Bullwhip Effect in Supply Chains and Cost Rigidity
Abstract
:1. Introduction
2. Literature Review and Hypothesis Development
2.1. Supply Chain and Bullwhip Effect
2.2. Cost Management and Cost Rigidity
2.3. Hypotheses Development
3. Empirical Model and Research Sample
3.1. Empirical Model
3.2. The Measurement of the Bullwhip Effect
3.3. Research Sample
4. Empirical Results
4.1. Mediation Analyses
4.2. Robustness Checks
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
1 | https://www.wsj.com/articles/commentary-cautionbullwhip-effect-ahead-11623664801 (accessed at 23 October 2022). |
2 | Here, variability refers to the standard deviation, which is a measure of dispersion in statistics. |
3 | It is common in the supply chain management literature to assume production equal to orders and demand equal to cost of goods sold (e.g., Bray & Mendelson, 2012; Shan et al., 2014). However, the total inventory account in Compustat includes raw materials, work-in-process, and finished goods inventories. This accounting identity, which computes production based on the cost of goods sold and inventory changes, provides only an approximation of actual production during the accounting period. Furthermore, accounting noise in quarterly data, such as inaccurate recording of sales transactions at the end of the quarter, changes in cost flow assumptions (e.g., FIFO/LIFO), and seasonal adjustments, may distort estimates of cost of goods sold and inventory changes. |
References
- Aboody, D., Levi, S., & Weiss, D. (2018). Managerial incentives, options, and cost structure choices. Review of Accounting Studies, 23, 422–451. [Google Scholar] [CrossRef]
- Anderson, E., Fine, C., & Parker, G. (2000). Upstream volatility in the supply chain: The machine tool industry as a case study. Production and Operations Management, 9, 239–261. [Google Scholar] [CrossRef]
- Anderson, M. A., Banker, R. D., & Janakiraman, S. (2003). Are selling, general, and administrative costs sticky? Journal of Accounting Research, 41(1), 47–63. [Google Scholar] [CrossRef]
- Anderson, S. W. (2007). Managing costs and cost structure throughout the value chain: Research on strategic cost management. Handbook of Management Accounting Research, 2, 481–506. [Google Scholar]
- Balakrishnan, R., Sivaramakrishnan, K., & Sprinkle, G. (2008). Managerial accounting. Wiley & Sons. [Google Scholar]
- Banker, R. D., & Byzalov, D. (2014). Asymmetric cost behavior. Journal of Management Accounting Research, 26(2), 43–79. [Google Scholar] [CrossRef]
- Banker, R. D., Byzalov, D., Fang, S., & Liang, Y. (2018). Cost management research. Journal of Management Accounting Research, 30(3), 187–209. [Google Scholar] [CrossRef]
- Banker, R. D., Byzalov, D., & Plehn-Dujowich, J. M. (2014). Demand uncertainty and cost behavior. The Accounting Review, 89(3), 839–865. [Google Scholar] [CrossRef]
- Bray, R. L., & Mendelson, H. (2012). Information transmission and the bullwhip effect: An empirical investigation. Management Science, 58(5), 860–875. [Google Scholar] [CrossRef]
- Cachon, G. P., Randall, T., & Schmidt, G. M. (2007). In search of the bullwhip effect. Manufacturing and Service Operations Management, 9(4), 457–479. [Google Scholar] [CrossRef]
- Chang, H., Chen, J., Hsu, S., & Mashruwala, R. (2018). The impact of the bullwhip effect on sales and earnings using order backlog. Contemporary Accounting Research, 35(2), 1140–1165. [Google Scholar] [CrossRef]
- Chang, H., Hall, C. M., & Paz, M. T. (2021). Suppliers’ product market competition, customer concentration, and cost structure. Journal of Management Accounting Research, 33(3), 9–27. [Google Scholar] [CrossRef]
- Chen, C. L., Lu, H., & Sougiannis, T. (2012). The agency problem, corporate governance, and the asymmetrical behavior of selling, general, and administrative costs. Contemporary Accounting Research, 29(1), 252–282. [Google Scholar] [CrossRef]
- Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46(3), 436–443. [Google Scholar] [CrossRef]
- Fama, E. F., & MacBeth, J. D. (1973). Risk, return and equilibrium: Empirical tests. Journal of Political Economy, 81(3), 607–636. [Google Scholar] [CrossRef]
- Fang, S., Pu, X., & Wang, S. (2023). The inception of credit default swap trading and corporate cost structure. Journal of Management Accounting Research, 35(1), 115–143. [Google Scholar] [CrossRef]
- Forrester, J. (1961). Industrial dynamics. MIT Press. [Google Scholar]
- Fransoo, J. C., & Wouters, M. J. F. (2000). Measuring the bullwhip effect in the supply chain. Supply Chain Management: An International Journal, 5(2), 78–89. [Google Scholar] [CrossRef]
- Garrison, R., Noreen, E., & Brewer, P. (2017). Managerial accounting (16th ed.). McGraw-Hill. [Google Scholar]
- Hammond, J. (1994). Barilla spa, HBS case 694046: 23. Harvard Business School. [Google Scholar]
- Holt, C. C., Modigliani, F., & Shelton, J. P. (1968). The transmission of demand fluctuations through distribution and production systems: The tv-set industry. Canadian Journal of Economics, 14, 718–739. [Google Scholar] [CrossRef]
- Holzhacker, M., Krishnan, R., & Mahlendorf, M. (2015a). Unraveling the black box of cost behavior: An empirical investigation of risk drivers, managerial resource procurement, and cost elasticity. The Accounting Review, 90(6), 2305–2335. [Google Scholar] [CrossRef]
- Holzhacker, M., Krishnan, R., & Mahlendorf, M. (2015b). The impact of changes in regulation on cost behavior. Contemporary Accounting Research, 32(2), 534–566. [Google Scholar] [CrossRef]
- Horngren, C., Datar, S., & Rajan, M. (2012). Cost accounting: A managerial emphasis (14th ed.). Prentice Hall. [Google Scholar]
- Irvine, P. J., Saeyeul, S., & Yildizhan, C. (2016). Customer-base concentration, profitability, and the relationship life cycle. Accounting Review, 91(3), 883–906. [Google Scholar] [CrossRef]
- Kallapur, S., & Eldenburg, L. (2005). Uncertainty, real options, and cost behavior: Evidence from Washington State hospitals. Journal of Accounting Research, 43(5), 735–752. [Google Scholar] [CrossRef]
- Krishnan, R. (2015). Management accountant—What ails thee? Journal of Management Accounting Research, 27(1), 177–191. [Google Scholar] [CrossRef]
- Lai, R. K. ((2005,, September 18)). Bullwhip in a Spanish shop (Harvard NOM Working Paper No. 06-06). Available online: https://ssrn.com/abstract=804745 (accessed on 24 September 2022).
- Lee, H. L., Padmanabhan, V., & Whang, S. (1997a). The bullwhip effect in supply chains. Sloan Management Review, 38(3), 93–102. [Google Scholar] [CrossRef]
- Lee, H. L., Padmanabhan, V., & Whang, S. (1997b). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546–558. [Google Scholar] [CrossRef]
- Liebowitz, S. (1983). Tie-in sales and price discrimination. Economic Inquiry, 21(3), 387–399. [Google Scholar] [CrossRef]
- Osadchiy, N., Gaur, V., & Seshadri, S. (2016). Systematic risk in supply chain networks. Management Science, 62(6), 1533–1841. [Google Scholar] [CrossRef]
- Shan, J., Yang, S. T., Yang, S. L., & Zhang, J. (2014). An empirical study of the bullwhip effect in China. Production and Operations Management, 23(4), 537–551. [Google Scholar] [CrossRef]
- Smith, C. W., & Wakeman, L. (1985). Determinants of corporate leasing policy. Journal of Finance, 40(3), 895–908. [Google Scholar] [CrossRef]
- Stank, T., Goldsby, T., & Saunders, L. ((2021,, June 14)). Commentary: Caution-bullwhip effect ahead. Wall Street Journal. Available online: https://www.wsj.com/articles/commentary-cautionbullwhip-effect-ahead-11623664801 (accessed on 24 September 2022).
- Sterman, J. D. (1989). Modeling managerial behavior: Misperceptions of feedback in a dynamic decision making experiment. Management Science, 35(3), 321–339. [Google Scholar] [CrossRef]
- Sterman, J. D., & Dogan, G. (2015). I’m not hoarding, I’m just stocking up before the hoarders get here: Behavioral causes of phantom ordering in supply chains. Journal of Operations Management, 39, 6–22. [Google Scholar] [CrossRef]
- Terwiesch, C., Ren, Z. J., Ho, T. H., & Cohen, M. A. (2005). An empirical analysis of forecast sharing in the semiconductor equipment supply chain. Management Science, 51(2), 208–220. [Google Scholar] [CrossRef]
- Wang, X., & Disney, S. M. (2016). The bullwhip effect: Progress, trends, and directions. European Journal of Operational Research, 250, 691–701. [Google Scholar] [CrossRef]
- Wong, C. Y., El-Beheiry, M. M., Johansen, J., & Hvolby, H. H. (2007). The implications of information sharing on bullwhip effects in a toy supply chain. International Journal of Risk Assessment Management, 7(1), 4–18. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
∆lnSGAit | The log change in deflated sales, general, and administrative costs (Compustat data XSGA) of firm i in year t; |
∆lnCOGSit | The log change in deflated cost of goods sold (Compustat data COGS) of firm i in year t; |
∆lnEMPit | The log change in the number of employees (Compustat data EMP) of firm i in year t; |
∆lnSALEit | The log change in deflated sales (Compustat data SALE) of firm i in year t; |
lnBWit | The logged value of the bullwhip measure; |
UNCERTAINit | Demand uncertainty measured by the standard deviation of log changes in sales for all valid observations of a firm; |
GDPRATEit | GDP growth rate from the previous year to the current year in year t; |
SUCDECit | A dummy variable set equal to 1 if sales have decreased from t − 1 to t and t − 2 to t − 1, and 0 otherwise; |
lnASSINTit | The logged value of the ratio of total assets to sales revenue in year t; |
lnEMPINTit | The logged value of the ratio of the number of employees to sales revenue in year t; |
LEASEBUYit | (operating lease expense + rent expense)/(operating lease expense (Compustat data MRC1) + rent expense (Compustat data XRENT) + depreciation (Compustat data DP)); |
∆lnOLEASEit | The log change in deflated operating lease use measured as one-year-ahead operating lease payments (Compustat data MRC1) of firm i in year t; |
∆lnRENTit | The log change in deflated rental expense (Compustat data XRENT) of firm i in year t. |
N | Mean | Std. Dev. | p25 | Median | p75 | |
---|---|---|---|---|---|---|
SALEit | 77,626 | 2193.733 | 10,551.334 | 49.162 | 239.605 | 1087.708 |
SGAit | 77,626 | 400.101 | 1937.47 | 11.033 | 46.502 | 198.113 |
SGAit/SALEit | 77,626 | 0.26 | 0.167 | 0.135 | 0.226 | 0.346 |
COGSit | 77,626 | 1494.95 | 7826.358 | 29.327 | 149.326 | 701.104 |
COGSit/SALEit | 77,626 | 0.646 | 0.194 | 0.538 | 0.669 | 0.769 |
EMPit | 77,626 | 9.747 | 42.894 | 0.3 | 1.441 | 6 |
BWit | 77,626 | 1.346 | 0.739 | 0.944 | 1.141 | 1.537 |
UNCERTAINit | 77,626 | 0.235 | 0.173 | 0.126 | 0.192 | 0.29 |
GDPRATEit | 77,626 | 2.766 | 1.768 | 1.876 | 2.861 | 4.029 |
SUCDECit | 77,626 | 0.142 | 0.349 | 0 | 0 | 0 |
ASSINTit | 77,626 | 0.008 | 0.007 | 0.003 | 0.006 | 0.01 |
EMPINTit | 77,626 | 1.035 | 0.928 | 0.576 | 0.8 | 1.166 |
LEASEBUYit | 77,626 | 0.405 | 0.259 | 0.207 | 0.398 | 0.603 |
OLEASEit | 65,178 | 27.821 | 103.849 | 0.757 | 3.297 | 16.007 |
RENTit | 67,123 | 33.490 | 129.047 | 0.841 | 3.800 | 19.700 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) |
---|---|---|---|---|---|---|---|---|---|---|---|
(1) ∆lnSGAit | 1.000 | ||||||||||
(2) ∆lnCOGSit | 0.572 *** | 1.000 | |||||||||
(3) ∆lnEMPit | 0.490 *** | 0.501 *** | 1.000 | ||||||||
(4) ∆lnSALEit | 0.636 *** | 0.864 *** | 0.549 *** | 1.000 | |||||||
(5) lnBWit | 0.017 *** | 0.015 *** | 0.019 *** | 0.017 *** | 1.000 | ||||||
(6) UNCERTAINit | 0.023 *** | 0.037 *** | −0.006 * | 0.023 *** | 0.014 *** | 1.000 | |||||
(7) GDPRATEit | 0.112 *** | 0.146 *** | 0.102 *** | 0.161 *** | −0.040 *** | 0.013 *** | 1.000 | ||||
(8) SUCDECit | −0.333 *** | −0.379 *** | −0.268 *** | −0.415 *** | 0.004 | 0.071 *** | −0.084 *** | 1.000 | |||
(9) lnASSINTit | 0.041 *** | 0.014 *** | 0.060 *** | −0.007 * | 0.057 *** | 0.200 *** | −0.044 *** | 0.026 *** | 1.000 | ||
(10) lnEMPINTit | −0.044 *** | −0.071 *** | 0.017 *** | −0.084 *** | −0.065 *** | −0.101 *** | 0.128 *** | 0.037 *** | −0.137 *** | 1.000 | |
(11) LEASEBUYit | 0.009 *** | 0.002 | 0.019 *** | 0.006 | −0.003 | −0.040 *** | −0.013 *** | 0.015 *** | −0.422 *** | 0.121 *** | 1.000 |
Pred. Sign | (1) | (2) | (3) | |
---|---|---|---|---|
Variables | ∆lnSGAit | ∆lnCOGSit | ∆lnEMPit | |
∆lnSALEit | 0.541 *** | 0.894 *** | 0.496 *** | |
(91.588) | (173.035) | (83.858) | ||
lnBW | −0.000 | −0.000 | 0.001 | |
(−0.112) | (−0.210) | (0.996) | ||
∆lnSALEit × lnBW | H1: (+) | 0.107 *** | 0.049 *** | 0.099 *** |
(10.147) | (6.374) | (9.063) | ||
Constant | 0.004 | 0.035 *** | 0.018 | |
(0.301) | (3.052) | (1.514) | ||
Year fixed effect | Yes | Yes | Yes | |
Industry fixed effect | Yes | Yes | Yes | |
Observations | 79,670 | 79,667 | 77,352 | |
Adjusted R-squared | 0.405 | 0.739 | 0.308 | |
F-statistic | 198.86 *** | 1011.83 *** | 163.94 *** |
Pred. Sign | (1) | (2) | (3) | |
---|---|---|---|---|
Variables | ∆lnSGAit | ∆lnCOGSit | ∆lnEMPit | |
∆lnSALEit | 0.733 *** | 1.073 *** | 0.790 *** | |
(23.828) | (37.002) | (24.691) | ||
lnBW | −0.001 | −0.000 | 0.001 | |
(−1.138) | (−0.090) | (0.653) | ||
∆lnSALEit × lnBW | H1: (+) | 0.091 *** | 0.044 *** | 0.086 *** |
(9.000) | (5.874) | (8.284) | ||
UNCERTAINit | 0.023 *** | 0.019 *** | −0.011 * | |
(4.500) | (5.094) | (−1.885) | ||
GDPRATEit | 0.004 | 0.006 *** | 0.001 | |
(1.301) | (3.319) | (0.179) | ||
SUCDECit | −0.042 *** | −0.012 *** | −0.026 *** | |
(−16.584) | (−4.815) | (−9.248) | ||
lnASSINTit | 0.030 *** | 0.011 *** | 0.036 *** | |
(20.969) | (8.690) | (21.042) | ||
lnEMPINTit | −0.003 ** | 0.001 | 0.031 *** | |
(−2.382) | (1.099) | (20.527) | ||
∆lnSALEit × UNCERTAINit | −0.222 *** | −0.051 *** | −0.253 *** | |
(−6.717) | (−2.875) | (−8.178) | ||
∆lnSALEit × GDPRATEit | 0.014 *** | −0.005 *** | 0.011 *** | |
(6.047) | (−2.623) | (4.402) | ||
∆lnSALEit × SUCDECit | −0.011 | −0.006 | −0.020 | |
(−0.784) | (−0.390) | (−1.208) | ||
∆lnSALEit × lnASSINTit | −0.079 *** | −0.120 *** | −0.060 *** | |
(−10.671) | (−15.645) | (−8.376) | ||
∆lnSALEit × lnEMPINTit | 0.031 *** | 0.027 *** | 0.044 *** | |
(6.011) | (4.908) | (8.160) | ||
Constant | −0.021 | 0.036 *** | 0.153 *** | |
(−1.640) | (3.103) | (11.540) | ||
Year fixed effect | Yes | Yes | Yes | |
Industry fixed effect | Yes | Yes | Yes | |
Observations | 77,626 | 77,624 | 77,222 | |
Adjusted R-squared | 0.432 | 0.757 | 0.337 | |
F-statistic | 284.88 *** | 1575.75 *** | 218.8 *** |
Pred. | System I | System II | |||
---|---|---|---|---|---|
(1) | (2) | (3) | (4) | ||
Variables | Sign | LEASEBUYit | ∆lnSGAit | LEASEBUYit | ∆lnCOGSit |
lnBW | H2: (+) | 0.014 *** | 0.014 *** | ||
(7.93) | (7.92) | ||||
UNCERTAINit | 0.120 *** | 0.120 *** | |||
(26.53) | (26.55) | ||||
GDPRATEit | −0.030 *** | −0.030 *** | |||
(−6.57) | (−6.56) | ||||
SUCDECit | 0.015 *** | 0.015 *** | |||
(7.03) | (7.02) | ||||
lnASSINTit | −0.128 *** | −0.128 *** | |||
(−80.74) | (−80.67) | ||||
lnEMPINTit | 0.020 *** | 0.020 *** | |||
(15.63) | (15.64) | ||||
∆lnSALEit | 0.666 *** | 1.054 *** | |||
(38.78) | (79.54) | ||||
lnBW | −0.001 | −0.000 | |||
(−1.08) | (−0.12) | ||||
∆lnSALEit × lnBW | H1: (+) | 0.088 *** | 0.043 *** | ||
(14.92) | (9.47) | ||||
LEASEBUYit | 0.074 *** | 0.005 ** | |||
(2.88) | (2.28) | ||||
∆lnSALEit × LEASEBUYit | H2: (+) | 0.125 *** | 0.035 *** | ||
(12.17) | (4.40) | ||||
UNCERTAINit | 0.022 *** | 0.018 *** | |||
(6.74) | (7.24) | ||||
GDPRATEit | 0.003 | 0.006 ** | |||
(1.03) | (2.22) | ||||
SUCDECit | −0.042 *** | −0.012 *** | |||
(−18.39) | (−6.68) | ||||
lnASSINTit | 0.030 *** | 0.011 *** | |||
(25.50) | (12.49) | ||||
lnEMPINTit | −0.003 *** | 0.001 | |||
(−2.97) | (1.20) | ||||
∆lnSALEit × UNCERTAINit | −0.228 *** | −0.052 *** | |||
(−20.72) | (−6.17) | ||||
∆lnSALEit × GDPRATEit | 0.014 *** | −0.005 *** | |||
(9.93) | (−4.64) | ||||
∆lnSALEit × SUCDECit | −0.012 | −0.006 | |||
(−1.27) | (−0.84) | ||||
∆lnSALEit × lnASSINTit | −0.059 *** | −0.114 *** | |||
(−15.28) | (−38.50) | ||||
∆lnSALEit × lnEMPINTit | 0.028 *** | 0.026 *** | |||
(9.96) | (12.13) | ||||
Constant | 0.199 *** | −0.022 ** | 0.199 *** | 0.035 *** | |
(14.92) | (−2.28) | (14.92) | (4.80) | ||
Year fixed effect | Yes | Yes | Yes | Yes | |
Industry fixed effect | Yes | Yes | Yes | Yes | |
Observations | 77,626 | 77,626 | 77,624 | 77,624 | |
Adjusted R-squared | 0.456 | 0.434 | 0.370 | 0.757 | |
Chi-square Statistic | 45,646.46 *** | 59,604.61 *** | 45,640.84 *** | 242,394.77 *** |
Pred. Sign | (1) | (2) | (3) | |
---|---|---|---|---|
Variables | ∆lnSGAit | ∆lnCOGSit | ∆lnEMPit | |
∆lnSALEit | 0.659 *** | 1.074 *** | 0.732 *** | |
(20.423) | (31.772) | (22.125) | ||
lnBW | −0.004 *** | 0.001 | −0.004 * | |
(−2.783) | (0.735) | (−1.792) | ||
∆lnSALEit × lnBW | H1: (+) | 0.093 *** | 0.046 *** | 0.081 *** |
(8.422) | (5.601) | (7.571) | ||
GDPRATEit | 0.012 *** | 0.005 ** | −0.045 *** | |
(3.903) | (2.543) | (−10.499) | ||
SUCDECit | −0.039 *** | −0.014 *** | −0.024 *** | |
(−14.740) | (−5.447) | (−8.056) | ||
lnASSINTit | 0.056 *** | 0.016 *** | 0.072 *** | |
(18.701) | (6.534) | (18.735) | ||
lnEMPINTit | 0.010 *** | 0.005 ** | 0.171 *** | |
(3.510) | (2.015) | (31.925) | ||
∆lnSALEit × GDPRATEit | 0.012 *** | −0.005 ** | 0.006 ** | |
(5.223) | (−2.552) | (2.255) | ||
∆lnSALEit × SUCDECit | 0.014 | −0.003 | 0.021 | |
(0.911) | (−0.188) | (1.234) | ||
∆lnSALEit × lnASSINTit | −0.093 *** | −0.127 *** | −0.063 *** | |
(−11.654) | (−14.994) | (−8.279) | ||
∆lnSALEit × lnEMPINTit | 0.037 *** | 0.031 *** | 0.049 *** | |
(6.583) | (5.029) | (8.504) | ||
Constant | 0.113 *** | 0.043 *** | 0.793 *** | |
(9.014) | (4.265) | (34.181) | ||
Year fixed effect | Yes | Yes | Yes | |
Industry fixed effect | No | No | No | |
Firm fixed effect | Yes | Yes | Yes | |
Observations | 77,759 | 77,757 | 77,352 | |
Number of firms | 7616 | 7616 | 7590 | |
Adjusted R-squared | 0.389 | 0.744 | 0.345 | |
F-statistic | 320.24 *** | 1889.68 *** | 285.32 *** |
Panel A Ratio | ||||
Pred. Sign | (1) | (2) | (3) | |
Variables | ∆lnSGAit | ∆lnCOGSit | ∆lnEMPit | |
∆lnSALEit | 0.694 *** | 1.056 *** | 0.749 *** | |
(21.714) | (36.245) | (22.619) | ||
BW | −0.002 ** | −0.000 | −0.000 | |
(−2.421) | (−0.501) | (−0.558) | ||
∆lnSALEit × BW | H1: (+) | 0.042 *** | 0.019 *** | 0.043 *** |
(7.312) | (4.848) | (7.406) | ||
UNCERTAINit | 0.023 *** | 0.019 *** | −0.011 * | |
(4.488) | (5.115) | (−1.877) | ||
GDPRATEit | 0.004 | 0.006 *** | 0.001 | |
(1.283) | (3.311) | (0.164) | ||
SUCDECit | −0.041 *** | −0.012 *** | −0.026 *** | |
(−16.493) | (−4.771) | (−9.188) | ||
lnASSINTit | 0.030 *** | 0.011 *** | 0.037 *** | |
(21.124) | (8.775) | (21.136) | ||
lnEMPINTit | −0.002 ** | 0.001 | 0.031 *** | |
(−2.350) | (1.123) | (20.544) | ||
∆lnSALEit × UNCERTAINit | −0.224 *** | −0.052 *** | −0.255 *** | |
(−6.782) | (−2.968) | (−8.245) | ||
∆lnSALEit × GDPRATEit | 0.014 *** | −0.005 *** | 0.011 *** | |
(5.957) | (−2.664) | (4.348) | ||
∆lnSALEit × SUCDECit | −0.012 | −0.006 | −0.021 | |
(−0.801) | (−0.390) | (−1.237) | ||
∆lnSALEit × lnASSINTit | −0.079 *** | −0.120 *** | −0.060 *** | |
(−10.668) | (−15.629) | (−8.369) | ||
∆lnSALEit × lnEMPINTit | 0.031 *** | 0.027 *** | 0.044 *** | |
(5.904) | (4.870) | (8.062) | ||
Constant | −0.019 | 0.036 *** | 0.153 *** | |
(−1.547) | (3.098) | (11.490) | ||
Year fixed effect | Yes | Yes | Yes | |
Industry fixed effect | Yes | Yes | Yes | |
Observations | 77,626 | 77,624 | 77,222 | |
Adjusted R-squared | 0.432 | 0.757 | 0.336 | |
F-statistic | 282.81 *** | 1562.37 *** | 218.88 *** | |
Panel B Difference | ||||
Pred. Sign | (1) | (2) | (3) | |
Variables | ∆lnSGAit | ∆lnCOGSit | ∆lnEMPit | |
∆lnSALEit | 0.748 *** | 1.075 *** | 0.804 *** | |
(24.192) | (36.803) | (25.079) | ||
BW | −0.015 *** | 0.001 | −0.018 *** | |
(−3.351) | (0.189) | (−3.466) | ||
∆lnSALEit × BW | H1: (+) | 0.087 *** | 0.087 *** | 0.084 *** |
(3.550) | (4.614) | (3.298) | ||
UNCERTAINit | 0.024 *** | 0.019 *** | −0.009 * | |
(4.651) | (5.031) | (−1.650) | ||
GDPRATEit | 0.004 | 0.006 *** | 0.001 | |
(1.296) | (3.306) | (0.187) | ||
SUCDECit | −0.042 *** | −0.012 *** | −0.027 *** | |
(−16.583) | (−4.936) | (−9.272) | ||
lnASSINTit | 0.030 *** | 0.011 *** | 0.037 *** | |
(21.343) | (8.760) | (21.471) | ||
lnEMPINTit | −0.003 ** | 0.001 | 0.031 *** | |
(−2.509) | (1.045) | (20.350) | ||
∆lnSALEit × UNCERTAINit | −0.233 *** | −0.057 *** | −0.264 *** | |
(−6.919) | (−3.243) | (−8.377) | ||
∆lnSALEit × GDPRATEit | 0.013 *** | −0.005 *** | 0.011 *** | |
(5.839) | (−2.717) | (4.224) | ||
∆lnSALEit × SUCDECit | −0.013 | −0.008 | −0.023 | |
(−0.908) | (−0.486) | (−1.355) | ||
∆lnSALEit × lnASSINTit | −0.079 *** | −0.120 *** | −0.060 *** | |
(−10.630) | (−15.621) | (−8.307) | ||
∆lnSALEit × lnEMPINTit | 0.031 *** | 0.026 *** | 0.043 *** | |
(5.842) | (4.787) | (7.989) | ||
Constant | −0.023 * | 0.035 *** | 0.150 *** | |
(−1.809) | (3.051) | (11.328) | ||
Year fixed effect | Yes | Yes | Yes | |
Industry fixed effect | Yes | Yes | Yes | |
Observations | 77,626 | 77,624 | 77,222 | |
Adjusted R-squared | 0.431 | 0.757 | 0.336 | |
F-statistic | 278.62 *** | 1544.96 *** | 216.75 *** |
Pred. Sign | (1) | (2) | (3) | |
---|---|---|---|---|
Variables | ∆lnSGAit | ∆lnCOGSit | ∆lnEMPit | |
∆lnSALEit | 0.062 * | 0.084 ** | 0.068 ** | |
(1.981) | (2.028) | (2.040) | ||
lnBW | 0.000 | −0.001 | 0.002 | |
(0.154) | (−1.071) | (1.411) | ||
∆lnSALEit × lnBW | H1: (+) | 0.097 *** | 0.037 *** | 0.093 *** |
(9.906) | (3.961) | (6.387) | ||
UNCERTAINit | 0.014 ** | 0.019 *** | −0.017 * | |
(2.320) | (3.738) | (−1.926) | ||
GDPRATEit | 0.010 *** | 0.001 | 0.034 *** | |
(4.019) | (0.243) | (7.122) | ||
SUCDECit | −0.039 *** | −0.007 ** | −0.027 *** | |
(−18.173) | (−2.424) | (−7.256) | ||
lnASSINTit | 0.016 *** | 0.010 *** | 0.024 *** | |
(7.509) | (4.017) | (11.992) | ||
lnEMPINTit | 0.002 | 0.001 | 0.024 *** | |
(1.352) | (0.575) | (10.078) | ||
∆lnSALEit × UNCERTAINit | −0.255 *** | −0.038 ** | −0.316 *** | |
(−8.710) | (−2.076) | (−10.576) | ||
∆lnSALEit × GDPRATEit | 0.169 *** | 0.288 *** | 0.192 *** | |
(5.122) | (6.959) | (5.453) | ||
∆lnSALEit × SUCDECit | −0.024 | 0.017 | −0.021 | |
(−1.467) | (0.875) | (−0.919) | ||
∆lnSALEit × lnASSINTit | −0.072 *** | −0.097 *** | −0.048 *** | |
(−8.373) | (−8.430) | (−4.774) | ||
∆lnSALEit × lnEMPINTit | 0.024 *** | 0.014 | 0.033 *** | |
(4.212) | (1.425) | (4.794) | ||
Constant | 0.002 | −0.001 | 0.010 * | |
(0.956) | (−0.713) | (1.834) | ||
Observations | 77,626 | 77,624 | 77,222 | |
Adjusted R-squared | 0.422 | 0.755 | 0.324 | |
Number of years | 41 | 41 | 41 | |
F-statistic | 111.23 *** | 33.04 *** | 101.68 *** |
Pred. | (1) | (2) | |
---|---|---|---|
Variables | Sign | ∆lnOLEASEit | ∆lnRENTit |
∆lnSALEit | 0.808 *** | 0.956 *** | |
(10.243) | (12.802) | ||
lnBW | −0.001 | −0.004 | |
(−0.362) | (−1.486) | ||
∆lnSALEit × lnBW | H2: (+) | 0.084 *** | 0.094 *** |
(3.235) | (4.271) | ||
UNCERTAINit | 0.050 *** | 0.115 *** | |
(3.363) | (7.038) | ||
GDPRATEit | 0.029 *** | −0.028 *** | |
(3.417) | (−2.770) | ||
SUCDECit | −0.047 *** | −0.068 *** | |
(−6.368) | (−10.650) | ||
lnASSINTit | 0.047 *** | 0.032 *** | |
(12.746) | (9.086) | ||
lnEMPINTit | 0.007 ** | −0.002 | |
(2.462) | (−0.894) | ||
∆lnSALEit × UNCERTAINit | −0.130 * | −0.130 | |
(−1.675) | (−1.608) | ||
∆lnSALEit × GDPRATEit | 0.027 *** | 0.022 *** | |
(4.424) | (3.973) | ||
∆lnSALEit × SUCDECit | 0.006 | −0.044 | |
(0.148) | (−1.234) | ||
∆lnSALEit × lnASSINTit | −0.039 ** | −0.027 | |
(−2.180) | (−1.643) | ||
∆lnSALEit × lnEMPINTit | 0.067 *** | 0.092 *** | |
(5.017) | (7.405) | ||
Constant | 0.018 | 0.012 | |
(0.450) | (0.302) | ||
Year fixed effect | Yes | Yes | |
Industry fixed effect | Yes | Yes | |
Observations | 65,178 | 67,123 | |
Adjusted R-squared | 0.080 | 0.109 | |
F-statistic | 45.11 *** | 59.31 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, H.; Zhang, D. Bullwhip Effect in Supply Chains and Cost Rigidity. J. Risk Financial Manag. 2025, 18, 284. https://doi.org/10.3390/jrfm18050284
Song H, Zhang D. Bullwhip Effect in Supply Chains and Cost Rigidity. Journal of Risk and Financial Management. 2025; 18(5):284. https://doi.org/10.3390/jrfm18050284
Chicago/Turabian StyleSong, Hakjoon, and Daqun Zhang. 2025. "Bullwhip Effect in Supply Chains and Cost Rigidity" Journal of Risk and Financial Management 18, no. 5: 284. https://doi.org/10.3390/jrfm18050284
APA StyleSong, H., & Zhang, D. (2025). Bullwhip Effect in Supply Chains and Cost Rigidity. Journal of Risk and Financial Management, 18(5), 284. https://doi.org/10.3390/jrfm18050284