Effect of the Presence of Stem on Quality of Oolong Tea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Oolong Tea Processing and Sample Preparation
2.3. Electronic Tongue Analysis
2.4. Sensory Evaluation
2.5. Analysis of Taste Components
2.5.1. Analysis of Catechins, Caffeine, and Theaflavins
2.5.2. Analysis of Free Amino Acids
2.5.3. Analysis of Flavonoids and Flavonoid Glycosides
2.5.4. Soluble Sugar Analysis
2.6. Determination of Moisture Content
2.7. Aroma Component Analysis
2.8. Statistical Analysis
3. Results and Discussion
3.1. Comparison of Taste Components
3.2. Flavor Quality Analysis
3.3. Dynamic Changes of Free Amino Acid Content in Leaves
3.4. Dynamic Changes of Free Amino Acid Content in Stems
3.5. Comparison of Volatile Components
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xin, D.; Li, D.; Zhang, H. Chemical Changes of Different Kinds of Tea with the Processing. Food Res. Dev. 2020, 41, 216–224. [Google Scholar]
- Wang, Y.; Li, Q.; Wang, Q.; Li, Y.; Ling, J.; Liu, L.; Chen, X.; Bi, K. Simultaneous determination of seven bioactive components in oolong tea Camellia sinensis: Quality control by chemical composition and hplc fingerprints. J. Agric. Food Chem. 2011, 60, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Yeo, A.S.-L.; Low, M.-Y.; Zhou, W. Identifying key non-volatile compounds in ready-to-drink green tea and their impact on taste profile. Food Chem. 2014, 155, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, S.; Kumazawa, K.; Masuda, H.; Henze, A.; Hofmann, T. Molecular and sensory studies on the umami taste of japanese green tea. J. Agric. Food Chem. 2006, 54, 2688–2694. [Google Scholar] [CrossRef]
- Zhang, Y. Study on the Taste Characteristics of the Main Catechins in Green Tea Infusion; Chinese Academy of Agricultural Sciences: Beijing, China, 2016. [Google Scholar]
- Alcázar, A.; Ballesteros, O.; Jurado, J.M.; Pablos, F.; Martín, M.J.; Vilches, J.L.; Navalón, A. Differentiation of green, white, black, oolong, and pu-erh teas according to their free amino acids content. J. Agric. Food Chem. 2007, 55, 5960–5965. [Google Scholar] [CrossRef]
- Scharbert, S.; Holzmann, N.; Hofmann, T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J. Agric. Food Chem. 2004, 52, 3498–3508. [Google Scholar] [CrossRef]
- Scharbert, S.; Hofmann, T. Molecular definition of black tea taste by means of quantitative studies, taste reconstitution, and omission experiments. J. Agric. Food Chem. 2005, 53, 5377–5384. [Google Scholar] [CrossRef]
- Chen, Y.L.; Duan, J.; Jiang, Y.M.; Shi, J.; Peng, L.; Xue, S.; Kakuda, Y. Production, quality, and biological effects of oolong tea (Camellia sinensis). Food Rev. Int. 2010, 27, 1–15. [Google Scholar] [CrossRef]
- Liu, H.; Ceng, Y.; Zhao, X. Stability and Chemical Changes of Catechins during Oolong Tea Processing. Food Sci. 2019, 40, 69–74. [Google Scholar]
- Liu, Q.; Lin, Z.; Cai, J. Chemical mechanism of oolong tea processing and its quality. J. Fujian Agr. Forest. Univ. (Nat. Sci. Ed.) 2002, 31, 347–351. [Google Scholar]
- Wan, X. Tea Biochemistry, 3rd ed.; Agricultural Press of China: Beijing, China, 2003. [Google Scholar]
- Zeng, L.; Zhou, Y.; Fu, X.; Mei, X.; Cheng, S.; Gui, J.; Dong, F.; Tang, J.; Ma, S.; Yang, Z. Does oolong tea (Camellia sinensis) made from a combination of leaf and stem smell more aromatic than leaf-only tea? Contribution of the stem to oolong tea aroma. Food Chem. 2017, 237, 488–498. [Google Scholar] [CrossRef]
- Yan, S.M.; Hu, Z.F.; Wu, C.X.; Jin, L.; Chen, G.; Zeng, X.Y.; Zhu, J.Q. Electronic Tongue Combined with Chemometrics to Provenance Discrimination for a Green Tea (Anji-White Tea). J. Food Qual. 2017, 2017, 3573197. [Google Scholar] [CrossRef]
- Chen, S.; Liu, H.; Zhao, X.; Li, X.; Shan, W.; Wang, X.; Wang, S.; Yu, W.; Yang, Z.; Yu, X. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture. Food Rev. Int. 2020, 128, 108778. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Fu, Y.; Huang, J.; Wang, J.; Jin, S.; Yin, J.; Xu, Y. Comparative analysis of volatile compounds in Tieguanyin with different types based on HS–SPME–GC–MS. Foods 2022, 11, 1530. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, X.; Mei, X.; Zhou, Y.; Cheng, S.; Zeng, L.; Dong, F.; Yang, Z. Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. J. Proteom. 2017, 157, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, Y.; Chen, J.; Wang, F.; Du, Q.; Yin, J. Quantitative analyses of the bitterness and astringency of catechins from green tea. Food Chem. 2018, 258, 16–24. [Google Scholar] [CrossRef]
- Yin, J.; Xu, Y.; Yuan, H.; Luo, L.; Qian, X. Cream formation and main chemical components of green tea infusions processed from different parts of new shoots. Food Chem. 2009, 114, 665–670. [Google Scholar] [CrossRef]
- Chen, G.; Yang, C.; Lee, S.; Wu, C.; Tzen, J.T.C. Catechin content and the degree of its galloylation in oolong tea are inversely correlated with cultivation altitude. J. Food Drug Anal. 2014, 22, 303–309. [Google Scholar] [CrossRef] [Green Version]
- Hung, Y.; Chen, P.; Chen, R.L.C.; Cheng, T. Sequential determination of tannin and total amino acid contents in tea for taste assessment by a fluorescent flow-injection analytical system. Food Chem. 2010, 118, 876–881. [Google Scholar] [CrossRef]
- Tseng, Y.; Lee, Y.; Li, R.; Mau, J. Non-volatile flavour components of ganoderma tsugae. Food Chem. 2005, 90, 409–415. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, Z. Understanding different regulatory mechanisms of proteinaceous and non-proteinaceous amino acid formation in tea (Camellia sinensis) provides new insights into the safe and effective alteration of tea flavor and function. Crit. Rev. Food Sci. Nutr. 2020, 60, 844–858. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Lo, L.; Chen, I.; Chen, P. Effect of shaking process on correlations between catechins and volatiles in oolong tea. J. Food Drug Anal. 2016, 24, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Fraser, K.; Lane, G.A.; Otter, D.E.; Harrison, S.J.; Quek, S.-Y.; Hemar, Y.; Rasmussen, S. Non-targeted analysis by lc-ms of major metabolite changes during the oolong tea manufacturing in New Zealand. Food Chem. 2014, 151, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, P.; Shi, J.; Gao, Y.; Wang, Q.; Yin, J. Quality development and main chemical components of Tieguanyin oolong teas processed from different parts of fresh shoots. Food Chem. 2018, 249, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Kuo, P.; Lai, Y.; Chen, Y.; Yang, W.; Tzen, J.T. Changes in volatile compounds upon aging and drying in oolong tea production. J. Sci. Food Agric. 2011, 91, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Xia, Y.; Peterson, D.G. Identification of bitter modulating maillard-catechin reaction products. J. Agric. Food Chem. 2014, 62, 8470–8477. [Google Scholar] [CrossRef] [PubMed]
- Bi, K.-H.; Zhang, L.; Qiao, X.-G.; Xu, Z.-X. Tea polyphenols as inhibitors of furan formed in the maillard model system and canned coffee model. J. Food Sci. 2017, 82, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Song, C.; Ho, C.; Wan, X. Contribution of l-theanine to the formation of 2,5-dimethylpyrazine, a key roasted peanutty flavor in oolong tea during manufacturing processes. Food Chem. 2018, 263, 18–28. [Google Scholar] [CrossRef]
- Ho, C.-T.; Zheng, X.; Li, S.-M. Tea aroma formation. Food Sci. Hum. Wellness 2015, 4, 9–27. [Google Scholar] [CrossRef]
- Kawakami, M.; Kobayashi, A. Carotenoid-Derived Aroma Compounds in Tea; American Chemical Society: Washington, DC, USA, 2002; pp. 147–150. [Google Scholar]
Retention Time/min | Compound | Content (μg/g) a | |
---|---|---|---|
CL | SL | ||
5.28 | Hexanal | 4.124 ± 0.127 ** | 5.494 ± 0.183 |
7.269 | trans-2-Hexenal | 0.773 ± 0.051 | 0.839 ± 0.016 |
8.897 | Styrene | 0.131 ± 0.022 | 0.131 ± 0.027 |
9.553 | Heptanal | 0.173 ± 0.018 | 0.180 ± 0.041 |
12.483 | Benzaldehyde | 0.184 ± 0.015 ** | 0.011 ± 0.002 |
14.157 | trans-2-Octen-1-ol | 0.111 ± 0.013 | 0.120 ± 0.037 |
15.564 | Octanal | 0.086 ± 0.005 | 0.096 ± 0.004 |
15.754 | cis-3-Hexenyl acetate | 0.485 ± 0.023 * | 0.585 ± 0.038 |
17.059 | d-Limonene | 0.189 ± 0.024 | 0.190 ± 0.036 |
17.346 | 2-Ethyl-1-hexanol | 0.216 ± 0.039 ** | 0.135 ± 0.014 |
17.743 | α-Ocimene | 0.098 ± 0.007 | 0.104 ± 0.026 |
18.416 | β-Ocimene | 0.215 ± 0.015 * | 0.251 ± 0.014 |
19.925 | Linalool oxide II | 0.901 ± 0.027 | 0.797 ± 0.046 |
20.494 | 2-Butyl-1-octanol | 0.019 ± 0.002 ** | 0.047 ± 0.001 |
20.851 | Cyclohexene,1,5,5-trimethyl-3-methylene- | 0.029 ± 0.005 | 0.038 ± 0.004 |
21.019 | Linalool oxide I | 1.524 ± 0.185 | 1.325 ± 0.330 |
22.087 | Linalool | 13.513 ± 1.290 ** | 17.257 ± 1.110 |
22.443 | Nonanal | 0.591 ± 0.019 * | 0.729 ± 0.017 |
28.507 | 7-Decen-5-olide | 0.392 ± 0.089 | 0.414 ± 0.064 |
30.146 | Decanal | 0.057 ± 0.002 | 0.050 ± 0.003 |
30.454 | β-cyclocitral | 0.063 ± 0.005 * | 0.079 ± 0.006 |
31.736 | cis-3-Hexenyl isovalerate | 0.024 ± 0.003 | 0.033 ± 0.001 |
35.301 | Indole | 5.177 ± 0.281 ** | 4.121 ± 0.112 |
40.992 | cis-3-Hexenyl hexanoate | 0.759 ± 0.031 ** | 0.955 ± 0.030 |
41.32 | Hexyl hexanoate | 0.079 ± 0.003 ** | 0.104 ± 0.023 |
42.621 | β-caryophyllen | 0.021 ± 0.002 | 0.023 ± 0.002 |
44.812 | trans-β-Farnesene | 0.086 ± 0.003 | 0.077 ± 0.007 |
47.459 | α-Farnesene | 0.216 ± 0.023 | 0.211 ± 0.002 |
47.874 | δ-Cadinene | 0.033 ± 0.001 | 0.027 ± 0.001 |
50.211 | Nerolidol | 2.598 ± 0.173 ** | 1.523 ± 0.039 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.; Wang, Y.; Chen, L.; Yang, Y.; Tu, Z.; Ye, Y. Effect of the Presence of Stem on Quality of Oolong Tea. Foods 2022, 11, 3439. https://doi.org/10.3390/foods11213439
Lin J, Wang Y, Chen L, Yang Y, Tu Z, Ye Y. Effect of the Presence of Stem on Quality of Oolong Tea. Foods. 2022; 11(21):3439. https://doi.org/10.3390/foods11213439
Chicago/Turabian StyleLin, Jiazheng, Yuwan Wang, Lin Chen, Yunfei Yang, Zheng Tu, and Yang Ye. 2022. "Effect of the Presence of Stem on Quality of Oolong Tea" Foods 11, no. 21: 3439. https://doi.org/10.3390/foods11213439
APA StyleLin, J., Wang, Y., Chen, L., Yang, Y., Tu, Z., & Ye, Y. (2022). Effect of the Presence of Stem on Quality of Oolong Tea. Foods, 11(21), 3439. https://doi.org/10.3390/foods11213439