Changes in HER2, ER, PR, and Ki-67 in HER2-Negative Breast Cancer After Neoadjuvant Chemotherapy: A Case–Control Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Selection
2.2. Data Collection
2.3. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics at Baseline and After NAC
3.2. Changes in ER, PR, HER2, and Ki-67 After NAC
3.3. Factors Associated with Changes Between HER2-0 and HER2-Low
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADC | antibody-drug conjugate |
| BMI | body mass index |
| ER | estrogen receptor |
| ISH | in situ hybridization |
| HER2 | human epidermal growth factor receptor 2 |
| IHC | immunohistochemistry |
| NAC | neoadjuvant chemotherapy |
| NAT | neoadjuvant therapy |
| NET | neoadjuvant endocrine therapy |
| pCR | pathological complete response |
| PR | progesterone receptor |
| TIL | tumor stromal infiltrating lymphocytes |
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Chen, H.D.; Yu, Y.W.; Li, N.; Chen, W.Q. Changing profiles of cancer burden worldwide and in China: A secondary analysis of the global cancer statistics 2020. Chin. Med. J. 2021, 134, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769. [Google Scholar] [CrossRef]
- Tal, M.; King, C.R.; Kraus, M.H.; Ullrich, A.; Schlessinger, J.; Givol, D. Human HER2 (neu) promoter: Evidence for multiple mechanisms for transcriptional initiation. Mol. Cell Biol. 1987, 7, 2597–2601. [Google Scholar]
- Wolff, A.C.; Somerfield, M.R.; Dowsett, M.; Hammond, M.E.H.; Hayes, D.F.; McShane, L.M.; Saphner, T.J.; Spears, P.A.; Allison, K.H. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: ASCO-College of American Pathologists Guideline Update. J. Clin. Oncol. 2023, 41, 3867–3872. [Google Scholar] [CrossRef]
- Piccart, M.; Procter, M.; Fumagalli, D.; de Azambuja, E.; Clark, E.; Ewer, M.S.; Restuccia, E.; Jerusalem, G.; Dent, S.; Reaby, L.; et al. Adjuvant Pertuzumab and Trastuzumab in Early HER2-Positive Breast Cancer in the APHINITY Trial: 6 Years’ Follow-Up. J. Clin. Oncol. 2021, 39, 1448–1457. [Google Scholar] [CrossRef]
- Swain, S.M.; Miles, D.; Kim, S.B.; Im, Y.H.; Im, S.A.; Semiglazov, V.; Ciruelos, E.; Schneeweiss, A.; Loi, S.; Monturus, E.; et al. Pertuzumab, trastuzumab, and docetaxel for HER2-positive metastatic breast cancer (CLEOPATRA): End-of-study results from a double-blind, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2020, 21, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Fehrenbacher, L.; Cecchini, R.S.; Geyer, C.E., Jr.; Rastogi, P.; Costantino, J.P.; Atkins, J.N.; Crown, J.P.; Polikoff, J.; Boileau, J.F.; Provencher, L.; et al. NSABP B-47/NRG Oncology Phase III Randomized Trial Comparing Adjuvant Chemotherapy With or Without Trastuzumab in High-Risk Invasive Breast Cancer Negative for HER2 by FISH and with IHC 1+ or 2. J. Clin. Oncol. 2020, 38, 444–453. [Google Scholar] [CrossRef]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef]
- Ogitani, Y.; Hagihara, K.; Oitate, M.; Naito, H.; Agatsuma, T. Bystander killing effect of DS-8201a, a novel anti-human epidermal growth factor receptor 2 antibody-drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci. 2016, 107, 1039–1046. [Google Scholar] [CrossRef]
- Tarantino, P.; Hamilton, E.; Tolaney, S.M.; Cortes, J.; Morganti, S.; Ferraro, E.; Marra, A.; Viale, G.; Trapani, D.; Cardoso, F.; et al. HER2-Low Breast Cancer: Pathological and Clinical Landscape. J. Clin. Oncol. 2020, 38, 1951–1962. [Google Scholar] [CrossRef]
- Tarantino, P.; Curigliano, G.; Tolaney, S.M. Navigating the HER2-Low Paradigm in Breast Oncology: New Standards, Future Horizons. Cancer Discov. 2022, 12, 2026–2030. [Google Scholar] [CrossRef]
- Prat, A.; Bardia, A.; Curigliano, G.; Hammond, M.E.H.; Loibl, S.; Tolaney, S.M.; Viale, G. An Overview of Clinical Development of Agents for Metastatic or Advanced Breast Cancer Without ERBB2 Amplification (HER2-Low). JAMA Oncol. 2022, 8, 1676–1687. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, F.; Griguolo, G.; Bottosso, M.; Giarratano, T.; Lo Mele, M.; Fassan, M.; Cacciatore, M.; Genovesi, E.; De Bartolo, D.; Vernaci, G.; et al. HER2-low-positive breast cancer: Evolution from primary tumor to residual disease after neoadjuvant treatment. npj Breast Cancer 2022, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Lee, S.H.; Lee, H.J.; Jeong, H.; Jeong, J.H.; Kim, J.E.; Ahn, J.H.; Jung, K.H.; Gong, G.; Kim, H.H.; et al. Prognostic implications of HER2 changes after neoadjuvant chemotherapy in patients with HER2-zero and HER2-low breast cancer. Eur. J. Cancer 2023, 191, 112956. [Google Scholar] [CrossRef]
- Zhu, S.; Lu, Y.; Fei, X.; Shen, K.; Chen, X. Pathological complete response, category change, and prognostic significance of HER2-low breast cancer receiving neoadjuvant treatment: A multicenter analysis of 2489 cases. Br. J. Cancer 2023, 129, 1274–1283. [Google Scholar] [CrossRef] [PubMed]
- Schettini, F.; Nucera, S.; Braso-Maristany, F.; De Santo, I.; Pascual, T.; Bergamino, M.; Galvan, P.; Conte, B.; Segui, E.; Garcia Fructuoso, I.; et al. Unraveling the clinicopathological and molecular changes induced by neoadjuvant chemotherapy and endocrine therapy in hormone receptor-positive/HER2-low and HER2-0 breast cancer. ESMO Open 2024, 9, 103619. [Google Scholar] [CrossRef]
- Marchio, C.; Annaratone, L.; Marques, A.; Casorzo, L.; Berrino, E.; Sapino, A. Evolving concepts in HER2 evaluation in breast cancer: Heterogeneity, HER2-low carcinomas and beyond. Semin. Cancer Biol. 2021, 72, 123–135. [Google Scholar] [CrossRef]
- Shafi, H.; Astvatsaturyan, K.; Chung, F.; Mirocha, J.; Schmidt, M.; Bose, S. Clinicopathological significance of HER2/neu genetic heterogeneity in HER2/neu non-amplified invasive breast carcinomas and its concurrent axillary metastasis. J. Clin. Pathol. 2013, 66, 649–654. [Google Scholar] [CrossRef]
- Hu, X.E.; Yang, P.; Chen, S.; Wei, G.; Yuan, L.; Yang, Z.; Gong, L.; He, L.; Yang, L.; Peng, S.; et al. Clinical and biological heterogeneities in triple-negative breast cancer reveals a non-negligible role of HER2-low. Breast Cancer Res. 2023, 25, 34. [Google Scholar] [CrossRef]
- Geukens, T.; De Schepper, M.; Richard, F.; Maetens, M.; Van Baelen, K.; Mahdami, A.; Nguyen, H.L.; Isnaldi, E.; Leduc, S.; Pabba, A.; et al. Intra-patient and inter-metastasis heterogeneity of HER2-low status in metastatic breast cancer. Eur. J. Cancer 2023, 188, 152–160. [Google Scholar] [CrossRef]
- Fernandez, A.I.; Liu, M.; Bellizzi, A.; Brock, J.; Fadare, O.; Hanley, K.; Harigopal, M.; Jorns, J.M.; Kuba, M.G.; Ly, A.; et al. Examination of Low ERBB2 Protein Expression in Breast Cancer Tissue. JAMA Oncol. 2022, 8, 607–610. [Google Scholar] [CrossRef]
- Karakas, C.; Tyburski, H.; Turner, B.M.; Wang, X.; Schiffhauer, L.M.; Katerji, H.; Hicks, D.G.; Zhang, H. Interobserver and Interantibody Reproducibility of HER2 Immunohistochemical Scoring in an Enriched HER2-Low-Expressing Breast Cancer Cohort. Am. J. Clin. Pathol. 2023, 159, 484–491. [Google Scholar] [CrossRef]
- Martins-Branco, D.; Nader-Marta, G.; Molinelli, C.; Ameye, L.; Paesmans, M.; Ignatiadis, M.; Aftimos, P.; Salgado, R.; de Azambuja, E. Ki-67 index after neoadjuvant endocrine therapy as a prognostic biomarker in patients with ER-positive/HER2-negative early breast cancer: A systematic review and meta-analysis. Eur. J. Cancer 2023, 194, 113358. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Munoz, A.; Plata-Fernandez, Y.M.; Fernandez, M.; Jaen-Morago, A.; Fernandez-Navarro, M.; de la Torre-Cabrera, C.; Ramirez-Tortosa, C.; Lomas-Garrido, M.; Llacer, C.; Navarro-Perez, V.; et al. The role of immunohistochemistry in breast cancer patients treated with neoadjuvant chemotherapy: An old tool with an enduring prognostic value. Clin. Breast Cancer 2013, 13, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Han, D.; Wang, X.; Wang, Q.; Tian, J.; Yao, J.; Yuan, L.; Qian, K.; Zou, Q.; Yi, W.; et al. Prognostic values of Ki-67 in neoadjuvant setting for breast cancer: A systematic review and meta-analysis. Future Oncol. 2017, 13, 1021–1034. [Google Scholar] [CrossRef] [PubMed]
- Shaaban, A.M.; Provenzano, E. Receptor Status after Neoadjuvant Therapy of Breast Cancer: Significance and Implications. Pathobiology 2022, 89, 297–308. [Google Scholar] [CrossRef]
- van de Ven, S.; Smit, V.T.; Dekker, T.J.; Nortier, J.W.; Kroep, J.R. Discordances in ER, PR and HER2 receptors after neoadjuvant chemotherapy in breast cancer. Cancer Treat. Rev. 2011, 37, 422–430. [Google Scholar] [CrossRef]
- Niikura, N.; Tomotaki, A.; Miyata, H.; Iwamoto, T.; Kawai, M.; Anan, K.; Hayashi, N.; Aogi, K.; Ishida, T.; Masuoka, H.; et al. Changes in tumor expression of HER2 and hormone receptors status after neoadjuvant chemotherapy in 21,755 patients from the Japanese breast cancer registry. Ann. Oncol. 2016, 27, 480–487. [Google Scholar] [CrossRef]
- Kinsella, M.D.; Nassar, A.; Siddiqui, M.T.; Cohen, C. Estrogen receptor (ER), progesterone receptor (PR), and HER2 expression pre- and post- neoadjuvant chemotherapy in primary breast carcinoma: A single institutional experience. Int. J. Clin. Exp. Pathol. 2012, 5, 530–536. [Google Scholar]
- Tarantino, P.; Ajari, O.; Graham, N.; Vincuilla, J.; Parker, T.; Hughes, M.E.; Tayob, N.; Garrido-Castro, A.C.; Morganti, S.; King, T.A.; et al. Evolution of HER2 expression between pre-treatment biopsy and residual disease after neoadjuvant therapy for breast cancer. Eur. J. Cancer 2024, 201, 113920. [Google Scholar] [CrossRef]
- Baez-Navarro, X.; van Bockstal, M.R.; Jager, A.; van Deurzen, C.H.M. HER2-low breast cancer and response to neoadjuvant chemotherapy: A population-based cohort study. Pathology 2024, 56, 334–342. [Google Scholar] [CrossRef]
- Raghavendra, A.S.; Zakon, D.B.; Jin, Q.; Strahan, A.; Grimm, M.; Hughes, M.E.; Cherian, M.; Vincuilla, J.; Parker, T.; Tarantino, P.; et al. Clinical outcomes of early-stage triple-negative breast cancer after neoadjuvant chemotherapy according to HER2-low status☆. ESMO Open 2024, 9, 103973. [Google Scholar] [CrossRef]
- Chen, X.; Ji, L.; Qian, X.; Xiao, M.; Li, Q.; Li, Q.; Wang, J.; Fan, Y.; Luo, Y.; Lan, B.; et al. Evolution and prognostic significance of HER-2 conversion from primary to residual disease in HER-2 negative patients with breast cancer after neoadjuvant chemotherapy. Am. J. Cancer Res. 2024, 14, 3859–3872. [Google Scholar] [CrossRef] [PubMed]
- Acs, B.; Zambo, V.; Vizkeleti, L.; Szasz, A.M.; Madaras, L.; Szentmartoni, G.; Tokes, T.; Molnar, B.A.; Molnar, I.A.; Vari-Kakas, S.; et al. Ki-67 as a controversial predictive and prognostic marker in breast cancer patients treated with neoadjuvant chemotherapy. Diagn. Pathol. 2017, 12, 20. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Jin, Y.; Wang, M.; Song, Q.; Fan, Y.; Zhang, Y.; Tian, C.; Zhang, C.; Liu, S. Improved Prognosis in HER2-Low Breast Cancer Patients with Reduced Ki67 Index After Neoadjuvant Chemotherapy: A Multi-Center Retrospective Study. Breast Cancer 2024, 16, 667–678. [Google Scholar] [CrossRef] [PubMed]


| Characteristics | Primary Tumor | Residual Disease After NAC | ||
|---|---|---|---|---|
| N (%) | N (%) | |||
| Age at diagnosis (years) | 49 (24–75) | |||
| ≤50 | 281 (55.3) | |||
| >50 | 227 (46.7) | |||
| Menopausal status | ||||
| Premenopausal | 311 (61.2) | |||
| Postmenopausal | 197 (38.8) | |||
| BMI | ||||
| <24.0 | 186 (36.6) | |||
| ≥24.0 | 322 (63.4) | |||
| Histological grade | ||||
| I | 4 (0.8) | |||
| II | 254 (50.0) | |||
| III | 125 (24.6) | |||
| Unknown | 125 (24.6) | |||
| T stage | ||||
| T0~Tis | 3 (0.6) | T0~Tis | 12 (2.4) | |
| T1 | 34 (6.7) | T1 | 217 (42.7) | |
| T2 | 345 (67.9) | T2 | 229 (45.1) | |
| T3 | 99 (19.5) | T3 | 45 (8.8) | |
| T4 | 27 (5.3) | T4 | 5 (1.0) | |
| N stage | ||||
| N0 | 82 (16.1) | N0 | 178 (35.0) | |
| N1 | 302 (59.4) | N1 | 166 (32.7) | |
| N2 | 76 (15.0) | N2 | 80 (15.7) | |
| N3 | 48 (9.5) | N3 | 84 (16.5) | |
| ER median | 80 (0–90) | 90 (0–95) | ||
| ER status | ||||
| <1% | 74 (14.6) | <1% | 89 (17.5) | |
| ≥1% | 434 (85.4) | ≥1% | 419 (82.5) | |
| PR median | 30 (0–90) | 5 (0–90) | ||
| PR status | ||||
| <1% | 144 (28.3) | <1% | 208 (40.9) | |
| ≥1% | 364 (71.7) | ≥1% | 300 (59.1) | |
| HER2 status | ||||
| 0 | 103 (20.3) | 0 | 87 (17.1) | |
| 1+ | 256 (50.4) | 1+ | 250 (49.2) | |
| 2+/ISH− | 149 (29.3) | 2+/ISH− | 154 (30.3) | |
| 2+/ISH+ | 16 (3.1) | |||
| 3+ | 1 (0.2) | |||
| Ki-67 median | 35 (3–90) | 15 (0–85) | ||
| Ki-67 | ||||
| ≤30% | 234 (46.1) | ≤30% | 395 (77.8) | |
| >30% | 274 (53.9) | >30% | 113 (22.2) | |
| A. Differences Based on the Mean. | |||
| Primary Tumor | Residual Disease After NAC | p | |
| ER mean | 64.2 (0–90) | 64.3 (0–95) | 0.883 a |
| PR mean | 37.5 (0–90) | 21.2 (0–90) | <0.001 a |
| Ki-67 mean | 40.2 (3–90) | 22.5 (0–85) | <0.001 a |
| B. Differences Based on IHC Scores. | |||
| Primary Tumor | Residual Disease After NAC | p | |
| Negative/Low N (%) | Positive/High N (%) | ||
| ER status | <0.001 b | ||
| <1% | 68 (91.9) | 6 (8.1) | |
| ≥1% | 21 (4.8) | 413 (95.2) | |
| PR status | <0.001 b | ||
| <1% | 122 (84.7) | 22 (15.3) | |
| ≥1% | 86 (23.6) | 278 (76.4) | |
| Ki-67 status | <0.001 b | ||
| ≤30% | 218 (93.2) | 16 (6.8) | |
| >30% | 177 (64.6) | 97 (35.4) | |
| Characteristics | HER2-0 Before NAC (N = 102) | HER2-Low Before NAC (N = 389) | ||||
|---|---|---|---|---|---|---|
| Constant 0 N (%) | 0 to Low N (%) | p | Constant Low N (%) | Low to 0 N (%) | p | |
| Age at diagnosis (years) | 0.485 | 0.071 | ||||
| ≤50 | 27 (48.2) | 29 (51.8) | 186 (86.9) | 28 (13.1) | ||
| >50 | 19 (41.3) | 27 (58.7) | 162 (92.6) | 13 (7.4) | ||
| Menopausal status | 0.170 | 0.072 | ||||
| Premenopausal | 26 (40.0) | 39 (60.0) | 204 (87.2) | 30 (12.8) | ||
| Postmenopausal | 20 (54.1) | 17 (45.9) | 144 (92.9) | 11 (7.1) | ||
| BMI | 0.750 | 0.687 | ||||
| <24.0 | 17 (47.2) | 19 (52.8) | 130 (90.3) | 14 (9.7) | ||
| ≥24.0 | 29 (43.9) | 37 (56.1) | 218 (89.0) | 27 (11.0) | ||
| Histological grade | 0.027 | 0.245 | ||||
| I + II | 15 (33.3) | 30 (66.7) | 189 (92.2) | 16 (7.8) | ||
| III | 12 (63.2) | 7 (36.8) | 89 (88.1) | 12 (11.9) | ||
| T stage | 0.247 | 0.472 | ||||
| T0/Tis/T1 | 6 (54.5) | 5 (45.5) | 23 (88.5) | 3 (11.5) | ||
| T2 | 28 (42.4) | 38 (57.6) | 235 (88.0) | 32 (12.0) | ||
| T3 | 6 (35.3) | 11 (64.7) | 72 (93.5) | 5 (6.5) | ||
| T4 | 6 (75.0) | 2 (25.0) | 18 (94.7) | 1 (5.3) | ||
| N stage | 0.773 | 0.704 | ||||
| N0 | 7 (58.3) | 5 (41.7) | 63 (92.6) | 5 (7.4) | ||
| N1 | 29 (44.6) | 36 (55.4) | 200 (88.1) | 27 (11.9) | ||
| N2 | 6 (40.0) | 9 (60.0) | 51 (89.5) | 6 (10.5) | ||
| N3 | 4 (40.0) | 6 (60.0) | 34 (91.9) | 3 (8.1) | ||
| ER status | 0.203 | 0.028 | ||||
| <1% | 15 (55.6) | 12 (44.4) | 36 (80.0) | 9 (20.0) | ||
| ≥1% | 31 (41.3) | 44 (58.7) | 312 (90.7) | 32 (9.3) | ||
| PR status | 0.129 | 0.021 | ||||
| <1% | 25 (53.2) | 22 (46.8) | 79 (83.2) | 16 (16.8) | ||
| ≥1% | 21 (38.2) | 34 (61.8) | 269 (91.5) | 25 (8.5) | ||
| HER2 IHC score | 0.001 | |||||
| 0 | ||||||
| 1+ | 211 (85.4) | 36 (14.6) | ||||
| 2+/ISH− | 137 (96.5) | 5 (3.5) | ||||
| Ki-67 | 0.455 | 0.195 | ||||
| ≤30% | 14 (40.0) | 21 (60.0) | 173 (91.5) | 16 (8.5) | ||
| >30% | 32 (47.8) | 35 (52.2) | 175 (87.5) | 25 (12.5) | ||
| TIL | 0.445 | 0.049 | ||||
| ≤10% | 28 (42.4) | 38 (57.6) | 251 (91.6) | 23 (8.4) | ||
| >10% | 3 (60.0) | 2 (40.0) | 37 (82.2) | 8 (17.8) | ||
| Characteristics | Multivariate Analysis | ||
|---|---|---|---|
| HR | 95% CI | p | |
| Age at diagnosis (years) | |||
| >50 (versus ≤ 50) | 0.949 | 0.205–4.423 | 0.952 |
| Menopausal status | |||
| Postmenopausal (versus Premenopausal) | 0.762 | 0.150–3.871 | 0.743 |
| ER status | |||
| ≥1% (versus < 1%) | 0.847 | 0.230–3.121 | 0.803 |
| PR status | |||
| ≥1% (versus < 1%) | 0.613 | 0.221–1.702 | 0.347 |
| HER2 status | |||
| IHC 2+/ISH− (versus IHC 1+) | 0.303 | 0.110–0.829 | 0.020 |
| TIL | |||
| >10% (versus ≤ 10%) | 2.241 | 0.894–5.614 | 0.085 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ma, Y.; Yang, Y.; Zhu, M.; Yu, Y.; Wang, X. Changes in HER2, ER, PR, and Ki-67 in HER2-Negative Breast Cancer After Neoadjuvant Chemotherapy: A Case–Control Study. Curr. Oncol. 2026, 33, 6. https://doi.org/10.3390/curroncol33010006
Ma Y, Yang Y, Zhu M, Yu Y, Wang X. Changes in HER2, ER, PR, and Ki-67 in HER2-Negative Breast Cancer After Neoadjuvant Chemotherapy: A Case–Control Study. Current Oncology. 2026; 33(1):6. https://doi.org/10.3390/curroncol33010006
Chicago/Turabian StyleMa, Youzhao, Yan Yang, Mingda Zhu, Yue Yu, and Xin Wang. 2026. "Changes in HER2, ER, PR, and Ki-67 in HER2-Negative Breast Cancer After Neoadjuvant Chemotherapy: A Case–Control Study" Current Oncology 33, no. 1: 6. https://doi.org/10.3390/curroncol33010006
APA StyleMa, Y., Yang, Y., Zhu, M., Yu, Y., & Wang, X. (2026). Changes in HER2, ER, PR, and Ki-67 in HER2-Negative Breast Cancer After Neoadjuvant Chemotherapy: A Case–Control Study. Current Oncology, 33(1), 6. https://doi.org/10.3390/curroncol33010006
