A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System
Abstract
:1. Introduction
2. System Description
2.1. Hybrid Grid-Connected PV-SOFC System
2.2. PV Array Model
- Ioref: dark current at Tcref;
- k: Boltzman constant;
- eg: band gap energy;
- Tcref: reference cell temperature;
- Tc: cell temperature;
- q: electron charge;
- n: diode ideality factor.
- Gref: reference solar radiation;
- αt: temperature coefficient of photo current.
2.3. SOFC Model
- Ifc: fuel cell current;
- R: universal gas constant;
- T: absolute temperature in kelvin;
- PH2, PO2 and PH2O: partial pressure of hydrogen, oxygen and water;
- r: representation of ohmic loss in ohm;
- F: Faraday’s constant;
- Eo: ideal standard potential;
- No: number of cells in series in the stack.
3. Proposed Operating Strategy of Hybrid System
4. Methodology
4.1. Control of SOFC Voltage Source Inverter (VSI)
- t: time;
- e(t): the difference between reference power and the actual fuel cell power.
4.2. Proposed Fuzzy-Based PI Controller Model
5. Simulation Results
5.1. Optimization of Control Parameters
5.2. Application of Fuzzy-Based PI Controller for Power Management System
6. Conclusions and Future Work
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Ren, P.S. Renewables 2015 Global Status Report; REN21 Secretariat: Paris, France, 2015. [Google Scholar]
- Hassmann, K. SOFC power plants, the Siemens-Westinghouse approach. Fuel Cells 2001, 1, 78–84. [Google Scholar] [CrossRef]
- Hatti, M.; Meharrar, A.; Tioursi, M. Power management strategy in the alternative energy photovoltaic/PEM Fuel Cell hybrid system. Renew. Sustain. Energy Rev. 2011, 15, 5104–5110. [Google Scholar] [CrossRef]
- El-Shater, T.F.; Eskander, M.N.; El-Hagry, M.T. Energy flow and management of a hybrid wind/PV/fuel cell generation system. Int. J. Sustain. Energy 2006, 25, 91–106. [Google Scholar] [CrossRef]
- Khanh, L.N.; Seo, J.J.; Kim, Y.S.; Won, D.J. Power-management strategies for a grid-connected PV-FC hybrid system. IEEE Trans. Power Deliv. 2010, 25, 1874–1882. [Google Scholar] [CrossRef]
- Wang, C.; Nehrir, M.H. Power Management of a standalone Wind/PV/FC energy system. IEEE Trans. Energy Convers. 2008, 23, 957–967. [Google Scholar] [CrossRef]
- Taher, S.A.; Mansouri, S. Optimal PI controller design for active power in grid-connected SOFC DG system. Int. J. Electr. Power Energy Syst. 2014, 60, 268–274. [Google Scholar] [CrossRef]
- Anantwar, H.; Lakshmikantha, B.R.; Sundar, S. Fuzzy self tuning PI controller based inverter control for voltage regulation in off-grid hybrid power system. Energy Procedia 2017, 117, 409–416. [Google Scholar] [CrossRef]
- Mishra, S.; Sahoo, S.; Dugar, A. Hybrid MVMO based controller for energy management in a grid connected DC microgrid. In Proceedings of the IEEE Power, Communication and Information Technology Conference, Bhubaneswar, India, 15–17 October 2015; pp. 114–119. [Google Scholar]
- Al-Saedi, W.; Lachowicz, S.W.; Habibi, D.; Bass, O. Power flow control in grid-connected microgrid operation using particle swarm optimization under variable load conditions. Int. J. Electr. Power Energy Syst. 2013, 49, 76–85. [Google Scholar] [CrossRef]
- Laghari, J.A.; Mokhlis, H.; Bakar, A.; Mohamad, H. A fuzzy based load frequency control for distribution network connected with mini hydro power plant. J. Intell. Fuzzy Syst. 2014, 26, 1301–1310. [Google Scholar]
- Ozbay, E.; Gencoglu, M.T. Load frequency control for small hyrdo power plants using adaptive fuzzy controller. In Proceedings of the IEEE International Conference on Systems Man and Cybermetrics (SMC), Istanbul, Turkey, 10–13 October 2010; pp. 1–5. [Google Scholar]
- Mohagheghi, S.; Harley, R.G.; Venayagamoorthy, G.K. Modified Takagi-Sugeno fuzzy logic based controllers for a static compensator in a multimachine power system. In Proceedings of the Conference Record of the IEEE 39th IAS Annual Meeting Industry Applications Conference, Seattle, WA, USA, 3–7 October 2004; pp. 2637–2642. [Google Scholar]
- Kassem, A.M.; Zaid, S.A. Load parameter waveforms improvement of a stand-alone wind-based energy storage system and Takagi–Sugeno fuzzy logic algorithm. IET Renew. Power Gener. 2014, 8, 775–785. [Google Scholar] [CrossRef]
- Luk, P.C.K.; Low, K.C.; Sayiah, A. GA-based fuzzy logic control of a solar power plant using distributed collector fields. Renew. Energy 1999, 16, 765–768. [Google Scholar] [CrossRef]
- Syed, F.U.; Ying, H.; Kuang, M.; Okubo, S.; Smith, M. Rule-Based Fuzzy Gain-Scheduling PI Controller to Improve Engine Speed and Power Behavior in a Power-split Hybrid Electric Vehicle. In Proceedings of the IEEE Annual Meeting of the North American Fuzzy Information Processing Society, Montreal, QC, Canada, 3–6 June 2006; pp. 284–289. [Google Scholar]
- Berrazouane, S.; Mohammedi, K. Parameter optimization via cuckoo optimization algorithm of fuzzy controller for energy management of a hybrid power system. Energy Convers. Manag. 2014, 78, 652–660. [Google Scholar] [CrossRef]
- Letting, L.K.; Munda, J.L.; Hamam, Y. Optimization of a fuzzy logic controller for PV grid inverter control using S-function based PSO. Sol. Energy 2012, 86, 1689–1700. [Google Scholar] [CrossRef]
- Yazdani, A.; Di Fazio, A.R.; Ghoddami, H.; Russo, M.; Kazerani, M.; Jatskevich, J.; Strunz, K.; Leva, S.; Martinez, J. Modeling guidelines and a benchmark for power system simulation studies of three-phase single-stage photovoltaic systems. IEEE Trans. Power Deliv. 2011, 26, 1247–1264. [Google Scholar] [CrossRef]
- Rajapakse, A.D.; Muthumuni, D. Simulation tools for photovoltaic system grid integration studies. In Proceedings of the IEEE Electrical Power and Energy Conference (EPEC), Montreal, QC, Canada, 22–23 October 2009; pp. 1–5. [Google Scholar]
- Koohi-Kamali, S.; Rahim, N.A.; Mokhlis, H. Smart power management algorithm in microgrid consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and load. Energy Convers. Manag. 2014, 84, 562–582. [Google Scholar] [CrossRef]
- Eltawil, M.A.; Zhao, Z. MPPT techniques for photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 25, 793–813. [Google Scholar] [CrossRef]
- Larminie, J.; Dicks, A. Fuel Cell Systems Explained; John Wiley & Sons Ltd.: West Sussex, UK, 2003. [Google Scholar]
- Fedakar, S.; Bahceci, S.; Yalcinoz, T. Modeling and simulation of grid connected solid oxide fuel cell using PSCAD. J. Renew. Sustain. Energy 2014, 6, 053118. [Google Scholar] [CrossRef]
- Zhu, Y.; Tomsovic, K. Development of models for analyzing the load-following performance of microturbines and fuel cells. Electr. Power Syst. Res. 2002, 62, 1–11. [Google Scholar] [CrossRef]
- Wang, X.; Huang, B.; Chen, T. Data-driven predictive control for solid oxide fuel cells. J. Process Control 2007, 17, 103–114. [Google Scholar] [CrossRef]
- Li, Y.H.; Rajakaruna, S.; Choi, S.S. Control of a solid oxide fuel cell power plant in a grid-connected system. IEEE Trans. Energy Convers. 2007, 22, 405–413. [Google Scholar] [CrossRef]
- Maiti, D.; Acharya, A.; Chakraborty, M.; Konar, A.; Janarthanan, R. Tuning PID and PI/λ D δ Controllers Using the Integral Time Absolute Error Criterion. In Proceedings of the IEEE 4th International Conference Information and Automation for Sustainability (ICIAFS), Colombo, Sri Lanka, 12–14 December 2008; pp. 457–462. [Google Scholar]
- Lau, K.Y.; Yousof, M.F.M.; Arshad, S.N.M.; Anwari, M.; Yatim, A.H.M. Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions. Energy 2010, 35, 3245–3255. [Google Scholar] [CrossRef]
PFCref | ||||||||
---|---|---|---|---|---|---|---|---|
Ref 1 | Ref 2 | Ref 3 | Ref 4 | Ref 5 | Ref 6 | Ref 7 | Ref 8 | |
Kp | Kp1 | Kp1 | Kp2 | Kp2 | Kp3 | Kp3 | Kp4 | Kp5 |
Ti | Ti1 | Ti1 | Ti2 | Ti2 | Ti3 | Ti3 | Ti4 | Ti5 |
Method | Control Parameter and Objective Function | ||
---|---|---|---|
Kp | Ti | ITAE | |
GA | 0.750–4.958 | 0.0217–1.550 | 7844.99311 |
Simplex | 1.966–3.097 | 0.0087–0.5247 | 483.79171 |
PSCAD-MATLAB fuzzy logic control | 1–3 | 0.013–0.047 | 73.3385 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sukumar, S.; Marsadek, M.; Ramasamy, A.; Mokhlis, H.; Mekhilef, S. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System. Energies 2017, 10, 1720. https://doi.org/10.3390/en10111720
Sukumar S, Marsadek M, Ramasamy A, Mokhlis H, Mekhilef S. A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System. Energies. 2017; 10(11):1720. https://doi.org/10.3390/en10111720
Chicago/Turabian StyleSukumar, Shivashankar, Marayati Marsadek, Agileswari Ramasamy, Hazlie Mokhlis, and Saad Mekhilef. 2017. "A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System" Energies 10, no. 11: 1720. https://doi.org/10.3390/en10111720
APA StyleSukumar, S., Marsadek, M., Ramasamy, A., Mokhlis, H., & Mekhilef, S. (2017). A Fuzzy-Based PI Controller for Power Management of a Grid-Connected PV-SOFC Hybrid System. Energies, 10(11), 1720. https://doi.org/10.3390/en10111720