 3.079§) (s + 1.55642 & 1.219j)(s — 0.017)

where Hy(s) and Hiy(s) are the transfer functions from the input value of the coordinated controller
Awq to the SVC and TCSC controller input, respectively; while Hp1(s) and Hy,(s) are the transfer
function from the input value of the coordinated controller Aws to the SVC and TCSC controller
input, respectively.

Effectiveness of the control strategy is verified in the following operating conditions. The new
electromechanical modes of the system under FACTS coordinated control are given in the following
table and it can be observed from Table 3 that, the damping ratios under each electromechanical mode
are larger than 10%, which satisfies the requirement of controller design.

Table 3. Characteristics of modes in three load cases with FACTS coordination.

Description Modes Frequency/Hz Damping Ratio

—0.675 + j3.482 0.554 19.0319%

Case 1 Base Case —0.715 £j6.401 1.0187 11.0982%
—0.816 + j6.241 0.993 3 12.958%

—0.699 + j3.329 0.529 9 20.5334%

Casez 024D o —0711£6371 10139 11.0872%
oad £+ —0.809 + j6.232 0.991 8 12.8706%

—0.633 + j3.552 0.565 3 17.5471%

Case3 |00 O M —0716 6.420 10218 11.0898%
oad & = —0.817 + j6.247 0.994 2 12.9673%

Moreover, the time delay margin can be calculated by the LMI Equation (22) given in Theorem 3.
In virtue of the LMI robust control toolbox of Matlab (R2016a, MathWorks, Natick, MA, USA),
the minimum time delay margin under each operation conditions of the controller are derived as
Tp ~ 350 ms. The theoretical results can be verified through exerting a large perturbation on the system.
Choose a three-phase short-cut fault at bus 8 at 1 s, which is cleared at 1.1 s. Figure 10 depicts the time
variation of inter-area tie-line power oscillations for different time delays of 100 ms, 200 ms, 300 ms
and 330 ms, respectively.

It can be observed from Figure 9 that, the designed MFCC is tolerant to time delay less than
350 ms under different operating modes, which satisfies the demand of WAMS signal transmission.

In what follows, the effectiveness of the time-delay coordinated controller will be demonstrated.
Assume that signal transmission time delay through WAMS is about 200 ms and the range of
parameters in the QEA is set as [10, 10]. The minimum damping ratio threshold value is chosen as
7%. By carrying out the time-delay MFCC algorithm in Section 3.2, we arrive at the final optimization
result of controller parameter K.



Energies 2017, 10, 2130 14 of 17

4.5 T T T T T T T
100 ms
351 200 ms

300 ms

330 ms

Inter-area tie-line power/p.u.

Figure 10. Power oscillation of the tie-line under different delay in three load cases.

In order to demonstrate the effectiveness of the derived controller, set the system disturbance
as follows: increase the reference voltage of SVC by 0.01 p.u. at 1 s; and reduce it by 0.01 p.u. at 2 s.
Figure 10 shows the curve of the inter-area tie-line power response, which compares the simulation
results with and without coordinated control. It can be observed from Figure 11 that, since the
minimum threshold of damping ratio is set, the system under coordinated control is able to be
operated under strong damping mode with the controller K obtained by the algorithm proposed in this
study. In consequence, considering the existence of signal transmission delay, the control performance
of the MFCC is better than the individual control of FACTS without coordination.

1.9

~~~~~ Control without coordination
1.88- \: — MFCC B
u
|

1.86
1.84

1.82

Inter-area tie-line power (p.u.)
®

1.78

176 1 1 1 1 1
0 5 10 15 20 25 30

Time (s)

Figure 11. Power oscillation of the tie-line under 200 ms delay.

In order to determine the time-delay margin within which the coordinated controller can stabilize
the system, Figure 11 depicts the curves of the minimum damping ratio of coordinated control system
under different time delays, where the dashed horizontal line 0.0276 is the minimum damping ratio of
system without coordinated control. It can be observed from Figure 12 that, since the MFCC algorithm
is designed based on the time-delay of 200 ms, the minimum damping ratio reaches its maximum value
under this time delay, which is about 0.07. Define the damping ratio above 0.03 as strong damping
ratio, then for time delay less than 570 ms, the system will be operated under strong damping modes.
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If the time delay is less than 600 ms, coordinated control can make the system damping better than that
of control without coordination. It indicates that the algorithm proposed in this part has a relatively
large delay margin, which guarantees that the system can be stabilized by the designed controller
within the margin, that is, it demands less for the WAMS signal delay estimate.

0.08 . .
..... Control without
0.07 coordination
’:? MFCC
£ 0.06
o)
2
2. 0.05
[}
£
2 0.04
5
T 003
5 P ____________>
E
0.02
001 L L L L L L
0 100 200 300 400 500 600 700

Time (s)

Figure 12. Ratio of power system under different delays.

5. Conclusions

The present study proposes a wide-area decentralized coordinated control framework for power
systems with multiple FACTS devices, where the upper-level coordinated controller is designed as both
a robust dynamic output feedback controller and a time-delay output feedback controller. The polytopic
differential inclusion method is introduced during the dynamic output feedback controller design
procedure and the derived controller is capable to be operated under strong damping modes and
also remain robust to various operating conditions. The time-delay MFCC is designed in virtue of the
output feedback signals from WAMS. In order to find an optimal solution, the quantum evolution
algorithm (QEA) method is introduced. In this regard, the stability of the system with a prescribed
time delay is guaranteed and the system damping ratio is increased. Validity and applicability of
the proposed coordinated control algorithms are demonstrated in a two-area four-generator system.
Simulation results demonstrate that the under robust coordinated control, the controlled power system
successfully runs in strong damping modes in four different operating conditions and the algorithm
exhibits good control effect in a wide range of time-delay.
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