Emerging Research Topics in the Vibrionaceae and the Squid–Vibrio Symbiosis
Abstract
:1. Introduction
1.1. The Vibrionaceae
1.2. The Squid–Vibrio Symbiosis
2. Host-Microbe Interactions with Marine Plants
3. Microbial Predators, Facilitation of Virulence, and Coincidental Evolution Hypothesis
4. Intracellular Niches & Resistance to Heavy Metal Toxicity
5. Agarases
6. Phototrophy
7. Phage Shock Protein Response
8. Microbial Experimental Evolution
9. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soto, W.; Lostroh, C.P.; Nishiguchi, M.K. Physiological responses to stress in the vibrionaceae. In Cooperation and Stress in Biology; Seckback, J., Grube, M., Eds.; Springer: New York City, NY, USA, 2010. [Google Scholar]
- Pulliam, H.R. Sources, sinks, and population regulation. Am. Nat. 1988, 132, 652–661. [Google Scholar] [CrossRef]
- Sawabe, T.; Sugimura, I.; Ohtsuka, M.; Nakano, K.; Tajima, K.; Ezura, Y.; Christen, R. Vibrio halioticoli sp. nov., a non-motile alginolytic marine bacterium isolated from the gut of the abalone Haliotis discus hannai. Int. J. Syst. Evol. Microbiol. 1998, 48, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Shieh, W.Y.; Chen, A.L.; Chiu, H.-H. Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int. J. Syst. Evol. Microbiol. 2000, 50, 321–329. [Google Scholar] [CrossRef]
- Hendry, T.A.; Freed, L.L.; Fader, D.; Fenolio, D.; Sutton, T.T.; Lopez, J.V. Ongoing transposon-mediated genome reduction in the luminous bacterial symbionts of deep-sea ceratioid anglerfishes. MBio 2018, 9, e01018–e01033. [Google Scholar] [CrossRef]
- Hendry, T.A.; De Wet, J.R.; Dougan, K.E.; Dunlap, P.V. Genome evolution in the obligate but environmentally active luminous symbionts of flashlight fish. Genome Biol. Evol. 2016, 8, 2203–2213. [Google Scholar] [CrossRef]
- Soto, W.; Travisano, M.; Tolleson, A.R.; Nishiguchi, M.K. Symbiont evolution during the free-living phase can improve host colonization. Microbiology 2019, 165, 174–187. [Google Scholar] [CrossRef]
- Abd, H.; Weintraub, A.; Sandström, G. Intracellular survival and replication of Vibrio cholerae O139 in aquatic free-living amoebae. Environ. Microbiol. 2005, 7, 1003–1008. [Google Scholar] [CrossRef]
- Ringø, E.; Li, X.; Van Doan, H.; Ghosh, K. Interesting probiotic bacteria other than the more widely used lactic acid bacteria and bacilli in finfish. Front. Mar. Sci. 2022, 9, 848037. [Google Scholar] [CrossRef]
- Soto, W.; Nishiguchi, M.K. Microbial experimental evolution as a novel research approach in the vibrionaceae and squid-Vibrio symbiosis. Front. Microbiol. 2014, 5, 593. [Google Scholar] [CrossRef]
- Burgess, J.G. Biotechnological applications. In Biology of Vibrios; Thompson, F.L., Austin, B., Swings, J., Eds.; ASM Press: Washington, DC, USA, 2006; pp. 401–406. [Google Scholar]
- Soto, W.; Gutierrez, J.; Remmenga, M.D.; Nishiguchi, M.K. Salinity and temperature effects on physiological responses of Vibrio fischeri from diverse ecological niches. Microb. Ecol. 2009, 57, 140–150. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.L.; Mashanova, E.V.; Jagannathan, S.V.; Soto, W. Adaptation to pH stress by Vibrio fischeri can affect its symbiosis with the Hawaiian bobtail squid (Euprymna scolopes). Microbiology 2020, 166, 262–277. [Google Scholar] [PubMed]
- Soto, W.; Rivera, F.M.; Nishiguchi, M.K. Ecological diversification of Vibrio fischeri serially passaged for 500 generations in novel squid host Euprymna tasmanica. Microb. Ecol. 2014, 67, 700–721. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.L.; Mashanova, E.V.; Rosen, N.M.; Soto, W. Adaptation to temperature stress by Vibrio fischeri facilitates this microbe’s symbiosis with the Hawaiian bobtail squid (Euprymna scolopes). Evolution 2019, 73, 1885–1897. [Google Scholar] [CrossRef] [PubMed]
- Soto, W.; Nishiguchi, M.K. Environmental stress selects for innovations that drive Vibrio symbiont diversity. Front. Ecol. Evol. 2021, 9, 616973. [Google Scholar] [CrossRef]
- Zhou, X.; Sang, W.; Liu, S.; Zhang, Y.; Ge, H. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp.-q67. J. Environ. Sci. 2010, 22, 433–440. [Google Scholar] [CrossRef]
- El-Son, M.A.M.; Elbahnaswy, S.; Ibrahim, I. Molecular and histopathological characterization of Photobacterium damselae in naturally and experimentally infected Nile tilapia (Oreochromis niloticus). J. Fish Dis. 2020, 43, 1505–1517. [Google Scholar] [CrossRef]
- Budsberg, K.J.; Wimpee, C.F.; Braddock, J.F. Isolation and identification of Photobacterium phosphoreum from an unexpected niche: Migrating salmon. Appl. Environ. Microbiol. 2003, 69, 6938–6942. [Google Scholar] [CrossRef]
- Reusch, T.B.H.; Schubert, P.R.; Marten, S.-M.; Gill, D.; Karez, R.; Busch, K.; Hentschel, U. Lower Vibrio spp. abundances in Zostera marina leaf canopies suggest a novel ecosystem function for temperate seagrass beds. Mar. Biol. 2021, 168, 149. [Google Scholar] [CrossRef]
- Ettinger, C.L.; Eisen, J.A. Fungi, bacteria and oomycota opportunistically isolated from the seagrass, Zostera marina. PLoS ONE 2020, 15, e0236135. [Google Scholar] [CrossRef]
- Bagwell, C.E.; La Rocque, J.R.; Smith, G.W.; Polson, S.W.; Friez, M.J.; Longshore, J.W.; Lovell, C.R. Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol. Ecol. 2002, 39, 113–119. [Google Scholar] [CrossRef]
- Franco, A.; Rückert, C.; Blom, J.; Busche, T.; Reichert, J.; Schubert, P.; Goesmann, A.; Kalinowski, J.; Wilke, T.; Kämpfer, P.; et al. High diversity of Vibrio spp. associated with different ecological niches in a marine aquaria system and description of Vibrio aquimaris sp. nov. Syst. Appl. Microbiol. 2020, 43, 126123. [Google Scholar] [CrossRef] [PubMed]
- Mansson, M.; Gram, L.; Larsen, T.O. Production of bioactive secondary metabolites by marine vibrionaceae. Mar. Drugs 2011, 9, 1440–1468. [Google Scholar] [CrossRef] [PubMed]
- Frans, I.; Michiels, C.W.; Bossier, P.; Willems, K.A.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef] [PubMed]
- Parmar, P.; Shukla, A.; Goswami, D.; Gaur, S.; Patel, B.; Saraf, M. Comprehensive depiction of novel heavy metal tolerant and eps producing bioluminescent Vibrio alginolyticus pbr1 and V. rotiferianus pbl1 confined from marine organisms. Microbiol. Res. 2020, 238, 126526. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.K.; Trevathan-Tackett, S.M.; Neuhauser, S.; Govers, L.L. Review: Host-pathogen dynamics of seagrass diseases under future global change. Mar. Pollut. Bull. 2018, 134, 75–88. [Google Scholar] [CrossRef]
- Ugarelli, K.; Chakrabarti, S.; Laas, P.; Stingl, U. The seagrass holobiont and its microbiome. Microorganisms 2017, 5, 81. [Google Scholar] [CrossRef]
- Conte, C.; Rotini, A.; Manfra, L.; D’Andrea, M.M.; Winters, G.; Migliore, L. The seagrass holobiont: What we know and what we still need to disclose for its possible use as an ecological indicator. Water 2021, 13, 406. [Google Scholar] [CrossRef]
- Tarquinio, F.; Hyndes, G.A.; Laverock, B.; Koenders, A.; Säwström, C. The seagrass holobiont: Understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 2019, 366, fnz057. [Google Scholar] [CrossRef]
- Conte, C.; Rotini, A.; Winters, G.; Vasquez, M.I.; Piazza, G.; Kletou, D.; Migliore, L. Elective affinities or random choice within the seagrass holobiont? The case of the native Posidonia oceanica (L.) delile and the exotic Halophila stipulacea (forssk.) asch. from the same site (limassol, cyprus). Aquat. Bot. 2021, 174, 103420. [Google Scholar] [CrossRef]
- Orth, R.J.; Carruthers, T.J.B.; Dennison, W.C.; Duarte, C.M.; Fourqurean, J.W.; Heck, K.L.; Randall, H.A.; Kendrick, G.A.; Kenworthy, W.J.; Olyarnik, S.; et al. A global crisis for seagrass ecosystems. BioScience 2006, 56, 987–996. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.M.; Ralph, P.J.; Marín-Guirao, L.; Pernice, M.; Procaccini, G. Seagrasses in an era of ocean warming: A review. Biol. Rev. 2021, 96, 2009–2030. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E.; Werren, J.H. Holes in the hologenome: Why host-microbe symbioses are not holobionts. MBio 2016, 7, e02099-e15. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Mahomoodally, M.F.; Sadeer, N.B.; Seok, P.G.; Zengin, G.; Palaniveloo, K.; Khalile, A.A.; Rauf, A.; Rengasamy, K.R.R. Nutritional and bioactive potential of seagrasses: A review. S. Afr. J. Bot. 2021, 137, 216–227. [Google Scholar] [CrossRef]
- Ratnawati, N.N.; Jompa, J.; Rappe, R.A. Fruits of Enhalus acoroides as a source of nutrition for coastal communities. Earth Environ. Sci. 2019, 235, 012073. [Google Scholar]
- Coria-Monter, E.; Durán-Campos, E. The seagrass Syringodium filiforme as a possible alternative for human consumption. Int. J. Agric. Food Sci. Technol. 2020, 14, 17–26. [Google Scholar]
- Uchida, M.; Miyoshi, T.; Kaneniwa, M.; Ishihara, K.; Nakashimada, Y.; Urano, N. Production of 16.5% v/v ethanol from seagrass seeds. J. Biosci. Bioeng. 2014, 118, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Uchida, M. Fermentation of seaweeds and its applications. In Seafood Science: Advances in Chemistry, Technology and Applications; Kim, S.-K., Ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2015; pp. 14–46. [Google Scholar]
- Abdulla, R.; Ariffin, Z. Quantitative assessment of seagrass as bioethanol feedstock. Trans. Sci. Technol. 2016, 3, 361–366. [Google Scholar]
- Rajkumar, J.; Dilipan, E.; Ramachandran, M.; Panneerselvam, A.; Thajuddin, N. Bioethanol production from seagrass waste, through fermentation process using cellulase enzyme isolated from marine actinobacteria. Vegetos 2021, 34, 581–591. [Google Scholar] [CrossRef]
- Ścieszka, S.; Klewicka, E. Algae in food: A general review. Crit. Rev. Food Sci. Nutr. 2019, 59, 3538–3547. [Google Scholar] [CrossRef]
- Uchida, M.; Kurushima, H.; Ishihara, K.; Murata, Y.; Touhata, K.; Ishida, N.; Niwa, K.; Araki, T. Characterization of fermented seaweed sauce prepared from nori (Pyropia yezoensis). J. Biosci. Bioeng. 2017, 123, 327–332. [Google Scholar] [CrossRef]
- Figueroa, V.; Farfán, M.; Aguilera, J.M. Seaweeds as novel foods and source of culinary flavors. Food Rev. Int. 2021, 37, 1–26. [Google Scholar] [CrossRef]
- Torres, M.D.; Kraan, S.; Domínguez, H. Seaweed biorefinery. Rev. Environ. Sci. Bio/Technol. 2019, 18, 335–388. [Google Scholar] [CrossRef]
- Gao, Z.-M.; Xiao, J.; Wang, X.-N.; Ruan, L.-W.; Chen, X.-L.; Zhang, Y.-Z. Vibrio xiamenensis sp. nov., a cellulase-producing bacterium isolated from mangrove soil. Int. J. Syst. Evol. Microbiol. 2012, 62, 1958–1962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deep, K.; Poddar, A.; Das, S.K. Cloning, overexpression, and characterization of halostable, solvent-tolerant novel β-endoglucanase from a marine bacterium Photobacterium panuliri LBS5T (DSM 27646T). Appl. Biochem. Biotechnol. 2016, 178, 695–709. [Google Scholar] [CrossRef] [PubMed]
- Iyapparaj, P.; Revathi, P.; Ramasubburayan, R.; Prakash, S.; Palavesam, A.; Immanuel, G.; Anantharaman, P.; Sautreau, A.; Hellio, C. Antifouling and toxic properties of the bioactive metabolites from the seagrasses Syringodium isoetifolium and Cymodocea serrulata. Ecotoxicol. Environ. Saf. 2014, 103, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Yuvaraj, N.; Kanmani, P.; Satishkumar, R.; Paari, A.; Pattukumar, V.; Arul, V. Seagrass as a potential source of natural antioxidant and anti-inflammatory agents. Pharm. Biol. 2012, 50, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Orhan, I.; Sener, B.; Atıcı, T.; Brun, R.; Perozzo, R.; Tasdemir, D. Turkish freshwater and marine macrophyte extracts show in vitro antiprotozoal activity and inhibit FabI, a key enzyme of Plasmodium falciparum fatty acid biosynthesis. Phytomedicine 2006, 13, 388–393. [Google Scholar] [CrossRef]
- Regina, C.M.P.; Ahmadi, P.; Hertiani, T.; Septiana, E.; Putra, M.Y.; Chianese, G. A comprehensive update on the bioactive compounds from seagrasses. Marine Drugs 2022, 20, 406. [Google Scholar]
- Tarquinio, F.; Attlan, O.; Vanderklift, M.A.; Berry, O.; Bissett, A. Distinct endophytic bacterial communities inhabiting seagrass seeds. Front. Microbiol. 2021, 12, 703014. [Google Scholar] [CrossRef]
- Petersen, L.-E.; Marner, M.; Labes, A.; Tasdemir, D. Rapid metabolome and bioactivity profiling of fungi associated with the leaf and rhizosphere of the Baltic seagrass Zostera marina. Mar. Drugs 2019, 17, 419. [Google Scholar] [CrossRef]
- Blanchet, E.; Prado, S.; Stien, D.; Da Silva, J.O.; Ferandin, Y.; Batailler, N.; Intertaglia, L.; Escargueil, A.; Lami, R. Quorum sensing and quorum quenching in the Mediterranean seagrass Posidonia oceanica microbiota. Front. Mar. Sci. 2017, 4, 218. [Google Scholar] [CrossRef]
- Zieman, J.C. The Ecology of the Seagrasses of South Florida: A Community Profile; U.S. Fish and Wildlife Services, Office of Biological Services: Washington, DC, USA, 1982; pp. 1–10. [Google Scholar]
- Brüssow, H. Bacteria between protists and phages: From antipredation strategies to the evolution of pathogenicity. Mol. Microbiol. 2007, 65, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Faruque, S.M.; Mekalanos, J.J. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 2012, 3, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Davis, B.M.; Waldor, M.K. Filamentous phages linked to virulence of Vibrio cholerae. Curr. Opin. Microbiol. 2003, 6, 35–42. [Google Scholar] [CrossRef]
- Van Valen, L. A new evolutionary law. Evol. Theory 1973, 1, 1–30. [Google Scholar]
- Espinoza-Vergara, G.; Hoque, M.M.; McDougald, D.; Noorian, P. The impact of protozoan predation on the pathogenicity of Vibrio cholerae. Front. Microbiol. 2020, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Erken, M.; Lutz, C.; McDougald, D. The rise of pathogens: Predation as a factor driving the evolution of human pathogens in the environment. Microb. Ecol. 2013, 65, 860–868. [Google Scholar] [CrossRef]
- Sun, S.; Noorian, P.; McDougald, D. Dual role of mechanisms involved in resistance to predation by protozoa and virulence to humans. Front. Microbiol. 2018, 9, 1017. [Google Scholar] [CrossRef]
- Destoumieux-Garzón, D.; Canesi, L.; Oyanedel, D.; Travers, M.-A.; Charrière, G.M.; Pruzzo, C.; Vezzulli, L. Vibrio–bivalve interactions in health and disease. Environ. Microbiol. 2020, 22, 4323–4341. [Google Scholar] [CrossRef]
- Karaolis, D.K.R.; Somara, S.; Maneval, D.R., Jr.; Johnson, J.A.; Kaper, J.B. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 1999, 399, 375–379. [Google Scholar] [CrossRef]
- Rowe-Magnus, D.A.; Zouine, M.; Didier Mazel, D. The adaptive genetic arsenal of pathogenic Vibrio species: The role of integrons. In The Biology of Vibrios; Thompson, F.L., Brian Austin, B., Swings, J., Eds.; ASM Press: Washington, DC, USA, 2006; pp. 95–111. [Google Scholar]
- Stoddard, B.L. Homing endonuclease structure and function. Q. Rev. Biophys. 2006, 38, 49–95. [Google Scholar] [CrossRef] [PubMed]
- Kidwell, M.G.; Lisch, D.R. Perspective: Transposable elements, parasitic DNA, and genome evolution. Evolution 2001, 55, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Seed, K.D.; Faruque, S.M.; Mekalanos, J.J.; Calderwood, S.B.; Qadri, F.; Camilli, A. Phase variable o antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLoS Pathog. 2012, 8, e100291. [Google Scholar] [CrossRef] [PubMed]
- Amaro, F.; Martín-González, A. Microbial warfare in the wild—the impact of protists on the evolution and virulence of bacterial pathogens. Int. Microbiol. 2021, 24, 559–571. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Dozal, A.; Gorman, C.; Erken, M.; Steinberg, P.D.; McDougald, D.; Nishiguch, M.K. Predation response of Vibrio fischeri biofilms to bacterivorus protists/phagotrophic protozoa. Appl. Environ. Microbiol. 2013, 79, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Robino, E.; Poirier, A.C.; Amraoui, H.; Le Bissonnais, S.; Perret, A.; Lopez-Joven, C.; Auguet, J.-C.; Rubio, T.P.; Cazevieille, C.; Rolland, J.-L.; et al. Resistance of the oyster pathogen Vibrio tasmaniensis LGP32 against grazing by Vannella sp. marine amoeba involves vsm and copa virulence factors. Environ. Microbiol. 2020, 22, 4183–4197. [Google Scholar] [CrossRef]
- Madigan, M.T.; Bender, K.S.; Buckley, D.H.; Sattley, W.M.; Stahl, D.A. Ecological Diversity of Bacteria. In Brock Biology of Microorganisms 16th Edition; Pearson: Hoboken, NJ, USA, 2021; pp. 478–518. [Google Scholar]
- Williams, H.N.; Piñeiro, S. Ecology of the predatory Bdellovibrio and like organisms. In Predatory Prokaryotes—Biology, Ecology and Evolution; Jurkevitch, E., Ed.; Springer: Berlin, Germany, 2006. [Google Scholar]
- Najnine, F.; Cao, Q.; Zhao, Y.; Cai, J. Antibacterial activities of Bdellovibrio and like organisms in aquaculture. In The Ecology of Predation at the Microscale; Jurkevitch, E., Mitchell, R.J., Eds.; Springer: Cham, Switzerland, 2020; pp. 89–127. [Google Scholar]
- McNeely, D.; Chanyi, R.M.; Dooley, J.S.; Moore, J.E.; Koval, S.F. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus. Can. J. Microbiol. 2016, 63, 350–358. [Google Scholar] [CrossRef]
- Nair, R.R.; Vasse, M.; Wielgoss, S.; Sun, L.; Yu, Y.-T.N.; Velicer, G.J. Bacterial predator-prey coevolution accelerates genome evolution and selects on virulence-associated prey defences. Nat. Commun. 2019, 10, 4301. [Google Scholar] [CrossRef]
- Koval, S.F.; Hynes, S.H. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J. Bacteriol. 1991, 173, 2244–2249. [Google Scholar] [CrossRef]
- Kadouri, D.; O’Toole, G.A. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl. Environ. Microbiol. 2005, 71, 4044–4051. [Google Scholar] [CrossRef]
- Dwidar, M.; Jang, H.; Sangwan, N.; Mun, W.; Im, H.; Yoon, S.; Choi, S.; Nam, D.; Mitchell, R.J. Diffusible signaling factor, a quorum-sensing molecule, interferes with and is toxic towards Bdellovibrio bacteriovorus 109J. Microb. Ecol. 2021, 81, 347–356. [Google Scholar] [CrossRef] [PubMed]
- Aharon, E.; Mookherjee, A.; Pérez-Montaño, F.; Da Silva, G.M.; Sathyamoorthy, R.; Burdman, S.; Jurkevitch, E. Secretion systems play a critical role in resistance to predation by Bdellovibrio bacteriovorus. Res. Microbiol. 2021, 172, 103878. [Google Scholar] [CrossRef] [PubMed]
- Varon, M. Interaction of Bdellovibrio with its prey in mixed microbial populations. Microb. Ecol. 1981, 7, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Wang, H.; Yu, J.; An, J.; Chen, J. Encapsulated Bdellovibrio powder as a potential bio-disinfectant against whiteleg shrimp-pathogenic vibrios. Microorganisms 2019, 7, 244. [Google Scholar] [CrossRef]
- Duncan, M.C.; Forbes, J.C.; Nguyen, Y.; Shull, L.M.; Gillette, R.K.; Lazinski, D.W.; Ali, A.; Shanks, R.M.Q.; Kadouri, D.E.; Camilli, A. Vibrio cholerae motility exerts drag force to impede attack by the bacterial predator Bdellovibrio bacteriovorus. Nat. Commun. 2018, 9, 4757. [Google Scholar] [CrossRef] [Green Version]
- Regina, V.R.; Noorian, P.; Sim, C.B.W.; Constancias, F.; Kaliyamoorthy, E.; Booth, S.C.; Espinoza-Vergara, G.; Rice, S.A.; McDougald, D. Loss of the acetate switch in Vibrio vulnificus enhances predation defense against Tetrahymena pyriformis. Appl. Environ. Microbiol. 2022, 88, e01665-21. [Google Scholar]
- Studer, S.V.; Mandel, M.J.; Ruby, E.G. AinS quorum sensing regulates the Vibrio fischeri acetate switch. J. Bacteriol. 2008, 190, 5915–5923. [Google Scholar] [CrossRef]
- Neyrolles, O.; Wolschendorf, F.; Mitra, A.; Niederweis, M. Mycobacteria, metals, and the macrophage. Immunol. Rev. 2015, 264, 249–263. [Google Scholar] [CrossRef]
- De Castro, C.; Molinaro, A.; Lanzetta, R.; Silipo, A.; Parrilli, M. Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species. Carbohydr. Res. 2008, 343, 1924–1933. [Google Scholar] [CrossRef]
- Shin, S.; Roy, C.R. Host cell processes that influence the intracellular survival of Legionella pneumophila. Cell. Microbiol. 2008, 10, 1209–1220. [Google Scholar] [CrossRef]
- Elkamel, A.A.; Hawke, J.P. Photobacterium damselae subsp. piscicida is capable of replicating in hybrid striped bass macrophages. J. Aquat. Anim. Health 2003, 15, 175–183. [Google Scholar]
- Acosta, F.; Vivas, J.; Padilla, D.; Vega, J.; Bravo, J.; Grasso, V.; Real, F. Invasion and survival of Photobacterium damselae subsp. piscicida in non-phagocytic cells of gilthead sea bream, Sparus aurata L. J. Fish Dis. 2009, 32, 535–541. [Google Scholar] [PubMed]
- Larsen, M.H.; Boesen, H.T. Role of flagellum and chemotactic motility of Vibrio anguillarum for phagocytosis by and intracellular survival in fish macrophages. FEMS Microbiol. Lett. 2001, 203, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Ruben Avendaño-Herrera, R.; Arias-Muñoz, E.; Rojas, V.; Toranzo, A.E.; Poblete-Morales, M.; Córdova, C.; Irgang, R. Evidence for the facultative intracellular behaviour of the fish pathogen Vibrio ordalii. J. Fish Dis. 2019, 42, 1447–1455. [Google Scholar] [CrossRef]
- Rosenberg, E.; Koren, O. Vibrios in coral health and disease. In Biology of Vibrios; Thompson, F.L., Austin, B., Swings, J., Eds.; ASM Press: Washington, DC, USA, 2006; pp. 231–238. [Google Scholar]
- Vidal-Dupiol, J.; Ladriere, O.; Destoumieux-Garzon, D.; Sautiere, P.-E.; Meistertzheim, A.L.; Tambutte, E.; Tambutte, S.; Duval, D.; Foure, L.; Adjeroud, M.; et al. Innate immune responses of a scleractinian coral to vibriosis. J. Biol. Chem. 2011, 286, 22688–22698. [Google Scholar] [CrossRef]
- Van der Henst, C.; Scrignari, T.; Maclachlan, C.; Blokesch, M. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. ISME J. 2016, 10, 897–910. [Google Scholar] [CrossRef]
- De Souza Santos, M.; Orth, K. Intracellular Vibrio parahaemolyticus escapes the vacuole and establishes a replicative niche in the cytosol of epithelial cells. MBio 2014, 5, e01506–e01514. [Google Scholar] [CrossRef] [Green Version]
- Harris-Young, L.; Tamplin, M.L.; Mason, J.W.; Aldrich, H.C.; Jackson, J.K. Viability of Vibrio vulnificus in association with hemocytes of the American oyster (Crassostrea virginica). Appl. Environ. Microbiol. 1995, 61, 52–57. [Google Scholar] [CrossRef]
- Qiao, Y.; Wang, J.; Mao, Y.; Liu, M.; Chen, R.; Su, Y.; Ke, Q.; Han, K.; Zheng, W. Pathogenic bacterium Vibrio harveyi: An endosymbiont in the marine parasitic ciliate protozoan Cryptocaryon irritans. Acta Oceanol. Sin. 2017, 36, 115–119. [Google Scholar] [CrossRef]
- MacPhail, D.P.C.; Koppenstein, R.; Maciver, S.K.; Paley, R.; Longshaw, M.; Henriquez, F.L. Vibrio species are predominantly intracellular within cultures of Neoparamoeba perurans, causative agent of amoebic gill disease (agd). Aquaculture 2021, 532, 736083. [Google Scholar] [CrossRef]
- Nyholm, S.V.; Stewart, J.J.; Ruby, E.G.; McFall-Ngai, M.J. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ. Microbiol. 2009, 11, 483–493. [Google Scholar] [CrossRef] [PubMed]
- McAnulty, S.J.; Nyholm, S.V. The role of hemocytes in the Hawaiian bobtail squid, Euprymna scolopes: A model organism for studying beneficial host–microbe interactions. Front. Microbiol. 2017, 7, 2013. [Google Scholar] [CrossRef] [PubMed]
- Rader, B.; McAnulty, S.J.; Nyholm, S.V. Persistent symbiont colonization leads to a maturation of hemocyte response in the Euprymna scolopes/Vibrio fischeri symbiosis. MicrobiologyOpen 2019, 8, e858. [Google Scholar] [CrossRef] [PubMed]
- Mathivanan, K.; Chandirika, J.U.; Vinothkanna, A.; Yin, H.; Liu, X.; Meng, D. Bacterial adaptive strategies to cope with metal toxicity in the contaminated environment–a review. Ecotoxicol. Environ. Saf. 2021, 226, 112863. [Google Scholar] [CrossRef]
- Fakhar, A.; Gul, B.; Gurmani, A.R.; Shafaqat, S.M.K.; Ali, T.S.; Chaudhary, H.J.; Rafique, M.; Rizwan, M. Heavy metal remediation and resistance mechanism of Aeromonas, Bacillus, and Pseudomonas: A review. Crit. Rev. Environ. Sci. Technol. 2020, 52, 1868–1914. [Google Scholar] [CrossRef]
- Zhang, J.; Cao, T.; Tang, Z.; Shen, Q.; Rosen, B.P.; Zhao, F.-J. Arsenic methylation and volatilization by arsenite s-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159. Appl. Environ. Microbiol. 2015, 81, 2852–2860. [Google Scholar] [CrossRef]
- Penaranda, C.; Chumbler, N.M.; Hung, D.T. Dual transcriptional analysis reveals adaptation of host and pathogen to intracellular survival of Pseudomonas aeruginosa associated with urinary tract infection. PLoS Pathog. 2021, 17, e1009534. [Google Scholar] [CrossRef]
- Erardi, F.X.; Failla, M.L.; Falkinham, J. Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum. Appl. Environ. Microbiol. 1987, 53, 1951–1954. [Google Scholar] [CrossRef]
- Aiking, H.; Govers, H.; Van’t Rie, J. Detoxification of cadmium, mercury and lead in Klebsiella aerogenes NCTC418 growing in continuous culture. Appl. Environ. Microbiol. 1985, 50, 1262–1267. [Google Scholar] [CrossRef]
- Cano, V.; March, C.; Insua, J.L.; Aguiló, N.; Llobet, E.; Moranta, D.; Regueiro, V.; Brennan, G.P.; Millán-Lou, M.I.; Martín, C.; et al. Klebsiella pneumoniae survives within macrophages by avoiding delivery to lysosomes. Cell Microbiol. 2015, 17, 1537–1560. [Google Scholar] [CrossRef]
- Bengoechea, J.A.; Pessoa, J.S. Klebsiella pneumoniae infection biology: Living to counteract host defences. FEMS Microbiol. Rev. 2019, 43, 123–144. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, A.S.; Rubio, T.P.; Nguyen, A.N.; Lemire, A.; Roche, D.; Nicod, J.; Vergnes, A.; Poirier, A.C.; Disconzi, E.; Bachère, E.; et al. Copper homeostasis at the host vibrio interface: Lessons from intracellular vibrio transcriptomics. Environ. Microbiol. 2016, 18, 875–888. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, J.R.; Skaar, E.P. Metals as phagocyte antimicrobial effectors. Curr. Opin. Immunol. 2019, 60, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Botella, H.; Stadthagen, G.; Lugo-Villarino, G.; De Chastellier, C.; Neyrolles, O. Metallobiology of host–pathogen interactions: An intoxicating new insight. Trends Microbiol. 2012, 20, 106–112. [Google Scholar] [CrossRef]
- Hood, M.I.; Skaar, E.P. Nutritional immunity: Transition metals at the pathogen–host interface. Nat. Rev. Microbiol. 2012, 10, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Soldati, T.; Neyrolles, O. Mycobacteria and the intraphagosomal environment: Take it with a pinch of salt(s)! Traffic 2012, 13, 1042–1052. [Google Scholar] [CrossRef]
- Brandes, E.A.; Brook, G.B. General physical properties of light metal alloys and pure light metals. In Smithells Light Metals Handbook; Butterworth-Heinemann: Oxford, UK, 1998; pp. 5–13. [Google Scholar]
- Stevanin, T.M.; Moir, J.W.B.; Read, R.C. Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infect. Immun. 2005, 73, 3322–3329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.T.; Kim, S.M. Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 2010, 8, 200–218. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.M.M.; Rocha, C.M.R.; Goncalves, M.P. Agar. In Handbook of Hydrocolloids, 3rd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Limited: Sawston, UK, 2020; pp. 731–765. [Google Scholar]
- Yi-Rui Wu, Y.-R.; Zhang, M.M.; Zhong, M.; Hu, Z. Synergistic enzymatic saccharification and fermentation of agar for biohydrogen production. Bioresour. Technol. 2017, 241, 369–373. [Google Scholar]
- Kim, H.T.; Lee, S.; Kim, K.H.; Choi, I.-G. The complete enzymatic saccharification of agarose and its application to simultaneous saccharification and fermentation of agarose for ethanol production. Bioresour. Technol. 2012, 107, 301–306. [Google Scholar] [CrossRef]
- Jagannathan, S.V.; Manemann, E.M.; Rowe, S.E.; Callender, M.C.; Soto, W. Marine actinomycetes, new sources of biotechnological products. Mar. Drugs 2021, 19, 365. [Google Scholar] [CrossRef] [PubMed]
- Nussinovitch, A. Hydrocolloid Applications: Gum Technology in the Food and Other Industries; Springer-Science+Business Media: Dordrecht, The Netherlands, 1997; Agar.; pp. 1–18. [Google Scholar]
- Macian, M.C.; Ludwig, W.; Schleifer, K.H.; Pujalte, M.J.; Garay, E. Vibrio agarivorans sp. nov., a novel agarolytic marine bacterium. Int. J. Syst. Evol. Microbiol. 2001, 51, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- Doi, H.; Chinen, A.; Fukuda, H.; Usuda, Y. Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail. Int. J. Syst. Evol. Microbiol. 2016, 66, 3164–3169. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jin, X.; Wu, C.; Zhu, X.; Liu, M.; Call, D.R.; Zhao, Z. Genome-wide identification and functional characterization of b-agarases in Vibrio astriarenae strain HN897. Front. Microbiol. 2020, 11, 1404. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Gil, B.; Roque, A.; Rotllant, R.; Peinado, L.; Romalde, J.L.; Doce, A.; Cabanillas-Beltrán, H.; Chimetto, L.A.; Thompson, F.L. Photobacterium swingsii sp. nov., isolated from marine organisms. Int. J. Syst. Evol. Microbiol. 2011, 61, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.-L.; Siow, R.-S.; Rahim, R.A.; Ho, C.-L. Global transcriptome analysis of Gracilaria changii (rhodophyta) in response to agarolytic enzyme and bacterium. Mar. Biotechnol. 2016, 18, 189–200. [Google Scholar] [CrossRef]
- Armisen, R.; Galatas, F. Agar. In Handbook of Hydrocolloids, 2nd ed.; Phillips, G.O., Williams, P.A., Eds.; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 82–107. [Google Scholar]
- Chi, W.-J.; Chang, Y.-K.; Hong, S.-K. Agar degradation by microorganisms and agar-degrading enzymes. Appl. Microbiol. Biotechnol. 2012, 94, 917–930. [Google Scholar] [CrossRef]
- Potin, P. Oxidative burst and related responses in biotic interactions of algae. In Algal Chemical Ecology; Amsler, C.D., Ed.; Springer: Berlin, Germany, 2008; pp. 245–272. [Google Scholar]
- Cosse, A.; Leblanc, C.; Potin, P. Dynamic defense of marine macroalgae against pathogens: From early activated to gene-regulated responses. Adv. Bot. Res. 2008, 46, 221–266. [Google Scholar]
- Cock, J.M.; Coelho, S.M. Algal models in plant biology. J. Exp. Bot. 2011, 62, 2425–2430. [Google Scholar] [CrossRef]
- Coelho, S.M.; Peters, A.F.; Müller, D.; Cock, J.M. Ectocarpus: An evo-devo model for the brown algae. EvoDevo 2020, 11, 19. [Google Scholar] [CrossRef]
- Sørensen, I.; Rose, J.K.C.; Doyle, J.F.; Domozych, D.S.; Willats, W.G.T. The charophycean green algae as model systems to study plant cell walls and other evolutionary adaptations that gave rise to land plants. Plant Signal. Behav. 2012, 7, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Knoll, A.H. The multiple origins of complex multicellularity. Annu. Rev. Earth Planet. Sci. 2011, 2011, 217–239. [Google Scholar] [CrossRef]
- Tang, L.; Qiu, L.; Liu, C.; Du, G.; Mo, Z.; Tang, X.; Mao, Y. Transcriptomic insights into innate immunity responding to red rot disease in red alga Pyropia yezoensis. Int. J. Mol. Sci. 2019, 20, 5970. [Google Scholar] [CrossRef] [PubMed]
- Thomas, F.; Cosse, A.; Le Panse, S.; Kloareg, B.; Potin, P.; Leblanc, C. Kelps feature systemic defense responses: Insights into the evolution of innate immunity in multicellular eukaryotes. N. Phytol. 2014, 204, 567–576. [Google Scholar] [CrossRef]
- Arnhold, J. Heme peroxidases at unperturbed and inflamed mucous surfaces. Antioxidants 2021, 10, 1805. [Google Scholar] [CrossRef]
- Weinberger, F. Pathogen-induced defense and innate immunity in macroalgae. Biol. Bull. 2007, 213, 290–302. [Google Scholar] [CrossRef]
- Kutty, S.K.; Ho, K.K.K.; Kumar, N. Nitric oxide donors as antimicrobial agents. In Nitric Oxide Donors: Novel Biomedical Applications and Perspectives; Seabra, A.B., Ed.; Elsevier: London, UK, 2017; pp. 169–189. [Google Scholar]
- Kolbert, Z.; Lindermayr, C.; Loake, G.J. The role of nitric oxide in plant biology: Current insights and future perspectives. J. Exp. Bot. 2021, 72, 777–780. [Google Scholar] [CrossRef]
- Astier, J.; Rossi, J.; Chatelain, P.; Klinguer, A.; Besson-Bard, A.; Rosnoblet, C.; Jeandroz, S.; Nicolas-Francès, V.; Wendehenne, D. Nitric oxide production and signalling in algae. J. Exp. Bot. 2021, 72, 781–792. [Google Scholar] [CrossRef]
- Dit Frey, N.F.; Robatzek, S. Trafficking vesicles: Pro or contra pathogens? Curr. Opin. Plant Biol. 2009, 12, 437–443. [Google Scholar] [CrossRef]
- Kindt, T.J.; Goldsby, R.A.; Osborne, B.A. Cells and organs of the immune system. In Kuby Immunology, 6th ed.; W.H. Freeman & Company: New York City, NY, USA, 2007; pp. 23–51. [Google Scholar]
- Yutin, N.; Wolf, M.Y.; Wolf, Y.I.; Koonin, E.V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 2009, 4, 9. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Leary, A.Y.; Sanguankiattichai, N.; Duggan, C.; Tumtas, Y.; Pandey, P.; Segretin, M.E.; Linares, J.S.; Savage, Z.D.; Yow, R.; Bozkurt, T.O. Modulation of plant autophagy during pathogen attack. J. Exp. Bot. 2018, 69, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.-Y.; Zheng, P.; Wang, L.-Y.; Bao, H.-N.; Sahu, S.K.; Yao, N. Autophagy in plant immunity. Adv. Exp. Med. Biol. 2019, 1209, 23–41. [Google Scholar] [PubMed]
- Paungfoo-Lonhienne, C.; Schmidt, S.; Webb, R.I.; Lonhienne, T.G.A. Rhizophagy—A new dimension of plant–microbe interactions. In Molecular Microbial Ecology of the Rhizosphere; De Bruijn, F.J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2013; Volume 2, pp. 1201–1207. [Google Scholar]
- White, J.F.; Torres, M.S.; Verma, S.K.; Elmore, M.T.; Kowalski, K.P.; Kingsley, K.L. Evidence for widespread microbivory of endophytic bacteria in roots of vascular plants through oxidative degradation in root cell periplasmic spaces. In PGPR Amelioration in Sustainable Agriculture: Food Security and Environmental Management; Singh, A.K., Kumar, A., Singh, P.K., Eds.; Woodhead Publishing-Elsevier: Duxford, UK, 2019; pp. 167–193. [Google Scholar]
- Murua, P.; Muller, D.G.; Etemadi, M.; Van West, P.; Gachon, C.M.M. Host and pathogen autophagy are central to the inducible local defences and systemic response of the giant kelp Macrocystis pyrifera against the oomycete pathogen Anisolpidium ectocarpii. N. Phytol. 2020, 226, 1445–1460. [Google Scholar] [CrossRef] [PubMed]
- Tamadoni Jahromi, S.T.; Barzkar, N. Future direction in marine bacterial agarases for industrial applications. Appl. Microbiol. Biotechnol. 2018, 102, 6847–6863. [Google Scholar] [CrossRef]
- Chen, X.; Fu, X.; Huang, L.; Xu, J.; Gao, X. Agar oligosaccharides: A review of preparation, structures, bioactivities and application. Carbohydr. Polym. 2021, 265, 118076. [Google Scholar] [CrossRef]
- Davis, D.J.; Wang, M.; Sørensen, I.; Rose, J.K.C.; Domozych, D.S.; Drakakaki, G. Callose deposition is essential for the completion of cytokinesis in the unicellular alga Penium margaritaceum. J. Cell Sci. 2020, 133, jcs249599. [Google Scholar] [CrossRef]
- Nedukha, O.M. Callose: Localization, functions, and synthesis in plant cells. Cytol. Genet. 2015, 49, 49–57. [Google Scholar] [CrossRef]
- Scherp, P.; Grotha, R.; Kutschera, U. Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants. Plant Cell Rep. 2001, 20, 143–149. [Google Scholar] [CrossRef]
- Medzhitov, R. The spectrum of inflammatory responses. Science 2021, 374, 1070–1075. [Google Scholar] [CrossRef]
- Burdett, H.; Bentham, A.R.; Williams, S.J.; Dodds, P.N.; Anderson, P.A.; Banfield, M.J.; Kobe, B. The plant ‘‘resistosome’’: Structural insights into immune signaling. Cell Host Microbe 2019, 26, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Coll, N.S.; Epple, P.; Dangl, J.L. Programmed cell death in the plant immune system. Cell Death Differ. 2011, 18, 1247–1256. [Google Scholar] [CrossRef] [PubMed]
- Gust, A.A.; Pruitt, R.; Nürnberger, T. Sensing danger: Key to activating plant immunity. Trends Plant Sci. 2017, 22, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Klessig, D.F.; Tian, M.; Choi, H.W. Multiple targets of salicylic acid and its derivatives in plants and animals. Front. Immunol. 2016, 7, 206. [Google Scholar] [CrossRef]
- Lahaye, M.; Rochas, C. Chemical structure and physico-chemical properties of agar. Hydrobiologia 1991, 221, 137–148. [Google Scholar] [CrossRef]
- Armisen, R.; Galatas, F. Production, properties and uses of agar. In Production and Utilization of Products from Commercial Seaweeds; McHugh, D.J., Ed.; FAO Fisheries Technical Paper; Food and Agriculture Organization, United Nations: Rome, Italy, 1987; pp. 1–57. [Google Scholar]
- Lee, W.K.; Lim, Y.-Y.; Leow, A.T.; Namasivayam, P.; Abdullah, J.O.; Ho, C.L. Biosynthesis of agar in red seaweeds: A review. Carbohydr. Polym. 2017, 164, 23–30. [Google Scholar] [CrossRef]
- Yoshida, M.A.; Tanabe, T.; Akiyoshi, H.; Kawamukai, M. Gut microbiota analysis of Blenniidae fishes including an algae-eating fish and clear boundary formation among isolated Vibrio strains. Sci. Rep. 2022, 12, 4642. [Google Scholar] [CrossRef]
- Anaya-Rosasa, R.E.; Rivas-Vega, M.E.; Miranda-Baeza, A.; Piña-Valdez, P.; Nieves-Soto, M. Effects of a co-culture of marine algae and shrimp (Litopenaeus vannamei) on the growth, survival and immune response of shrimp infected with Vibrio parahaemolyticus and white spot virus (WSSV). Fish Shellfish. Immunol. 2019, 87, 136–143. [Google Scholar] [CrossRef]
- Koedooder, C.; Van Geersdaele, R.; Gueneugues, A.; Bouget, F.-Y.; Obernosterer, I.; Blain, S. The interplay between iron limitation, light and carbon in the proteorhodopsin-containing Photobacterium angustum S14. FEMS Microbiol. Ecol. 2020, 96, fiaa103. [Google Scholar]
- Wang, Z.; O’Shaughnessy, T.J.; Soto, C.M.; Rahbar, A.M.; Robertson, K.L.; Lebedev, N.; Vora, G.J. Function and regulation of Vibrio campbellii proteorhodopsin: Acquired phototrophy in a classical organoheterotroph. PLoS ONE 2012, 7, e3874. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, Y.; Huang, H.; Huang, Z.; Chen, H.; Shao, Z. Isolation and identification of Vibrio campbellii as a bacterial pathogen for luminous vibriosis of Litopenaeus vannamei. Aquac. Res. 2015, 46, 395–404. [Google Scholar] [CrossRef]
- Amaral, G.R.; Silva, B.S.D.; Santos, E.O.; Dias, G.M.; Lopes, R.M.; Edwards, R.A.; Thompson, C.C.; Thompson, F.L. Genome sequence of the bacterioplanktonic, mixotrophic Vibrio campbellii strain PEL22A, isolated in the Abrolhos Bank. J. Bacteriol. 2012, 194, 2759–2760. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Consarnau, L.; Akram, N.; Lindell, K.; Pedersen, A.; Neutze, R.; Milton, D.L.; Gonzalez, J.M.; Pinhassi, J. Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 2010, 8, e1000358. [Google Scholar] [CrossRef] [PubMed]
- Palovaara, J.; Akram, N.; Baltar, F.; Bunsea, C.; Forsberga, J.; Pedrós-Aliób, C.; González, J.M.; Pinhassi, J. Stimulation of growth by proteorhodopsin phototrophy involves regulation of central metabolic pathways in marine planktonic bacteria. Proc. Natl. Acad. Sci. USA 2014, 111, E3650–E3658. [Google Scholar] [CrossRef]
- Martinez, A.; Bradley, A.S.; Waldbauer, J.R.; Summons, R.E.; DeLong, E.F. Proteorhodopsin photosystem gene expression enables photophosphorylation in a heterologous host. Proc. Natl. Acad. Sci. USA 2007, 104, 5590–5595. [Google Scholar] [CrossRef]
- Steindler, L.; Schwalbach, M.S.; Smith, D.P.; Chan, F.; Giovannoni, S.J. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated atp production for endogenous carbon respiration. PLoS ONE 2011, 6, e19725. [Google Scholar] [CrossRef]
- Van de Water, J.A.J.M.; Allemand, D.; Ferrier-Pagès, C. Host-microbe interactions in octocoral holobionts-recent advances and perspectives. Microbiome 2018, 6, 64. [Google Scholar] [CrossRef]
- Basu, P.; Sandhu, N.; Bhatt, A.; Singh, A.; Balhana, R.; Gobe, I.; Crowhurst, N.A.; Mendum, T.A.; Gao, L.; Ward, J.L.; et al. The anaplerotic node is essential for the intracellular survival of Mycobacterium tuberculosis. J. Biol. Chem. 2018, 293, 5695–5704. [Google Scholar] [CrossRef]
- Kappelmann, J.; Wiechert, W.; Noack, S. Cutting the gordian knot: Identifiability of anaplerotic reactions in Corynebacterium glutamicum by means of 13 c-metabolic flux analysis. Biotechnol. Eng. 2016, 113, 661–674. [Google Scholar]
- Brissette, J.L.; Russel, M.; Weiner, L.; Model, P. Phage shock protein, a stress protein of Escherichia coli. Proc. Natl. Acad. Sci. USA 1990, 87, 862–866. [Google Scholar] [CrossRef]
- Huvet, H.; Toni, T.; Sheng, X.; Thorne, T.; Jovanovic, G.; Engl, C.; Buck, M.; Pinney, J.W.; Stumpf, M.P.H. The evolution of the phage shock protein response system: Interplay between protein function, genomic organization, and system function. Mol. Biol. Evol. 2011, 28, 1141–1155. [Google Scholar] [CrossRef] [PubMed]
- Flores-Kim, J.; Darwin, A.J. The phage shock protein response. Annu. Rev. Microbiol. 2016, 70, 83–101. [Google Scholar] [CrossRef] [PubMed]
- Ravi, J.; Anantharaman, V.; Aravind, L.; Gennaro, M.L. Variations on a theme: Evolution of the phage-shock-protein system in actinobacteria. Antonie Van Leeuwenhoek 2018, 111, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Huvet, M.; Toni, T.; Tan, H.; Jovanovic, G.; Engl, C.; Buck, M.; Stump, M.P.H. Model-based evolutionary analysis: The natural history of phage-shock stress response. Biochem. Soc. Trans. 2009, 37, 762–767. [Google Scholar] [CrossRef]
- Manganelli, R.; Gennaro, M.L. Protecting from envelope stress: Variations on the phage-shock-protein theme. Trends Microbiol. 2017, 25, 205–216. [Google Scholar] [CrossRef]
- Tsai, W.-C.; Kuo, T.-Y.; Lin, C.-Y.; Lin, J.-C.; Chen, W.-J. Photobacterium damselae subsp. piscicida responds to antimicrobial peptides through phage-shock-protein A (pspA)-related extracytoplasmic stress response system. J. Appl. Microbiol. 2014, 118, 27–38. [Google Scholar]
- DeAngelis, C.M.; Nag, D.; Withey, J.H.; Matson, J.S. Characterization of the Vibrio cholerae phage shock protein response. J. Bacteriol. 2019, 201, e00761-18. [Google Scholar] [CrossRef]
- Kimura, M. Overdevelopment of the synthetic theory and the proposal of the neutral theory. In The Neutral Theory of Molecular Evolution; Cambridge University Press: Cambridge, UK, 1983; pp. 15–33. [Google Scholar]
- Lynch, M. Evolution of the mutation rate. Trends Genet. 2010, 26, 345–352. [Google Scholar] [CrossRef]
- Wielgoss, S.; Barrick, J.E.; Tenaillon, O.; Wiser, M.J.; Dittmar, W.J.; Cruveiller, S.; Chane-Woon-Ming, B.; Médigue, C.; Lenski, R.E.; Schneider, D. Mutation rate dynamics in a bacterial population reflect tension between adaptation and genetic load. Proc. Natl. Acad. Sci. USA 2013, 110, 222–227. [Google Scholar] [CrossRef]
- Blountsas, Z.D.; Lenski, R.E.; Losos, J.B. Contingency and determinism in evolution: Replaying life’s tape. Science 2018, 362, eaam5979. [Google Scholar]
- Chavez-Dozal, A.; Soto, W.; Nishiguchi, M.K. Identification of a transcriptomic network underlying the wrinkly and smooth phenotypes of Vibrio fischeri. J. Bacteriol. 2021, 203, e00259-20. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R.; Slattery, J.S.; Kruta, I.; Linzmeier, B.J.; Lemanis, R.E.; Mironenko, A.; Goolaerts, S.; De Baets, K.; Peterman, D.J.; Klug, C. Recent advances in heteromorph ammonoid palaeobiology. Biol. Rev. 2021, 56, 576–610. [Google Scholar] [CrossRef] [PubMed]
- Gould, S.J. Replaying life’s tape: The crucial experiment. In Wonderful Life: The Burgess Shale and the Nature of History; W.W. Norton & Company: New York City, NY, USA, 1989; pp. 45–52. [Google Scholar]
- Kapodistrias, A.; Katsiampoura, G.; Skordoulis, C. Emergence and contingency in modern scientific theories. Adv. Hist. Stud. 2022, 11, 33–45. [Google Scholar] [CrossRef]
- Kauffman, S.A. Dynamical systems and their attractors. In The Origins of Order: Self-Organization and Selection in Evolution; Oxford University Press: New York City, NY, USA, 1993; pp. 173–235. [Google Scholar]
- Gleick, J. The butterfly effect. In Chaos: Making a New Science; Viking-Penguin: London, UK, 1987; pp. 9–31. [Google Scholar]
- Travisano, M.; Mongold, J.A.; Bennett, A.F.; Lenski, R.E. Experimental tests of the roles of adaptation, chance, and history in evolution. Science 1995, 267, 87–90. [Google Scholar] [CrossRef]
- Bruger, E.L.; Snyder, D.J.; Cooper, V.S.; Waters, C.M. Quorum sensing provides a molecular mechanism for evolution to tune and maintain investment in cooperation. ISME J. 2020, 15, 1236–1247. [Google Scholar] [CrossRef]
- Soto, W.; Punke, E.B.; Nishiguchi, M.K. Evolutionary perspectives in a mutualism of sepiolid squid and bioluminescent bacteria: Combined usage of microbial experimental evolution and temporal population genetics. Evolution 2012, 66, 1308–1321. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto, W. Emerging Research Topics in the Vibrionaceae and the Squid–Vibrio Symbiosis. Microorganisms 2022, 10, 1946. https://doi.org/10.3390/microorganisms10101946
Soto W. Emerging Research Topics in the Vibrionaceae and the Squid–Vibrio Symbiosis. Microorganisms. 2022; 10(10):1946. https://doi.org/10.3390/microorganisms10101946
Chicago/Turabian StyleSoto, William. 2022. "Emerging Research Topics in the Vibrionaceae and the Squid–Vibrio Symbiosis" Microorganisms 10, no. 10: 1946. https://doi.org/10.3390/microorganisms10101946
APA StyleSoto, W. (2022). Emerging Research Topics in the Vibrionaceae and the Squid–Vibrio Symbiosis. Microorganisms, 10(10), 1946. https://doi.org/10.3390/microorganisms10101946