A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Proposed Model
2.2. Nanoparticle Concentration Effect
2.3. Temperature Effect
2.4. Effect of Chemical Nature of the Crude Oil
2.5. Effect of the Surface Chemistry of Nanoparticles
2.6. Sensitivity Analysis for Parameters.
3. Materials and Methods
3.1. Materials and Chemical
3.2. Evaluation of Nanoparticles as Viscosity Reducers
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Aliyu, M.D.; Chen, H.-P. Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature. Energy 2017, 129, 101–113. [Google Scholar] [CrossRef]
- Hosseinifar, P.; Jamshidi, S. A new correlative model for viscosity estimation of pure components, bitumens, size-asymmetric mixtures and reservoir fluids. J. Pet. Sci. Eng. 2016, 147, 624–635. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, X.-P.; Zhang, D.; Xu, J.-Y. Rheological behavior and viscosity reduction of heavy crude oil and its blends from the Sui-zhong oilfield in China. J. Pet. Sci. Eng. 2017, 156, 563–574. [Google Scholar] [CrossRef]
- Nik, W.W.; Ani, F.; Masjuki, H.; Giap, S.E. Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Ind. Crops Prod. 2005, 22, 249–255. [Google Scholar] [CrossRef]
- Sarpkaya, T. Flow of non-Newtonian fluids in a magnetic field. AIChE J. 1961, 7, 324–328. [Google Scholar] [CrossRef]
- Shao, S.; Lo, E.Y. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 2003, 26, 787–800. [Google Scholar] [CrossRef]
- Shames, I.H.; Shames, I.H. Mechanics of Fluids; McGraw-Hill: New York, NY, USA, 1982. [Google Scholar]
- Cross, M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965, 20, 417–437. [Google Scholar] [CrossRef]
- Carreau, P.J. Rheological equations from molecular network theories. Trans. Soc. Rheol. 1972, 16, 99–127. [Google Scholar] [CrossRef]
- Herschel, W.H. The change in viscosity of oils with the temperature. Ind. Eng. Chem. 1922, 14, 715–722. [Google Scholar] [CrossRef]
- Taborda, E.A.; Alvarado, V.; Cortés, F.B. Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Convers. Manag. 2017, 148, 30–42. [Google Scholar] [CrossRef]
- Einstein, A. Eine neue bestimmung der moleküldimensionen. Annalen der Physik 1906, 324, 289–306. [Google Scholar] [CrossRef]
- Guth, E.; Simha, R. Untersuchungen über die viskosität von suspensionen und lösungen. 3. über die viskosität von kugelsuspensionen. Colloid Polym. Sci. 1936, 74, 266–275. [Google Scholar] [CrossRef]
- Kitano, T.; Kataoka, T.; Shirota, T. An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers. Rheol. Acta 1981, 20, 207–209. [Google Scholar] [CrossRef]
- Mooney, M. The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 1951, 6, 162–170. [Google Scholar] [CrossRef]
- Thomas, D.G. Transport characteristics of suspension: VIII. A note on the viscosity of Newtonian suspensions of uniform spherical particles. J. Colloid Sci. 1965, 20, 267–277. [Google Scholar] [CrossRef]
- Ouerfelli, N.; Bouanz, M. A shear viscosity study of cerium (III) nitrate in concentrated aqueous solutions at different temperatures. J. Phys. Condens. Matter 1996, 8, 2763. [Google Scholar] [CrossRef]
- Eilers, V.H. Die viskosität von emulsionen hochviskoser stoffe als funktion der konzentration. Kolloid-Zeitschrift 1941, 97, 313–321. [Google Scholar] [CrossRef]
- Roscoe, R. The viscosity of suspensions of rigid spheres. Br. J. Appl. Phys. 1952, 3, 267. [Google Scholar] [CrossRef]
- Chong, J.; Christiansen, E.; Baer, A. Rheology of concentrated suspensions. J. Appl. Polym. Sci. 1971, 15, 2007–2021. [Google Scholar] [CrossRef]
- Maron, S.H.; Pierce, P.E. Application of Ree-Eyring generalized flow theory to suspensions of spherical particles. J. Colloid Sci. 1956, 11, 80–95. [Google Scholar] [CrossRef]
- Krieger, I.M.; Dougherty, T.J. A mechanism for non-Newtonian flow in suspensions of rigid spheres. J. Rheol. 1959, 3, 137–152. [Google Scholar] [CrossRef]
- Pal, R.; Rhodes, E. A novel viscosity correlation for non-Newtonian concentrated emulsions. J. Colloid Interface Sci. 1985, 107, 301–307. [Google Scholar] [CrossRef]
- Pal, R.; Vargas, F. On the interpretation of viscosity data of suspensions of asphaltene nano-aggregates. Can. J. Chem. Eng. 2014, 92, 573–577. [Google Scholar] [CrossRef]
- Barré, L.; Simon, S.; Palermo, T. Solution properties of asphaltenes. Langmuir 2008, 24, 3709–3717. [Google Scholar] [CrossRef] [PubMed]
- Bouhadda, Y.; Bendedouch, D.; Sheu, E.; Krallafa, A. Some preliminary results on a physico-chemical characterization of a Hassi Messaoud petroleum asphaltene. Energy Fuels 2000, 14, 845–853. [Google Scholar] [CrossRef]
- Jezequel, P.; Flaud, P.; Quemada, D. Rheological properties and flow of concentrated disperse media. II—Steady and unsteady flow analysis of heavy crude oil emulsions. Chem. Eng. Commun. 1985, 32, 85–99. [Google Scholar] [CrossRef]
- Plegue, T.; Frank, S.; Fruman, D.; Zakin, J. Concentrated viscous crude oil-in-water emulsions for pipeline transport. Chem. Eng. Commun. 1989, 82, 111–122. [Google Scholar] [CrossRef]
- Sheu, E.Y.; Storm, D.A.; Maureen, M. Asphaltenes in polar solvents. J. Non-Cryst. Solids 1991, 131, 341–347. [Google Scholar] [CrossRef]
- Van der Waarden, M. Viscosity and electroviscous effect of emulsions. J. Colloid Sci. 1954, 9, 215–222. [Google Scholar] [CrossRef]
- Taborda, E.A.; Alvarado, V.; Franco, C.A.; Cortés, F.B. Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. Fuel 2017, 189, 322–333. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Lopera, S.H.; Alvarado, V.; Cortés, F.B. Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel 2016, 184, 222–232. [Google Scholar] [CrossRef]
- Taborda, E.A.; Franco, C.A.; Ruiz, M.A.; Alvarado, V.; Cortés, F.B. Experimental and Theoretical Study of Viscosity Reduction in Heavy Crude Oils by Addition of Nanoparticles. Energy Fuels 2017, 31, 1329–1338. [Google Scholar] [CrossRef]
- Acevedo, S.; Castro, A.; Negrin, J.G.; Fernández, A.; Escobar, G.; Piscitelli, V.; Delolme, F.; Dessalces, G. Relations between asphaltene structures and their physical and chemical properties: The rosary-type structure. Energy Fuels 2007, 21, 2165–2175. [Google Scholar] [CrossRef]
- Mullins, O.C.; Betancourt, S.S.; Cribbs, M.E.; Dubost, F.X.; Creek, J.L.; Andrews, A.B.; Venkataramanan, L. The colloidal structure of crude oil and the structure of oil reservoirs. Energy Fuels 2007, 21, 2785–2794. [Google Scholar] [CrossRef]
- Pierre, C.; Barré, L.; Pina, A.; Moan, M. Composition and heavy oil rheology. Oil Gas Sci. Technol. 2004, 59, 489–501. [Google Scholar] [CrossRef]
- Luo, P.; Gu, Y. Effects of asphaltene content on the heavy oil viscosity at different temperatures. Fuel 2007, 86, 1069–1078. [Google Scholar] [CrossRef]
- Frigaard, I.A.; Paso, K.G.; de Souza Mendes, P.R. Bingham’s model in the oil and gas industry. Rheol. Acta 2017, 56, 259–282. [Google Scholar] [CrossRef]
- Paso, K.; Kompalla, T.; Oschmann, H.J.; Sjöblom, J. Rheological degradation of model wax-oil gels. J. Dispers. Sci. Technol. 2009, 30, 472–480. [Google Scholar] [CrossRef]
- Paso, K.; Silset, A.; Sørland, G.; Gonçalves, M.D.A.; Sjöblom, J. Characterization of the formation, flowability, and resolution of Brazilian crude oil emulsions. Energy Fuels 2008, 23, 471–480. [Google Scholar] [CrossRef]
- Soleymanzadeh, A.; Gahrooei, H.R.E.; Joekar-Niasar, V. A New Empirical Model for Foam Rheology. J. Energy Resour. Technol. 2017. [Google Scholar] [CrossRef]
- Pal, R.; Rhodes, E. Viscosity/concentration relationships for emulsions. J. Rheol. 1989, 33, 1021–1045. [Google Scholar] [CrossRef]
- Economides, M.J.; Nolte, K.G. Reservoir Stimulation; John Wiley & Sons: New York, NY, USA, 2000. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Ilyin, S.; Arinina, M.; Polyakova, M.; Bondarenko, G.; Konstantinov, I.; Kulichikhin, V.; Malkin, A. Asphaltenes in heavy crude oil: Designation, precipitation, solutions, and effects on viscosity. J. Pet. Sci. Eng. 2016, 147, 211–217. [Google Scholar] [CrossRef]
- Franco, C.; Patiño, E.; Benjumea, P.; Ruiz, M.A.; Cortés, F.B. Kinetic and thermodynamic equilibrium of asphaltenes sorption onto nanoparticles of nickel oxide supported on nanoparticulated alumina. Fuel 2013, 105, 408–414. [Google Scholar] [CrossRef]
- Franco, C.A.; Montoya, T.; Nassar, N.N.; Pereira-Almao, P.; Cortés, F.B. Adsorption and subsequent oxidation of colombian asphaltenes onto Nickel and/or Palladium oxide supported on fumed silica nanoparticles. Energy Fuels 2013, 27, 7336–7347. [Google Scholar] [CrossRef]
- Franco, C.A.; Nassar, N.N.; Ruiz, M.A.; Pereira-Almao, P.; Cortés, F.B. Nanoparticles for inhibition of asphaltenes damage: Adsorption study and displacement test on porous media. Energy Fuels 2013, 27, 2899–2907. [Google Scholar] [CrossRef]
- Nassar, N.N.; Betancur, S.; Acevedo, S.; Franco, C.A.; Cortés, F.B. Development of a Population Balance Model to Describe the Influence of Shear and Nanoparticles on the Aggregation and Fragmentation of Asphaltene Aggregates. Ind. Eng. Chem. Res. 2015, 54, 8201–8211. [Google Scholar] [CrossRef]
Crude Oil | Np’s Type | Np’s Concentration (mg/L) | T (K) | (cP) | ×105 | ×103 | RSME% | ||
---|---|---|---|---|---|---|---|---|---|
AK | SiO2 | 0 | 298 | 98,000 | 209.7 | 0.21 | NA | NA | 9.4 |
1000 | 298 | 52943 | 141.4 | 0.24 | 95.4 | 0.110 | 9.8 | ||
MB | SiO2 | 0 | 298 | 512 | 0.99 | 0.80 | NA | NA | 7.9 |
313 | 109 | 0.31 | 0.85 | NA | NA | 8.1 | |||
323 | 68 | 0.095 | 0.93 | NA | NA | 3.2 | |||
500 | 298 | 388 | 0.645 | 0.83 | 39.8 | 0.214 | 4.6 | ||
313 | 92 | 0.239 | 0.89 | 39.9 | 0.196 | 2.3 | |||
323 | 47 | 0.076 | 0.93 | 44.5 | 0.158 | 3.5 | |||
1000 | 298 | 212 | 0.557 | 0.85 | 43.1 | 0.247 | 4.9 | ||
313 | 77 | 0.201 | 0.91 | 53.5 | 0.229 | 0.9 | |||
323 | 35 | 0.059 | 0.94 | 57.3 | 0.179 | 3.3 | |||
KU | SiO2 | 0 | 298 | 61 | 0.05 | 0.95 | NA | NA | 5.8 |
500 | 298 | 500 | 4962 | 0.95 | 61.0 | 0.38 | 1.0 | ||
1000 | 298 | 49 | 4801 | 0.97 | 61.3 | 0.310 | 8.2 | ||
SU | SiO2 | 0 | 298 | 950 | 567,318 | 0.32 | NA | NA | 9.3 |
100 | 298 | 931 | 527,193 | 0.32 | 14.1 | 0.176 | 9.8 | ||
1000 | 298 | 714 | 437,123 | 0.32 | 15.1 | 0.191 | 9.3 | ||
SiO2B | 1000 | 298 | 871 | 501,168 | 0.32 | 14.2 | 0.182 | 9.9 | |
SiO2A | 1000 | 298 | 767 | 442,399 | 0.32 | 14.9 | 0.191 | 9.8 |
Crude Oil | Type | Density (gr/cc) | Viscosity (cP) | C5-asphaltene (wt %) |
---|---|---|---|---|
MB | Heavy oil | 0.98 | 1.0 × 105 | 23.7 |
KU | Heavy oil | 0.96 | 4.7 × 103 | 18.2 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taborda, E.A.; Franco, C.A.; Alvarado, V.; Cortés, F.B. A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles. Energies 2017, 10, 2064. https://doi.org/10.3390/en10122064
Taborda EA, Franco CA, Alvarado V, Cortés FB. A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles. Energies. 2017; 10(12):2064. https://doi.org/10.3390/en10122064
Chicago/Turabian StyleTaborda, Esteban A., Camilo A. Franco, Vladimir Alvarado, and Farid B. Cortés. 2017. "A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles" Energies 10, no. 12: 2064. https://doi.org/10.3390/en10122064
APA StyleTaborda, E. A., Franco, C. A., Alvarado, V., & Cortés, F. B. (2017). A New Model for Describing the Rheological Behavior of Heavy and Extra Heavy Crude Oils in the Presence of Nanoparticles. Energies, 10(12), 2064. https://doi.org/10.3390/en10122064