Next Article in Journal
Application of Electrochemically Reduced Water for New No-Rinse Shampoo: Design and Optimization Using Response Surface Methodology
Previous Article in Journal
Tracking Down of a Selected Panel of Parabens: A Validated Method to Evaluate Their Occurrence in Skin Layers
Previous Article in Special Issue
Phytochemical Screening, and In Vitro Evaluation of the Antioxidant and Dermocosmetic Activities of Four Moroccan Plants: Halimium antiatlanticum, Adenocarpus artemisiifolius, Pistacia lentiscus and Leonotis nepetifolia
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients

by
Agmi Sinta Putri
1,2,
Muhammad Taufiq Haqiqi
1,2,
Supomo
1,2,3,
Irawan Wijaya Kusuma
1,2,4,
Harlinda Kuspradini
1,2,4,
Enih Rosamah
1,2,
Rudianto Amirta
1,2,
Swandari Paramita
2,4,5,
Rico Ramadhan
2,6,
Muhammad Adly Rahandi Lubis
2,7,
Harits Atika Ariyanta
2,7,
Aswandi Aswandi
2,7,
Cut Rizlani Kholibrina
2,7,
Maya Ismayati
2,7,
Widya Fatriasari
2,7,
Didi Tarmadi
2,8,
Yuliansyah
1,2,
Wiwin Suwinarti
1,2,
Yong-ung Kim
9 and
Enos Tangke Arung
1,2,4,*
1
Forestry Faculty, Mulawarman University, Kampus Gunung Kelua, Jl Panajam, Samarinda 75123, Indonesia
2
Research Collaboration Center for Biomass-Based Nano Cosmetic, Collaboration Mulawarman University and BRIN, Samarinda 75123, Indonesia
3
Sekolah Tinggi Ilmu Kesehatan Samarinda, Samarinda College of Health Sciences, Samarinda 75242, Indonesia
4
Research Center for Medicine and Cosmetics Tropical Rainforest Resources (PUIPT-OKTAL), Mulawarman University, Samarinda 75119, Indonesia
5
Faculty of Medicine, Mulawarman University, Samarinda 75119, Indonesia
6
Departement of Chemistry, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
7
Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
8
Research Center for Applied Zoology, National Research and Innovation Agency (BRIN), Jl Raya Bogor KM 46 Cibinong, Bogor 16911, Indonesia
9
Department of Pharmaceutical Engineering, College of Cosmetics and Pharmaceuticals, Daegu Haany University, Daegu 38610, Korea
*
Author to whom correspondence should be addressed.
Cosmetics 2022, 9(5), 103; https://doi.org/10.3390/cosmetics9050103
Submission received: 30 August 2022 / Revised: 21 September 2022 / Accepted: 27 September 2022 / Published: 10 October 2022

Abstract

:
The Eupatorium plant has been well used in medication and as a decorative plant. Some studies have reported that this herb has biochemical compounds, such as sesquiterpenes, phenolics, polysaccharides, and pyrrolizidine alkaloids. Thus, it has pharmacological effects, including antifungal, antibacterial, cytotoxic, and antinociceptive properties, that can be utilized for cosmetic purposes. However, only a few published works have summarized the active compounds and the application of Eupatorium plants as cosmetic agents. Therefore, this article aims to review the application of Eupatorium plants as a potential cosmetic agent. The active compounds of Eupatorium are contained in the whole plant, as well as the stems, leaves, roots, and aerial parts (flower, fruit, and seeds). In terms of cosmetic applications, the activities of Eupathorium are antioxidant, anti-tyrosinase, anti-melanin/melanogenesis, anti-acne, and anti-inflammatory. This review aims to contribute to a better understanding for expanding the utilization of this plant for cosmetic purposes by using these active compounds.

1. Introduction

The cosmetic and skincare industry needs to reconfigure itself in order to meet the new necessities and solicitations of a volatile and conscious market. The main aim is to achieve a balance between “natural” and “synthetic” cosmetics. Many customers pick “green beauty care and cosmetic products”, such as herbal skin creams and makeup, trusting that the products are safe for their well-being, health, and that they have no contamination. A cosmetic product can be considered “green” if it contains dynamic, active biochemical agents derived from plants, such as minerals or other nutrients, and if it is not practically equivalent to the synthetic chemicals created in the laboratory. It is assumed that cosmetics are manufactured in an eco-practical way if they use natural and organic ingredients in a proper and safe manner [1].
Plants belonging to the Eupatorium genera (family Asteraceae) contain approximately 60 species, the majority of which have been utilized in medication or as decorative plants. These plants have been explored in-depth, and several biochemical compounds with shifting impacts have been recognized. Among the different species, many have many pharmacological effects, such as antifungal, cytotoxic, antibacterial, insecticidal, virucidal, mitigating, pain relieving, anticancer, antisyphilitic, antigonorrheal, and antinociceptive properties [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19]. For certain species such as E. perfoliatum, E. arnottianum, E. chinense, and E. lindleyanum, the different therapeutic signs correspond with certain bioactive compounds such as sesquiterpenes, phenolics, polysaccharides, and pyrrolizidine alkaloids [20].
Compounds isolated from E. inulaefolium and E. squalidum have demonstrated viability against human parasites such as Plasmodium berghei and P. falciparum, which cause malaria [21,22]. According to Lira-Salazar et al. [15], E. perfoliatum is used in medications treating malaria. The phytochemical compounds of E. perfoliatum have significant cytotoxic effects, but have weak antibacterial activities against Staphylococcus aureus and Bacillus megaterium [23]. Some members of the Asteraceae family are ornamental or decorative plants. E. triplinerve Vahl, or E. ayappana, recognized as ayappana in the Malayalam language, has a beautiful morphology with a slim herb with tight lanceolate leaves and a huge number of pedicelled bloom heads at the highest point of the branch [24]. This herb also spreads the fragrance of the aromatic compounds it contains. Several studies have extracted essential oils from the leaves, stems, and roots of Euphatoria, opening up opportunities for drug discovery and therapeutic benefits [25,26]. The essential oil from the plant has been found to have various restorative properties, including acting as a central nervous system (CNS) depressant, pain-relieving effects, and narcotic impacts. The ethanolic extract has an antibacterial and antifungal effect, and can be used as a disinfectant or for the treatment of different ulcers and hemorrhages [24,27,28,29,30]. The conventional utilization of the leaves of E. triplinerve as anthelmintics has been affirmed. The medical properties of the leaves of E. triplinerve are used to treat different diseases that incorporate helminthiasis. E. triplinerve from Kerala, India, was found to have an expansive range of anthelmintic effects when utilized on lubmricoides [31,32].
Euphatorium is a pioneering herb species. The rapid expansion of E. adenophorum, which was discovered in China decades ago, is unfavorably affecting the biodiversity and environmental equilibrium in forests and pastures in southwestern China [33]. Physical, chemical, and biological techniques have been developed to suppress its progress [34,35]; E. odoratum, otherwise called Chromolaena odorata (L.), is a robust developing bush from the group of Asteraceae. It is one of the most widespread invasive plants, spreading from one side of the Earth to the other [36]. Despite its obvious aggravation nature as an obtrusive plant, E. odoratum is used for many purposes. Because of its antimicrobial properties, E. odoratum is used as a traditional medicine for cleaning and treating wounds. It has also been utilized as a powerful treatment against malaria, intestinal illness, fever, toothache, skin illnesses, diabetes, and diarrhea, and has been shown to have a calming effect [37,38,39,40]. Another species, E. aschenbornianum, has been broadly utilized in conventional Mexican medication, particularly for treating wounds, skin sores, hemorrhages, and gastric ulcers in humans. Phytochemical studies have demonstrated that hexane concentrates of E. aschenbornianum have antimicrobial and antifungal effects [41]. Another Eupatorium species, E. chinense var. simplicifolium (EUC), is broadly distributed in Korea, Japan, and China, and has anti-palsy and anti-hypertension effects. The EUC extracts have likewise been found to have an anti-tumour ability [42].
Furthermore, E. fortunei Turcz, one species of Eupatorium, is ordinarily involved as a fragrant in herbal medicine in China. It has been applied to treat vomiting, queasiness, and hunger caused by clamminess. Previous research has revealed that the plant contains various bioactive agents [43,44,45,46]. In the region of Japan, E. glehni is found all throughout the Hokkaido, Honshu, and Shikoku Islands, particularly in the mountain, typically in the range of 1000 and 1800 m above sea level [47]. Another species, E. lindleyanum DC., is a Chinese medication broadly used to treat cough and tracheitis [48]. Different natural benefits from these species have been recognized, including its anti-cancer, anti-inflammatory, and antioxidant properties [49,50,51,52,53,54].
E. japonicum Thunb is broadly distributed in China, Japan, and Korea. Previous research has found that the leaves and stems have anti-inflammatory and vascular smooth muscle relaxant properties. As a result, E. japonicum Thunb has antibacterial, antiviral, diuretic, vermifuge, pain reliever, and carminative properties. Thus, it is used to treat nausea, vomiting, diarrhea, and indigestion symptoms [55,56,57,58]. With all of these advantages, Eupatorium plants have the potential to be applied in cosmetics. However, only a few published works have investigated the application of Eupatorium plants for cosmetic agents. Therefore, this article aims to review the application of Eupatorium plant species as a potential cosmetic agent. Accordingly, this mini review is based on an analysis of the research studies developed, using keywords such as Eupotarium plant, Eupotarium genus and species, chemicals components of Eupotarium, the bioactivity of Eupotarium, anti-acne, anti-bacterial activity, anti-melanogenesisi activity, antioxidant activity, anti-inflammatory activity, and anti-tyrosinase activity, using the search engines of www.pubmed.gov, www.researchGate.net, www.scholar.google.com, and www.google.com without limits for the year of publication. We also used software services such as Mendeley Desktop®, which allowed for the analysis of the type of publications on the topic and the visualization of the most relevant data, providing rigorous information on the application of Eupatorium plants as a potential cosmetic agent.

2. Biochemical Constituents

Various types of bioactivity have been found in Eupatorium species. A few sesquiterpenoids detached from the class Eupatorium have been displayed to have different degrees of anti-inflammatory, cytotoxic, antifungal, insecticidal, and antibacterial effects [16,59]. Different examinations have found items in numerous biochemical compounds in plants, which fluctuate over time; the compound yields are regularly high throughout the summer (July or August) [46,60,61]. A summary of the biochemical compounds from Eupatorium species is presented in Table 1.

3. Application in Cosmetics

3.1. Antioxidant Activity

Medicinal plants affect the human body as a result of various chemical compounds, and one type of influence is anti-oxidative interaction [87,88,89,90,91,92,93,94]. As energy consumption increases during pregnancy, and lactation encourages the formation of free radicals in a woman’s body, investigating their antioxidant qualities is warranted [95,96,97,98,99,100]. The presence of phenols and flavonoids in plant extracts has been linked to its antioxidant activity. Phenolic compounds are antioxidants that act as free radical deactivators [40,101,102,103]. E. cannabinum, comprised of phenolic mixtures and essential oil, showed positive results in 2-Diphenyl-1-picrylhydrazyl (DPPH) examination and when using electrochemical potential sweep technique [104,105,106]. The methanolic concentrate of E. triplinerve has been found to show hepatoprotector and anti-cancer effects against carbon tetrachloride-actuated hepatotoxicity in rats, as well as anti-inflammatory and anti-septic effects in the therapy of various ulcers and hemorrhages. The matured leaf extracts have a 50.24–60.39% (petrol ether, chloroform, and methanol) anti-DPPH effect [65,107,108].
UV radiation has received particular attention because it affects medication stability and produces the greatest loss to the active structure of melatonin as a medicine [109,110]. In addition, UVA radiation may increase the risk of skin cancer [111]. Jarco et al. [112] declared that UVA radiation reduces the antioxidant interactions of all of the investigated infusions, particularly the infusion of the E. cannabinum L. herb, which should be protected from UVA radiation during storage. Table 2 presents the potency of the radical scavenging activity from Eupatorium species.

3.2. Anti-Melanin/Melanogenesis Activity

Yamashita et al. [114] searched for heat sock protein 70 (HSP70) inducers in Chinese medical plants, and selected an ethanol concentrate of E. lindleyanum. Melanin development was found to be inhibited, as well as the tyrosinase effect and the articulation in the cells treated with E. lindleyanum and in the HSP70-overexpressing cells. MITF articulation was clearly stifled in the cells treated with the concentrate of E. lindleyanum, yet not in the HSP70-overexpressing cells. These findings imply that E. lindleyanum inhibits tyrosinase articulation and melanin development through both HSP70-subordinate and HSP70-autonomous pathways.
Skin hyperpigmentation diseases caused by abnormal melanin production caused by ultraviolet (UV) irradiation are both clinical and cosmetic issues. Here, the melanin production is mediated by tyrosinase, whose expression is favourably controlled by the microphthalmia-associated transcription factor (MITF) [114]. Melanin is a pigment in human and animal skin generated by tyrosinase from L-tyrosine, following the oxidation of L-DOPA to L-DOPA quinone. Skin whitening compounds have long been sought after as a treatment for skin illnesses caused by an excess of melanin on human skin, as skin darkening is one of the most significant cosmetic issues concerning humans [115].
An earlier study reported that a methanol extract of E. triplinerve Vahl exhibited the inhibitory activities on the melanin formation in B16 melanoma cells with IC50 1780 μM and both tyrosinase enzyme activity of L-tyrosine (IC50 = 2360 μM) and L-DOPA (IC50 = 2840 μM) [63].

3.3. Anti-Acne Activity

Britto [116] tested the antimicrobial activity of E. odoratum against Propionibacterium acnes and Staphylococcus epidermidis, which have been identified as pus-forming bacteria triggering inflammation in acne. The antimicrobial assay revealed that E. odoratum exhibited potent inhibitory effects on P. acnes. The minimum inhibitor concentration (MIC) values for both bacterial species were 0.039 mg/mL, while the minimum bacterial concentration (MBC) values were 0.039 and 0.156 mg/mL against P. acnes and S. epidermidis, respectively. Rahman et al. [117] reposted that the MICs value of E. odoratum against P. acnes was 0.625 mg/mL. In Ramesh and Subramani’s [118] research, the antimicrobial properties of E. odoratum leaves against S. aureus with a methanolic extract of a greater concentration (100 µL) performed well compared with using an aqueous extract of the same plant.
The leaf extract of E. triplinerve has shown a considerable antibacterial activity against a wide range of microorganisms, i.e., S. aureus. Extracts containing phenol and triterpenes (chloroform, ethyl acetate, and methanol) were more effective regarding their antibacterial efficacy than other extracts. The present study reveals that different extracts from E. triplinerve leaves contain a diverse range of secondary metabolites and had an antibacterial activity against all of the microorganisms tested. In addition, the E. triplinerve plant can be used to find natural products, which may lead to new pharmaceutical development [27].

3.4. Anti-Inflammatory Activity

Some Eupatorium species have exhibited a potential anti-inflammatory activity. The ethanolic extract of E. triplinerve had an analgesic effect in an inflammatory pain model [119]. Cheriyan et al. [64] reported that a dose-dependent antinociceptive action of 7-methoxy coumarin isolated from E. triplinerve was shown by the present research, which supports the traditional usage of E. triplinerve in pain and inflammatory disorders. Therefore, Ouyang et al. [69] focused on developing a biopesticide using E. adenophorum, because of its bioactive composition, which exhibited potential anti-inflammatory, insecticidal and antibacterial activities [120,121,122,123].
Garcia-Oliveira [106] collected the data that sesquiterpene lactones of E. cannabinum have an anti-inflammatory activity in vitro (modulation of pro-inflammatory factors) and in vivo (reduction of pro-inflammatory cytokines in mice models). The aqueous extract of E. odoratum leaves has shown numerous pharmacological activities, including an anti-inflammatory activity [124].

4. Conclusions

In this literature study, various extracts from whole parts of Eupatorium demonstrated a wide range of biochemical compounds, including steroids, saponins, flavonoids, tannins, glycosides, coumarins, and sesquiterpenes, along with their biological activities. Thus, these biochemical compounds have the potential to be used as cosmetic agents because they have antioxidant, anti-tyrosinase, anti-melanin, anti-acne, and anti-inflammatory properties. Therefore, Eupatorium plants can be used as cosmetic ingredients in the near future, but they should first be proven to be safe for human application in the cosmetic field.

Author Contributions

Conceptualization, E.T.A., A.S.P., S. and M.T.H.; methodology, E.T.A., M.T.H. and A.S.P.; validation, E.T.A.; formal analysis, E.T.A. and A.S.P.; investigation, E.T.A., I.W.K., H.K., R.A. and E.R.; resources, E.T.A.; writing—original draft preparation, A.S.P., M.T.H., S., I.W.K., H.K., R.A., E.R., S.P., R.R., M.A.R.L., D.T., M.I., W.F., E.T.A., H.A.A., A.A., Y., W.S. and Y.-u.K.; writing—review and editing, E.T.A., W.F., M.A.R.L., D.T., A.A., C.R.K., H.K., R.R., I.W.K. and Y.-u.K.; visualization, A.S.P.; supervision, E.T.A.; project administration, E.T.A. and W.F.; funding acquisition, E.T.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received funding from the Deputy of Research and Innovation, National Research and Innovation Agency (BRIN) for “Pusat Kolaboratif Riset Kosmetik Berteknologi Nano Berbasis Biomassa” in the Fiscal Year of 2022 (grant number: 398/II/FR/3/2022).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Informed consent was obtained from all participants involved in the study.

Data Availability Statement

Not applicable.

Acknowledgments

We acknowledge the scientific and technical support provided by the Integrated Laboratory of Bioproducts (iLaB), Research Center for Biomass and Bioproducts, National Research and Innovation Agency, via E-Layanan Sains Lembaga Ilmu Pengetahuan, Indonesia.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Dini, I.; Laneri, S. The new challenge of green cosmetics: Natural food ingredients for cosmetic formulations. Molecules 2021, 26, 3921. [Google Scholar] [CrossRef] [PubMed]
  2. Cáceres, A.; Menéndez, H.; Méndez, E.; Cohobón, E.; Samayoa, B.E.; Jauregui, E.; Peralta, E.; Carrillo, G. Antigonorrhoeal activity of plants used in Guatemala for the treatment of sexually transmitted diseases. J. Ethnopharmacol. 1995, 48, 85–88. [Google Scholar] [CrossRef]
  3. De las Heras, B.; Slowing, K.; Benedí, J.; Carretero, E.; Ortega, T.; Toledo, C.; Bermejo, P.; Iglesias, I.; Abad, M.J.; Gómez-Serranillos, P.; et al. Antiinflammatory and antioxidant activity of plants used in traditional medicine in Ecuador. J. Ethnopharmacol. 1998, 61, 161–166. [Google Scholar] [CrossRef]
  4. Urzua, A.; Caroli, M.; Vasquez, L.; Mendoza, L.; Wilkens, M.; Tojo, E. Antimicrobial study of the resinous exudate and of diterpenoids isolated from Eupatorium salvia (Asteraceae). J. Ethnopharmacol. 1998, 62, 251–254. [Google Scholar] [CrossRef]
  5. Abad, M.J.; Bermejo, P.; Sanchez Palomino, S.; Chiriboga, X.; Carrasco, L. Antiviral activity of some South American medicinal plants. Phytother. Res. 1999, 13, 142–146. [Google Scholar] [CrossRef]
  6. Zanon, S.M.; Ceriatti, F.S.; Rovera, M.; Sabini, L.J.; Ramos, B.A. Search for antiviral activity of certain medicinal plants from Córdoba, Argentina. Rev. Lat. Microbiol. 1999, 41, 59–62. [Google Scholar]
  7. Clavin, M.L.; Gorzalczany, S.; Miño, J.; Kadarian, C.; Martino, V.; Ferraro, G.; Acevedo, C. Antinociceptive effect of some Argentine medicinal species of Eupatorium. Phytother. Res. 2000, 14, 275–277. [Google Scholar] [CrossRef]
  8. Muschietti, L.; Gorzalczany, S.; Ferraro, G.; Acevedo, C.; Martino, V. Phenolic compounds with anti-inflammatory activity from Eupatorium buniifolium. Planta Med. 2001, 67, 743–744. [Google Scholar] [CrossRef]
  9. El-Seedi, H.R.; Ohara, T.; Sata, N.; Nishiyama, S. Antimicrobial diterpenoids from Eupatorium glutinosum (Asteraceae). J. Ethnopharmacol. 2002, 81, 293–296. [Google Scholar] [CrossRef]
  10. Gupta, M.; Mazumder, K.; Chaudhuri, I.; Chaudhuri, R.; Bose, P.; Bhattacharya, S.; Lakshmanan, M.; Patra, S. Antimicrobial activity of Eupatorium ayapana. Fitoterapia 2002, 73, 168–170. [Google Scholar] [CrossRef]
  11. García, C.C.; Talarico, L.; Almeida, N.; Colombres, S.; Duschatzky, C.; Damonte, E.B. Virucidal activity of essential oils from aromatic plants of San Luis, Argentina. Phytother. Res. 2003, 17, 1073–1075. [Google Scholar] [CrossRef]
  12. Navarro García, V.M.; Gonzalez, A.; Fuentes, M.; Aviles, M.; Rios, M.Y.; Zepeda, G.; Rojas, M.G. Antifungal activities of nine traditional Mexican medicinal plants. J. Ethnopharmacol. 2003, 87, 85–88. [Google Scholar] [CrossRef]
  13. Rios, M.Y.; Aguilar-Guadarrama, A.B.; Navarro, V. Two new benzofuranes from Eupatorium aschenbornianum and their antimicrobial activity. Planta Med. 2003, 69, 967–970. [Google Scholar] [CrossRef]
  14. Sasikumar, J.M.; Doss, A.P.A.; Doss, A. Antibacterial activity of Eupatorium glandulosum leaves. Fitoterapia 2005, 76, 240–243. [Google Scholar] [CrossRef]
  15. Lira-Salazar, G.; Marines-Montiel, E.; Torres-Monzón, J.; Hernández-Hernández, F.; Salas-Benito, J.S. Effects of homeopathic medications Eupatorium perfoliatum and Arsenicum album on parasitemia of Plasmodium berghei-infected mice. Homeopathy 2006, 95, 223–228. [Google Scholar] [CrossRef]
  16. Liu, P.Y.; Liu, D.; Li, W.H.; Zhao, T.; Sauriol, F.; Gu, Y.C.; Shi, Q.W.; Zhang, M.L. Chemical Constituents of Plants from the Genus Eupatorium (1904–2014). Chem. Biodivers. 2015, 12, 1481–1515. [Google Scholar] [CrossRef]
  17. Hnatyszyn, O.; Broussalis, A.; Herrera, G.; Muschietti, L.; Coussio, J.; Martino, V.; Ferraro, G.; Font, M.; Monge, A.; Martínez-Irujo, J.J.; et al. Argentine plant extracts active against polymerase and ribonuclease H activities of HIV-1 reverse transcriptase. Phytother. Res. 1999, 13, 206–209. [Google Scholar] [CrossRef]
  18. Miño, J.; Muschietti, L.; Ferraro, G.; Martino, V.; Acevedo, C. Antinociceptive activity of Eupatorium buniifolium aqueous extract. Fitoterapia 2005, 76, 100–103. [Google Scholar] [CrossRef]
  19. Sobrinho, A.C.; Morais, S.; Souza, E.; Fontenelle, R. The genus Eupatorium, L. (Asteraceae): A review of their antimicrobial activity. J. Med. Plants Res. 2017, 11, 43. [Google Scholar] [CrossRef] [Green Version]
  20. Grigore, A.; Neagu, G.; Dobre, N.; Albulescu, A.; Ionita, L.; Ionita, C.; Albulescu, R. Evaluation of antiproliferative and protective effects of Eupatorium cannabinum L. extracts. Turk. J. Biol. 2018, 42, 334–344. [Google Scholar] [CrossRef]
  21. Carvalho, L.H.; Brandão, M.G.; Santos-Filho, D.; Lopes, J.L.; Krettli, A.U. Antimalarial activity of crude extracts from Brazilian plants studied in vivo in Plasmodium berghei-infected mice and in vitro against Plasmodium falciparum in culture. Braz. J. Med. Biol. Res. 1991, 24, 1113–1123. [Google Scholar]
  22. Blair, S.; Mesa, J.; Correa, A.; Carmona-Fonseca, J.; Granados, H.; Sáez, J. Antimalarial activity of neurolenin B and derivates of Eupatorium inulaefolium (Asteraceae). Pharmazie 2002, 57, 413–415. [Google Scholar]
  23. Habtemariam, S.; Macpherson, A.M. Cytotoxicity and antibacterial activity of ethanol extract from leaves of a herbal drug, boneset (Eupatorium perfoliatum). Phytother. Res. 2000, 14, 575–577. [Google Scholar] [CrossRef]
  24. Selvamangai, G.; Bhaskar, A. GC–MS analysis of phytocomponents in the methanolic extract of Eupatorium triplinerve. Asian Pac. J. Trop. Biomed. 2012, 2, S1329–S1332. [Google Scholar] [CrossRef]
  25. Chen, H.; Zhou, B.; Yang, J.; Ma, X.; Deng, S.; Huang, Y.; Wen, Y.; Yuan, J.; Yang, X. Essential Oil Derived From Eupatorium adenophorum Spreng. Mediates Anticancer Effect by Inhibiting STAT3 and AKT Activation to Induce Apoptosis in Hepatocellular Carcinoma. Front. Pharm. 2018, 9, 483. [Google Scholar] [CrossRef] [Green Version]
  26. Rossini, C.; Rodrigo, F.; Davyt, B.; Umpiérrez, M.L.; González, A.; Garrido, P.M.; Cuniolo, A.; Porrini, L.P.; Eguaras, M.J.; Porrini, M.P. Sub-lethal effects of the consumption of Eupatorium buniifolium essential oil in honeybees. PLoS ONE 2020, 15, e0241666. [Google Scholar] [CrossRef]
  27. Sugumar, N.; Karthikeyan, S.; Gowdhami, T. Phytochemical analysis and antimicrobial activity of Eupatorium triplinerve Vahl. Int. J. Appl. Res. 2015, 1, 108–112. [Google Scholar]
  28. Garg, S.C.; Nakhare, S. Studies on the essential oil from the flower of Eupatohum triplinerve. Ind. Perfum. 1993, 37, 318–323. [Google Scholar]
  29. Fernie, A.R.; Trethewey, R.N.; Krotzky, A.J.; Willmitzer, L. Metabolite profiling: From diagnostics to systems biology. Nat. Rev. Mol. Cell Biol. 2004, 5, 763–769. [Google Scholar] [CrossRef]
  30. Kokate, C.; Verma, K.C. Pharmacological studies on the essential oil of Eupatorium triplinerve. Flavour. Ind. 1971, 2, 177–180. [Google Scholar]
  31. Warrier, P.K. Indian Medicinal Plants: A Compendium of 500 Species; Orient Blackswan PVT. LTD.: Hyderabad, India, 1994; Volume 2. [Google Scholar]
  32. Subash, K.; Rao, N.; Cheriyan, B.; Bhaarati, G.; Kumar, K. The anthelmintic activity of Eupatorium triplinerve and Alpinia galanga in Pheritima posthuman and Ascardia galli: A comparative study. J. Clin. Diagn. Res. 2012, 6, 947–950. [Google Scholar]
  33. Wang, R.; Wang, Y.-Z. Invasion dynamics and potential spread of the invasive alien plant species Ageratina adenophora (Asteraceae) in China. Divers. Distrib. 2006, 12, 397–408. [Google Scholar] [CrossRef]
  34. Liu, X.; Qi, C.; Wang, Z.; Li, Y.; Wang, Q.; Guo, M.; Cao, A. Effect of picloram herbicide on physiological responses of E. adenophorum Spreng. Chil. J. Agric. Res. 2014, 74, 438–444. [Google Scholar] [CrossRef] [Green Version]
  35. Buccellato, L.; Byrne, M.; Witkowskki, E. Interactions between a stem gall fly and a leaf-spot pathogen in the biological control of Ageratina adenophora. Biol. Control 2012, 61, 222–229. [Google Scholar] [CrossRef]
  36. Codilla, L.T.; Metillo, E.B. Distribution and abundance of the invasive plant species Chromolaena odorata L. in the Zamboanga Peninsula, Philippines. Int. J. Environ. Sci. Dev. 2011, 2, 406. [Google Scholar] [CrossRef]
  37. Owoyele, V.B.; Adediji, J.O.; Soladoye, A.O. Anti-inflammatory activity of aqueous leaf extract of Chromolaena odorata. Inflammopharmacology 2005, 13, 479–484. [Google Scholar] [CrossRef]
  38. Anyasor, G.N.; Aina, D.A.; Olushola, M.; Aniyikaye, A.F. Phytochemical constituent, proximate analysis, antioxidant, antibacterial and wound healing properties of leaf extracts of Chromolaena odorata. Ann. Biol. Res. 2011, 2, 441–451. [Google Scholar]
  39. Vaisakh, M.N.; Anima, P. Pharmacognostic study of leaves of Chromolaena odorata Linn. Int. J. Pharma Sci. Res. 2009, 3, 80–83. [Google Scholar]
  40. Omoregie, E.S.; Oriakhi, K.; Oikeh, E.I.; Okugbo, O.T.; Akpobire, D. Comparative study of phenolic content and antioxidant activity of leaf extracts of Alstonia boonei and Eupatorium odoratum. Niger. J. Basic Appl. Sci. 2014, 22, 91–97. [Google Scholar]
  41. Flores-Fernández, J.M.; Padilla-Camberos, E.; Fernández-Flores, O.; Diaz-Martínez, N.E.; Barragán-Álvarez, C.P.; Ramírez-Rodríguez, P.B. Gastroprotective activity and pharmacological safety evaluation of Eupatorium aschenbornianum. Exp. Ther. Med. 2019, 18, 4467–4472. [Google Scholar]
  42. Lee, J.H.; Jung, M.H.; Lee, Y.H.; Shin, Y.; Kim, H.S.; Schreiber, J.; Kim, T.J. Inhibited apoptosis of C2C12 myoblasts by a Eupatorium chinense var. simplicifolium root extract. Biosci. Biotechnol. Biochem. 2013, 77, 2134–2136. [Google Scholar] [CrossRef]
  43. Jiangsu College of New Medicine. A Dictionary of the Traditional Chinese Medicines; Jiangsu College of New Medicine: Zhenjiang, China, 1977. [Google Scholar]
  44. Pham, T.N.; Pham, H.D.; Dang, D.K.; Duong, T.T.; Le, T.P.Q.; Nguyen, Q.D.; Nguyen Tien, D. Anticyanobacterial phenolic constituents from the aerial parts of Eupatorium fortunei Turcz. Nat. Prod. Res. 2019, 33, 1345–1348. [Google Scholar] [CrossRef]
  45. Shi, J.; Yuan, M.; Yu, Y.; Shi, S.-B.; Liu, Y.-G. Chiral resolution, absolute configuration of two pairs of unusual monoterpene enantiomers from Eupatorium fortunei. Tetrahedron. Lett. 2020, 61, 151655. [Google Scholar] [CrossRef]
  46. Nan, G.; Zhang, L.; Liu, Z.; Liu, Y.; Du, Y.; Zhao, H.; Zheng, H.; Lin, R.; Yang, G.; Zheng, S. Quantitative Determination of p-Cymene, Thymol, Neryl Acetate, and β-Caryophyllene in Different Growth Periods and Parts of Eupatorium fortunei Turcz. by GC-MS/MS. J. Anal. Methods Chem. 2021, 2021, 2174667. [Google Scholar] [CrossRef]
  47. Tori, M.; Takeichi, Y.; Kuga, H.; Nakashima, K.; Sono, M. Seven germacranolides, eupaglehnins A, B, C, D, E, and F, and 2α-acetoxyepitulipinolide from Eupatorium glehni. Chem. Pharm. Bull. 2002, 50, 1250–1254. [Google Scholar] [CrossRef]
  48. Yang, N.Y.; Qian, S.H.; Duan, J.A.; Li, P.; Tian, L.J. Cytotoxic sesquiterpene lactones from Eupatorium lindleyanum. J. Asian Nat. Prod. Res. 2007, 9, 339–345. [Google Scholar] [CrossRef]
  49. Yan, G.; Ji, L.; Luo, Y.; Hu, Y. Antioxidant activities of extracts and fractions from Eupatorium lindleyanum DC. Molecules 2011, 16, 5998–6009. [Google Scholar] [CrossRef] [Green Version]
  50. Yang, B.; Zhao, Y.; Lou, C.; Zhao, H. Eupalinolide O, a novel sesquiterpene lactone from Eupatorium lindleyanum DC., induces cell cycle arrest and apoptosis in human MDA-MB-468 breast cancer cells. Oncol. Rep. 2016, 36, 2807–2813. [Google Scholar] [CrossRef] [Green Version]
  51. Wang, F.; Zhong, H.; Fang, S.; Zheng, Y.; Li, C.; Peng, G.; Shen, X. Potential anti-inflammatory sesquiterpene lactones from Eupatorium lindleyanum. Planta Med. 2018, 84, 123–128. [Google Scholar] [CrossRef] [Green Version]
  52. Tian, S.; Chen, Y.; Yang, B.; Lou, C.; Zhu, R.; Zhao, Y.; Zhao, H. F1012-2 inhibits the growth of triple negative breast cancer through induction of cell cycle arrest, apoptosis, and autophagy. Phytother. Res. 2018, 32, 908–922. [Google Scholar] [CrossRef]
  53. Yang, B.; Shen, J.W.; Zhou, D.H.; Zhao, Y.P.; Wang, W.Q.; Zhu, Y.; Zhao, H.J. Precise discovery of a STAT3 inhibitor from Eupatorium lindleyanum and evaluation of its activity of anti-triple-negative breast cancer. Nat. Prod. Res. 2019, 33, 477–485. [Google Scholar] [CrossRef]
  54. Wu, Z.; Xu, X.; Dai, L.; Wang, Y.; Yang, B.; Zhao, H.; Lou, C. Eupalinolide J induces apoptosis, cell cycle arrest, mitochondrial membrane potential disruption and DNA damage in human prostate cancer cells. J. Toxicol. Sci. 2020, 45, 15–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  55. Gu, G.-J.; Eom, S.-H.; Shin, H.-J.; Paek, J.H.; Kim, S.; Lim, S.S.; Youn, H.-S. Japanese bog orchid (Eupatorium japonicum) extract suppresses expression of inducible nitric oxide synthase and cyclooxygenase-2 induced by toll-like receptor agonists. Food Sci. Biotechnol. 2013, 22, 811–815. [Google Scholar] [CrossRef]
  56. Shin, J.-I.; Jeon, Y.-J.; Lee, S.; Lee, Y.G.; Kim, J.B.; Kwon, H.C.; Kim, S.H.; Kim, I.; Lee, K.; Han, Y.S. Apoptotic and anti-inflammatory effects of Eupatorium japonicum thunb. in rheumatoid arthritis fibroblast-like synoviocytes. BioMed Res. Int. 2018, 2018, 1383697. [Google Scholar] [CrossRef] [Green Version]
  57. Zhang, Y.; Wang, Y.; Li, M.; Liu, S.; Yu, J.; Yan, Z.; Zhou, H. Traditional uses, bioactive constituents, biological functions, and safety properties of Oviductus ranae as functional foods in China. Oxidative Med. Cell. Longev. 2019, 2019, 4739450. [Google Scholar] [CrossRef] [Green Version]
  58. Dai, G.; Wang, C.; Tang, W.; Liu, J.; Xue, B. A 90-Day Oral Toxicity Study of the Ethanol Extract from Eupatorium japonicum Thunb and Foeniculum vulgare in Rats. Biomed Res. Int. 2020, 2020, 6859374. [Google Scholar] [CrossRef]
  59. Phan, M.G.; Do, T.T.; Nguyen, T.N.; Do, T.V.H.; Dong, N.P.; Vu, M.T. Chemical Constituents of Eupatorium japonicum and Anti-Inflammatory, Cytotoxic, and Apoptotic Activities of Eupatoriopicrin on Cancer Stem Cells. Evid. Based Complement. Altern. Med. 2021, 2021, 6610347. [Google Scholar] [CrossRef]
  60. Liang, W.H.; Chang, T.W.; Charng, Y.C. Influence of harvest stage on the pharmacological effect of Angelica dahurica. Bot. Stud. 2018, 59, 14. [Google Scholar] [CrossRef]
  61. Szymborska-Sandhu, I.; Przybył, J.L.; Kosakowska, O.; Bączek, K.; Węglarz, Z. Chemical Diversity of Bastard Balm (Melittis melisophyllum L.) as Affected by Plant Development. Molecules 2020, 25, 2421. [Google Scholar] [CrossRef]
  62. Zheng, Y.L.; Feng, Y.L.; Zhang, L.K.; Callaway, R.M.; Valiente-Banuet, A.; Luo, D.Q.; Liao, Z.Y.; Lei, Y.B.; Barclay, G.F.; Silva-Pereyra, C. Integrating novel chemical weapons and evolutionarily increased competitive ability in success of a tropical invader. New Phytol. 2015, 205, 1350–1359. [Google Scholar] [CrossRef]
  63. Arung, E.T.; Kuspradini, H.; Kusuma, I.W.; Shimizu, K.; Kondo, R. Validation of Eupatorium triplinerve Vahl leaves, a skin care herb from East Kalimantan, using a melanin biosynthesis assay. J. Acupunct. Meridian Stud. 2012, 5, 87–92. [Google Scholar] [CrossRef] [PubMed]
  64. Cheriyan, B.V., Sr.; Kadhirvelu, P., Sr.; Nadipelly, J., Jr.; Shanmugasundaram, J.; Sayeli, V., Sr.; Subramanian, V., Sr. Anti-nociceptive Effect of 7-methoxy Coumarin from Eupatorium Triplinerve vahl (Asteraceae). Pharm. Mag. 2017, 13, 81–84. [Google Scholar] [CrossRef]
  65. Biswas, A.; Bhattacharya, S.; Mahapatra, S.D.; Debnath, M.D.; Biswas, M. The Antioxidant Effects of Eupatorium triplinerve, Hygrophila triflora and Pterocarpus marsupium—A Comparative Study. Eur. J. Appl. Sci. 2012, 4, 136–139. [Google Scholar]
  66. Ding, J.; Xuejian, Y.; Yu, W.; Ding, Z.; Chen, Z.; Hayashi, N.; Komae, H. Aromatic Components of the Essential Oils of Four Chinese Medicinal Plants (Asarum petelotii, Elsholtzia souliei, Eupatorium adenophorum, Micromeria biflora) in Yunnan. Z. Für Nat. C 1994, 49, 703–706. [Google Scholar] [CrossRef] [Green Version]
  67. Pala-Paul, J.; Perez-Alonso, M.; Velasco-Negueruela, S. Spectrometry of the volatile components of Ageratina adenophora Spreng, growing in the Canary Islands. J. Chromatogr. A 2002, 947, 327–331. [Google Scholar] [CrossRef]
  68. Ouyang, C.-B.; Liu, X.-M.; Liu, Q.; Bai, J.; Li, H.-Y.; Li, Y.; Wang, Q.-X.; Yan, D.-D.; Mao, L.-G.; Cao, A.; et al. Toxicity Assessment of Cadinene Sesquiterpenes from Eupatorium adenophorum in Mice. Nat. Prod. Bioprospecting. 2015, 5, 29–36. [Google Scholar] [CrossRef] [Green Version]
  69. Ouyang, C.-b.; Liu, X.-m.; Yan, D.-d.; Li, Y.; Wang, Q.-x.; Cao, A.-c.; Guo, m.-x. Immunotoxicity assessment of cadinene sesquiterpenes from Eupatorium adenophorum in mice. J. Integr. Agric. 2016, 15, 2319–2325. [Google Scholar] [CrossRef] [Green Version]
  70. Liu, B.; Cao, L.; Zhang, L.; Yuan, X.; Zhao, B. Preparation, Phytochemical Investigation, and Safety Evaluation of Chlorogenic Acid Products from Eupatorium adenophorum. Molecules 2017, 22, 67. [Google Scholar] [CrossRef] [Green Version]
  71. Wei, Y.; Gao, Y.; Zhang, K.; Ito, Y. Isolation of caffeic acid from Eupatorium adenophorum-spreng by high-speed countercurrent chromatography and synthesis of caffeic acid-intercalates layered double hydroxide. J. Liq. Chromatogr. Relat. Technol. 2010, 33, 837–845. [Google Scholar] [CrossRef] [Green Version]
  72. Wei, Y.; Zhang, K.; Zhang, G.; Ito, Y. Isolation of five bioactive components from Eupatorium adenophorum spreng using stepwise elution by high-speed countercurrent chromatography. J. Liq. Chromatogr. Relat. Technol. 2011, 34, 2505–2515. [Google Scholar] [CrossRef] [Green Version]
  73. Mo, Q.; Hu, L.; Weng, J.; Zhang, Y.; Zhou, Y.; Xu, R.; Zuo, Z.; Deng, J.; Ren, Z.; Zhong, Z.; et al. Euptox A Induces G1 Arrest and Autophagy via p38 MAPK- and PI3K/Akt/mTOR-Mediated Pathways in Mouse Splenocytes. J. Histochem. Cytochem. 2017, 65, 543–558. [Google Scholar] [CrossRef] [Green Version]
  74. Liu, Y.; Luo, S.-H.; Hua, J.; Li, D.-S.; Ling, Y.; Luo, Q.; Li, S.-H. Characterization of defensive cadinenes and a novel sesquiterpene synthase responsible for their biosynthesis from the invasive Eupatorium adenophorum. New Phytol. 2021, 229, 1740–1754. [Google Scholar] [CrossRef]
  75. Wagner, H.; Proksch, A.; Riess-Maurer, I.; Vollmar, A.; Odenthal, S.; Stuppner, H.; Jurcic, K.; Le Turdu, M.; Heur, Y.H. Immunostimulant action of polysaccharides (heteroglycans) from higher plants. Preliminary communication. Arzneim. Forsch. 1984, 34, 659–661. [Google Scholar]
  76. Gao, Y.; Zhang, Y.; Fan, Y. Eupafolin ameliorates lipopolysaccharide-induced cardiomyocyte autophagy via PI3K/AKT/mTOR signaling pathway. Iran J. Basic Med. Sci. 2019, 22, 1340–1346. [Google Scholar] [CrossRef]
  77. Sanjukta, R.; Das, S.; Puro, K.; Ghatak, S.; Shakuntala, I.; Sen, A. Screening of Phytochemical and Antibacterial Property of Some Local Herbs of Meghalaya. Indian J. Hill Farming 2019, 27–32. [Google Scholar]
  78. Al-Snafi, A. Chemical constituents, pharmacological and therapeutic effects of eupatorium cannabinum-a review. Indo Am. J. Pharm. Sci. 2017, 4, 160–168. [Google Scholar]
  79. Zhu, Z.; Yuan, J.; Xu, X.; Wei, Y.; Yang, B.; Zhao, H. Eucannabinolide, a novel sesquiterpene lactone, suppresses the growth, metastasis and BCSCS-like traits of TNBC via inactivation of STAT3. Neoplasia 2021, 23, 36–48. [Google Scholar] [CrossRef]
  80. Reyes-Trejo, B.; Guerra-Ramírez, D.; Zuleta-Prada, H.; Santillán, R.; Sánchez-Mendoza, M.E.; Arrieta, J.; Reyes, L. Molecular Disorder in (–)-Encecanescin. Molecules 2014, 19, 4695–4707. [Google Scholar] [CrossRef] [Green Version]
  81. Conner, W.E.; Boada, R.; Schroeder, F.C.; González, A.; Meinwald, J.; Eisner, T. Chemical defense: Bestowal of a nuptial alkaloidal garment by a male moth on its mate. Proc. Natl. Acad. Sci. USA 2000, 97, 14406–14411. [Google Scholar] [CrossRef] [Green Version]
  82. Itoh, T.; Ohguchi, K.; Nozawa, Y.; Akao, Y. Intracellular Glutathione Regulates Sesquiterpene Lactone-induced Conversion of Autophagy to Apoptosis in Human Leukemia HL60 Cells. Anticancer. Res. 2009, 29, 1449. [Google Scholar]
  83. Lee, J.; Park, J.; Kim, J.; Jeong, B.; Choi, S.Y.; Jang, H.S.; Yang, H. Targeted Isolation of Cytotoxic Sesquiterpene Lactones from Eupatorium fortunei by the NMR Annotation Tool, SMART 2.0. ACS Omega 2020, 5, 23989–23995. [Google Scholar] [CrossRef]
  84. Chang, C.-H.; Wu, S.; Hsu, K.-C.; Huang, W.-J.; Chen, J.-J. Dibenzofuran, 4-Chromanone, Acetophenone, and Dithiecine Derivatives: Cytotoxic Constituents from Eupatorium fortunei. Int. J. Mol. Sci. 2021, 22, 7448. [Google Scholar] [CrossRef]
  85. Tori, M.; Morishita, N.; Hirota, N.; Saito, Y.; Nakashima, K.; Sono, M.; Tanaka, M.; Utagawa, A.; Hirota, H. Sesquiterpenoids Isolated from Eupatorium glehnii. Isolation of Guaiaglehnin A, Structure Revision of Hiyodorilactone B, and Genetic Comparison. Chem. Pharm. Bull. 2008, 56, 677–681. [Google Scholar] [CrossRef] [Green Version]
  86. Saito, Y.; Mukai, T.; Iwamoto, Y.; Baba, M.; Takiguchi, K.; Okamoto, Y.; Gong, X.; Kawahara, T.; Kuroda, C.; Tori, M. Germacranolides and their diversity of Eupatorium heterophyllum collected in PR China. Chem. Pharm. Bull. 2014, 62, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
  87. Abourashed, E.A. Bioavailability of Plant-Derived Antioxidants. Antioxidants 2013, 2, 309–325. [Google Scholar] [CrossRef] [Green Version]
  88. Dubey, N. Plants as a Source of Natural Antioxidants; CABI International: Wallingford, UK, 2015. [Google Scholar]
  89. Sikora, E.; Cieślik, E.; Topolska, K. The sources of natural antioxidants. Acta Sci. Pol. Technol. Aliment. 2008, 7, 5–17. [Google Scholar]
  90. Saxena, M.; Saxena, J.; Pradhan, A. Flavonoids and phenolic acids as antioxidants in plants and human health review article. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 130–134. [Google Scholar]
  91. Krishnaiah, D.; Sarbatly, R.; Nithyanandam, R. A review of the antioxidant potential of medicinal plant species. Food Bioprod. Process. 2011, 89, 217–233. [Google Scholar] [CrossRef]
  92. Barański, M.; Srednicka-Tober, D.; Volakakis, N.; Seal, C.; Sanderson, R.; Stewart, G.B.; Benbrook, C.; Biavati, B.; Markellou, E.; Giotis, C.; et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: A systematic literature review and meta-analyses. Br. J. Nutr. 2014, 112, 794–811. [Google Scholar] [CrossRef] [Green Version]
  93. Sharma, R.K.; Micali, M.; Pellerito, A.; Santangelo, A.; Natalello, S.; Tulumello, R.; Singla, R.K. Studies on the Determination of Antioxidant Activity and Phenolic Content of Plant Products in India (2000–2017). J. AOAC Int. 2019, 102, 1407–1413. [Google Scholar] [CrossRef]
  94. Rezaeian, S.; Hamid Reza Pourianfar, H.; Janpoor, J. Antioxidant properties of several medicinal plants growing wild in northeastern Iran. Asian J. Plant Sci. Res. 2015, 5, 63–68. [Google Scholar]
  95. Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The effects of oxidative stress on female reproduction: A review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  96. Salas-Pacheco, J.M.; Lourenco-Jaramillo, D.L.; Mendez-Hernandez, E.M.; Sandoval-Carrillo, A.A.; Hernandez Rayon, Y.I.; Llave-Leon, O.L.; Aguilar-Duran, M.; Lopez-Terrones, M.A.; Barraza-Salas, M.; Vazquez-Alaniz, F. Oxidative stress equilibrium during obstetric event in normal pregnancy. J. Matern. Fetal Neonatal Med. 2017, 30, 1836–1840. [Google Scholar] [CrossRef] [PubMed]
  97. Mannaerts, D.; Faes, E.; Cos, P.; Briedé, J.J.; Gyselaers, W.; Cornette, J.; Gorbanev, Y.; Bogaerts, A.; Spaanderman, M.; Van Craenenbroeck, E.; et al. Oxidative stress in healthy pregnancy and preeclampsia is linked to chronic inflammation, iron status and vascular function. PLoS ONE 2018, 13, e0202919. [Google Scholar] [CrossRef] [Green Version]
  98. Zielińska, M.A.; Wesołowska, A.; Pawlus, B.; Hamułka, J. Health Effects of Carotenoids during Pregnancy and Lactation. Nutrients 2017, 9, 838. [Google Scholar] [CrossRef] [Green Version]
  99. Ziomkiewicz, A.; Sancilio, A.; Galbarczyk, A.; Klimek, M.; Jasienska, G.; Bribiescas, R.G. Evidence for the Cost of Reproduction in Humans: High Lifetime Reproductive Effort Is Associated with Greater Oxidative Stress in Post-Menopausal Women. PLoS ONE 2016, 11, e0145753. [Google Scholar] [CrossRef] [Green Version]
  100. Marseglia, L.; D’Angelo, G.; Manti, S.; Arrigo, T.; Barberi, I.; Reiter, R.J.; Gitto, E. Oxidative Stress-Mediated Aging during the Fetal and Perinatal Periods. Oxidative Med. Cell. Longev. 2014, 2014, 358375. [Google Scholar] [CrossRef] [Green Version]
  101. Ayoola, G.; Abayomi, F.; Adesegun, S.; Abioro, O.; Adepoju-Bello, A.; Coker, H. B Phytochemical and antioxidant screening of some plants of apocynaceae from South West Nigeria. Afr. J. Plant Sci. 2008, 2, 124–128. [Google Scholar]
  102. Padmanabhan, P.; Jangle, S.N. Evaluation of DPPH Radical Scavenging Activity and Reducing Power of Four Selected Medicinal Plants and Their Combinations. Int. J. Pharmac. Sci. Drug Res. 2012, 4, 143–146. [Google Scholar]
  103. Uyoh, E.A.; Chukwurah, P.N.; David, I.A.; Bassey, A.C. Evaluation of Antioxidant Capacity of Two Ocimum Species Consumed Locally as Spices in Nigeria as a Justification for Increased Domestication. Am. J. Plant Sci. 2013, 4, 9. [Google Scholar] [CrossRef] [Green Version]
  104. Baptista, R.C.; Horita, C.N.; Sant’Ana, A.S. Natural products with preservative properties for enhancing the microbiological safety and extending the shelf-life of seafood: A review. Food Res. Int. 2020, 127, 108762. [Google Scholar] [CrossRef]
  105. Mandim, F.; Petropoulos, S.A.; Dias, M.I.; Pinela, J.; Kostic, M.; Soković, M.; Santos-Buelga, C.; Ferreira, I.; Barros, L. Seasonal variation in bioactive properties and phenolic composition of cardoon (Cynara cardunculus var. altilis) bracts. Food Chem. 2021, 336, 127744. [Google Scholar] [CrossRef]
  106. Garcia-Oliveira, P.; Barral, M.; Carpena, M.; Gullón, P.; Fraga-Corral, M.; Otero, P.; Prieto, M.A.; Simal-Gandara, J. Traditional plants from Asteraceae family as potential candidates for functional food industry. Food Funct. 2021, 12, 2850–2873. [Google Scholar] [CrossRef]
  107. Ivorra, M.D.; Payá, M.; Villar, A. A review of natural products and plants as potential antidiabetic drugs. J. Ethnopharmacol. 1989, 27, 243–275. [Google Scholar] [CrossRef]
  108. Ramanathan, S.; Sivakumar, T.; Sundaram, R.; Sivakumar, P.; Nethaji, R.; Gupta, M.; Mazumdar, U. Antimicrobial and Antioxidant Activities of Careya arborea Roxb. Stem Bark. Iran. J. Pharmacol. Ther. 2006, 5, 35–41. [Google Scholar]
  109. Ahmad, I.; Ahmed, S.; Anwar, Z.; Sheraz, M.A.; Sikorski, M. Photostability and Photostabilization of Drugs and Drug Products. Int. J. Photoenergy 2016, 2016, 8135608. [Google Scholar] [CrossRef] [Green Version]
  110. Kim, H.; Tse, Y.; Webb, A.; Mudd, E.; Abedin, M.R.; Mormile, M.; Dutta, S.; Rege, K.; Barua, S. PolyRad-Protection against Free Radical Damage. Sci. Rep. 2020, 10, 8335. [Google Scholar] [CrossRef]
  111. Holick, M.F. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health. Anticancer Res. 2016, 36, 1345–1356. [Google Scholar]
  112. Jarco, S.; Pilawa, B.; Ramos, P. Free Radical Scavenging Activity of Infusions of Different Medicinal Plants for Use in Obstetrics. Plants 2021, 10, 2016. [Google Scholar] [CrossRef]
  113. Li, C.; Chen, S.; Sha, J.; Cui, J.; He, J.; Fu, J.; Shen, Y. Extraction and purification of total flavonoids from Eupatorium lindleyanum DC. and evaluation of their antioxidant and enzyme inhibitory activities. Food Sci. Nutr. 2021, 9, 2349–2363. [Google Scholar] [CrossRef]
  114. Yamashita, Y.; Hoshino, T.; Matsuda, M.; Kobayashi, C.; Tominaga, A.; Nakamura, Y.; Nakashima, K.; Yokomizo, K.; Ikeda, T.; Mineda, K.; et al. HSP70 inducers from Chinese herbs and their effect on melanin production. Exp. Derm. 2010, 19, e340–e342. [Google Scholar] [CrossRef] [PubMed]
  115. Setyawati, A.; Yamauchi, K.; Mitsunaga, T. Potential of Medicinal Plants Extractives as Anti-Melanogenesis Ingredients. Rev. Agric. Sci. 2018, 6, 46–60. [Google Scholar] [CrossRef] [Green Version]
  116. Britto, J. Comparative antibacterial activity study of Solanum incanum, L. J. Swamy Bot. Club 2001, 18, 81–82. [Google Scholar]
  117. Rahman, M.A.; Yan, L.K.; Rukayadi, Y. Antibacterial activity of fingerroot (Boesenbergia rotunda) extract against acne-inducing bacteria. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2157–2163. [Google Scholar]
  118. Ramesh, P.; Subramani, A. Effect of antimicrobial activity of Eupatorium odoratum against clinical microbes. Int. J. Sci. Res. Biol. Sci. 2018, 5, 30–35. [Google Scholar] [CrossRef]
  119. Cheriyan, B.V.; Venkatadri, N.; Viswanathan, S.; Kamalakannan, P. Screening of alcoholic extract of Eupatorium triplinerve Vahl and its fractions for its antinociceptive activity. Indian Drugs 2009, 46, 55–60. [Google Scholar]
  120. Chakravarty, A.K.; Mazumder, T.; Chatterjee, S.N. Anti-Inflammatory Potential of Ethanolic Leaf Extract of Eupatorium adenophorum Spreng. through Alteration in Production of TNF-α, ROS and Expression of Certain Genes. Evid. Based Complement. Altern. Med. 2011, 2011, 471074. [Google Scholar] [CrossRef] [Green Version]
  121. Kundu, A.; Saha, S.; Walia, S.; Ahluwalia, V.; Kaur, C. Antioxidant potential of essential oil and cadinene sesquiterpenes of Eupatorium adenophorum. Toxicol. Environ. Chem. 2013, 95, 127–137. [Google Scholar] [CrossRef]
  122. Nong, X.; Ren, Y.J.; Wang, J.H.; Fang, C.L.; Xie, Y.; Yang, D.Y.; Liu, T.F.; Chen, L.; Zhou, X.; Gu, X.B.; et al. Clinical efficacy of botanical extracts from Eupatorium adenophorum against the scab mite, Psoroptes cuniculi. Vet. Parasitol. 2013, 192, 247–252. [Google Scholar] [CrossRef]
  123. Ahluwalia, V.; Sisodia, R.; Walia, S.; Sati, O.P.; Kumar, J.; Kundu, A. Chemical analysis of essential oils of Eupatorium adenophorum and their antimicrobial, antioxidant and phytotoxic properties. J. Pest Sci. 2014, 87, 341–349. [Google Scholar] [CrossRef]
  124. Yadav, M.; Khan, K. Antimicrobial activity of some ethnomedicinal plants used by tribes of rewa, madhya Pradesh. Indian J. Life Sci. 2012, 1, 35–38. [Google Scholar]
Table 1. Biochemical compounds of Eupatorium plants.
Table 1. Biochemical compounds of Eupatorium plants.
Plant SpeciesPlant PartsChemical CompositionsRef
E. odoratumLeavesOdoratin[62]
E. triplinerveFresh plant1-hexyl-1-nitrocyclohexane (2.09%), Bicyclo [4.1.0] heptane, 7-butyl- (2.38%), Decanoic acid, 8-methyl-, methyl ester (3.86%), 1,14-tetradecanediol (6.78%), 1-undecanol (7.82%), 2-hydroxy-3-[(9E)-9-octadecenoyloxy] propyl(9E)-9-octadecenoate (8.79%), 2,6,10-trimethyl,14-ethylene-14-pentadecne (9.84%) Hexadecenoic acid (14.65%), and Octadecanoic acid, 2-hydroxy-1,3-propanediyl ester (19.18%)[24]
Leaves7-methoxycoumarin[63,64]
LeavesSteroids, terpenoids, flavonoids, and glycosides[65]
Leaf, stem, and rootPhytochemical compounds (steroid, saponin, flavonoids, tannin, glycoside, and coumarin) and volatile oil[27]
E. adenophorum Volatile oils[66,67]
LeavesSesquiterpenes (three cadinene sesquiterpenes 2-deoxo-2-(acetyloxy)-9-oxoageraphorone (DAOA), 9-oxo-agerophorone (OA), and 9-oxo-10, and 11-dehydro-agerophorone (ODA))[68,69]
Whole plantsAnthemol (0.88%), thunbergene (1.09%), phytol (0.95%), thymol (0.94%), linoleic (1.43%) and palmitic (5.15%) acids, spathulenol (2.21%), carvacrol (1.86%), caryophyllene oxide (2.42%), β-cedrene (3.26%), α-bergamotene (3.56%), 8-cedren-13-ol (4.34%), β-sesquiphellandrene (4.76%), β-bisabolene (4.84%), α-curcumene (7.88%), α-bisabolol (9.12%), aristolone (11.54%), and torreyol (30.10%)[25]
LeavesNeo-chlorogenic acid (3-O-caffeoylquinic acid, 3-CQA), chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA), and cryptochlorogenic acid (4-O-caffeoylquinic acid, 4-CQA)[70]
4’-methyl quercetagetin 7-O-(6”-O-E-caffeoyl glucopyranoside) (1.8%), quercetagetin 7-O-(6”-Oacetyl-β-D-glucopyranoside) (1.8%), caffeic acid (6.7%), eupalitin (9.7%), and eupalitin 3-O-β-D-galactopyranoside (17.2%)[71,72]
LeavesEuptox A (9-oxo-10, 11-dehydroageraphorone)[73]
Leavesamorpha-4,7(11)-diene, (–)-amorph-4-en-7-ol, (E)-β-Caryophyllene, (E)-β-farnesene, (E)-α-bisabolene, (E)-α-Bergamotene, (Z)-β-farnesene, ϒ-curcumene, germacrene D, bicyclogermacrene, β-bisabolene, β-sesquiphellandrene, (E)-α-bisabolene, α-cedrol, α-bisabolol[74]
β-Ecdysone, Eupatorin, Eupatilin, Quercetin, Rutin, Caffeic acid[20]
E. perfoliatum Acidic heteroglycans[15,75]
Eupafolin[76]
E. cannabium Acidic heteroglycans[15,75]
Leaves and stemsAlkaloid, flavonoids, tannin, and saponin[77]
Immunoactive polysaccharides essential oil, eupatoriopicrin, polyphenols, pyrrolizidine alkaloids, and terpenoids[78]
Eucannabinolide[79]
E. aschembornianumLeaves(–)-Encecanescin[80]
E. buniifoliumAerial vegetativen-tricosane, n-docosane, n-tetracosane, n-triacontane, n-tritriacontane, 9-tricosene, 7-pentacosene, 9-pentacosene, 9-heptacosene, pentacosadiene, tritriacontene, hentriacontadiene, tritriacontadiene and all methyl alkanes[26]
E. capillifoliumRootsIntermedine, lycopsamine,[81]
E. chinense Eupalinin A[82]
E. fortuneiLeavesp-cymene, thymol, neryl acetate, and β-caryophyllene[46]
Stemsp-cymene, thymol, neryl acetate
Rootsthymol
Whole plantEight germacrene-type: 14-hydroxy-8β-[4′-hydroxytigloyloxy]-costunolide, 14-acetoxy-8β-[4′-hydroxyti-gloyloxy]-costunolide, 14-acetoxy-8β-hydroxy-costunolide, 8β-[4′-hydroxytigloyloxy]-14-oxo-costunolide, 3β-acetoxy-8β-[4′,5′-dihydroxytigloyloxy]-costunolide, 2β-hydroxy-8β-[5′-hydroxytigloyloxy]-costunolide, prenylated ester, 8β-[4′,5′-dihydroxytigloyloxy]-costunolide, and two eudesmane-type sesquiterpene lactones (1β-hydroxy-8β-[4′-hydroxytigloyloxy]-α-cyclocostunolide and 1β-hydroxy-8β-[4′-ydroxytigloyloxy]-β-cyclocostunolide)[83]
Aerial partEupatofortunone, eupatodibenzofuran A, eupatodibenzofuran B, Eupatodithiecine, 6-Acetyl-8-methoxy-2,2-dimethylchroman-4-one, thymyl angelate, 8,9-Dehydrothymol 3-O-tiglate, 9-Angeloyloxythymol, 9-O-Angeloyl-8,10-dehydrothymol, 2-Hydroxy-4-methylacetophenone, trans-o-Coumaric acid, 6-Hydroxy-7-methoxy-2-isopropenyl-5- acetylcumaran, 2,4-Di-tert-butylphenol, 1-(2-Hydroxy-5-methoxy-4-methylphenyl)ethenone, taraxasterol, and coumarin[84]
E. glehniAerial part2α-Acetoxyepitulipinolide and Eupaglehnin A-F[47]
Terrestrial partGuaiaglehnin A, Eupasimplicin A, Hiyodorilactone B[85]
E. lindleyanum Eupalinode J[54]
E. heterophyllumAerial partHydroperoxyheterophyllin A, Hydroperoxyheterophyllin B, Hydroperoxyheterophyllin C, Hydroperoxyheterophyllin D, Hydroperoxyheterophyllin E, Hydroperoxyheterophyllin F, Hydroperoxyheterophyllin G, Hydroperoxyheterophyllin H, Ketoheterophyllin A[86]
E. japonicumLeavesα-amyrin and ßβ-amyrin acetates, α-amyrin, β-amyrin, β-sitosterol, stigmasterol, β-sitosterol 3-O-β-D-glucopyranoside (daucosterol), behenic acid, stigmasterol 3-
O-β-D-glucopyranoside, eupatoriopicrin, (2E)-3-[2-(β-D-glucopyranosyloxy)phenyl]-prop-2-en-oic acid, 1-hydroxy-8-(4,5-dihydroxytigloyloxy)eudesma-4(15),11(13)-dien-6,12-olide, caffeic acid, p-menth-1-ene-3,6-diol, quercetin-3-O-rutinoside (rutin), kaempferol 3,7,4′-trimethylether, and quercetin 3-Omethyl ether
[59]
Table 2. The potency of the radical scavenging activity from Eupatorium species (total phenolic content (TPC) anb total flavonoid content (TFC)).
Table 2. The potency of the radical scavenging activity from Eupatorium species (total phenolic content (TPC) anb total flavonoid content (TFC)).
Plant SpeciesPlant PartsAntioxidant Test AppliedAntioxidant ActivityReferences
E. odoratumLeafDPPH (IC50)0.07–0.042 mg/mL[40]
FRAP (IC50)0.4–0.6 mg/mL
TPC379.0–536.3 mg GAE/g of extract
TFC263.33–268.75 mg QE/g of extract
Total flavanol273.0–689.0 µg QE/g of extract
E. lindleyanum Reducing Power (IC50)81.22 μg/mL[113]
FRAP (IC50)24.72 μg/mL
DPPH (IC50)37.13 μg/mL
Superoxide anion (IC50)19.62 μg/mL
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Putri, A.S.; Haqiqi, M.T.; Supomo; Kusuma, I.W.; Kuspradini, H.; Rosamah, E.; Amirta, R.; Paramita, S.; Ramadhan, R.; Lubis, M.A.R.; et al. A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients. Cosmetics 2022, 9, 103. https://doi.org/10.3390/cosmetics9050103

AMA Style

Putri AS, Haqiqi MT, Supomo, Kusuma IW, Kuspradini H, Rosamah E, Amirta R, Paramita S, Ramadhan R, Lubis MAR, et al. A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients. Cosmetics. 2022; 9(5):103. https://doi.org/10.3390/cosmetics9050103

Chicago/Turabian Style

Putri, Agmi Sinta, Muhammad Taufiq Haqiqi, Supomo, Irawan Wijaya Kusuma, Harlinda Kuspradini, Enih Rosamah, Rudianto Amirta, Swandari Paramita, Rico Ramadhan, Muhammad Adly Rahandi Lubis, and et al. 2022. "A Mini Review: The Application of Eupatorium Plants as Potential Cosmetic Ingredients" Cosmetics 9, no. 5: 103. https://doi.org/10.3390/cosmetics9050103

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop