Impact of Body Composition on Progression-Free Survival in Patients with Metastatic Breast Cancer Treated with Ribociclib
Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Patients and Survival
2.2. Body Composition Analysis
2.3. Statistical Analysis
2.4. Ethics Approval
3. Results
3.1. Study Population and Characteristics
3.2. Body Composition Parameters and Survival
3.3. Body Composition Parameters and Treatment-Related Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Howlader, N.; Altekruse, S.F.; Li, C.I.; Chen, V.W.; Clarke, C.A.; Ries, L.A.; Cronin, K.A. US incidence of breast cancer subtypes defined by joint hormone receptor and HER2 status. J. Natl. Cancer Inst. 2014, 106, dju055. [Google Scholar] [CrossRef]
- Parise, C.A.; Caggiano, V. Risk of mortality of node-negative, ER/PR/HER2 breast cancer subtypes in T1, T2, and T3 tumors. Breast Cancer Res. Treat. 2017, 165, 743–750. [Google Scholar] [CrossRef]
- Hortobagyi, G.N.; Stemmer, S.M.; Burris, H.A.; Yap, Y.-S.; Sonke, G.S.; Hart, L.; Campone, M.; Petrakova, K.; Winer, E.P.; Janni, W.; et al. Overall Survival with Ribociclib plus Letrozole in Advanced Breast Cancer. N. Engl. J. Med. 2022, 386, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Berclaz, G.; Li, S.; Price, K.N.; Coates, A.S.; Castiglione-Gertsch, M.; Rudenstam, C.-M.; Holmberg, S.B.; Lindtner, J.; Erien, D.; Collins, J.; et al. Body mass index as a prognostic feature in operable breast cancer: The International Breast Cancer Study Group experience. Ann. Oncol. 2004, 15, 875–884. [Google Scholar] [CrossRef]
- Saleh, K.; Carton, M.; Dieras, V.; Heudel, P.-E.; Brain, E.; D’hOndt, V.; Mailliez, A.; Patsouris, A.; Mouret-Reynier, M.-A.; Goncalves, A.; et al. Impact of body mass index on overall survival in patients with metastatic breast cancer. Breast 2021, 55, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.S.M.; Vieira, A.R.; Aune, D.; Bandera, E.V.; Greenwood, D.C.; McTiernan, A.; Rosenblatt, D.N.; Thune, I.; Vieira, R.; Norat, T. Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann. Oncol. 2014, 25, 1901–1914. [Google Scholar] [CrossRef] [PubMed]
- Franzoi, M.A.; Eiger, D.; Ameye, L.; Ponde, N.; Caparica, R.; De Angelis, C.; Brandão, M.; Desmedt, C.; Di Cosimo, S.; Kotecki, N.; et al. Clinical Implications of Body Mass Index in Metastatic Breast Cancer Patients Treated With Abemaciclib and Endocrine Therapy. JNCI J. Natl. Cancer Inst. 2021, 113, 462–470. [Google Scholar] [CrossRef]
- Snijder, M.B.; Van Dam, R.M.; Visser, M.; Seidell, J.C. What aspects of body fat are particularly hazardous and how do we measure them? Int. J. Epidemiol. 2006, 35, 83–92. [Google Scholar] [CrossRef]
- Bradshaw, P.T.; Feliciano, E.M.C.; Prado, C.M.; Alexeeff, S.; Albers, K.B.; Chen, W.Y.; Caan, B.J. Adipose Tissue Distribution and Survival Among Women with Nonmetastatic Breast Cancer. Obesity 2019, 27, 997–1004. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.; Bae, S.J.; Ahn, S.G.; Jeong, J.; Park, W.-C.; Ryu, Y.H.; Jeon, T.J.; Lee, Y.; Cha, Y.J.; et al. 18F-FDG uptake of visceral adipose tissue on preoperative PET/CT as a predictive marker for breast cancer recurrence. Sci. Rep. 2022, 12, 21109. [Google Scholar] [CrossRef]
- Cheng, E.; Caan, B.J.; Chen, W.Y.; Irwin, M.L.; Prado, C.M.; Feliciano, E.M.C. Adipose tissue radiodensity and mortality among patients with nonmetastatic breast cancer. Clin. Nutr. 2022, 41, 2607–2613. [Google Scholar] [CrossRef]
- Jang, M.K.; Park, S.; Park, C.; Raszewski, R.; Park, S.; Kim, S. Sarcopenia in patients with metastatic breast cancer: A systematic review and meta-analysis. Breast 2025, 82, 104508. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Lee, J.; Cho, E.; Lee, H.S.; Shin, S.; Park, E.J.; Baik, S.H.; Lee, K.Y.; Kang, J. Albumin-myosteatosis gauge as a novel prognostic risk factor in patients with non-metastatic colorectal cancer. J. Cachexia Sarcopenia Muscle 2023, 14, 860–868. [Google Scholar] [CrossRef]
- Sahin, T.K.; Ozbay, Y.; Altunbulak, A.Y.; Altunbulak, H.I.; Onur, M.R.; Ceylan, F.; Guven, D.C.; Yalcin, S.; Dizdar, O. Albumin-myosteatosis gauge as a prognostic factor in patients with advanced pancreatic cancer undergoing first-line chemotherapy. Int. J. Clin. Oncol. 2024, 29, 822–831. [Google Scholar] [CrossRef]
- Martin, L.; Birdsell, L.; MacDonald, N.; Reiman, T.; Clandinin, M.T.; McCargar, L.J.; Murphy, R.; Ghosh, S.; Sawyer, M.B.; Baracos, V.E. Cancer cachexia in the age of obesity: Skeletal muscle depletion is a powerful prognostic factor, independent of body mass index. J. Clin. Oncol. 2013, 31, 1539–1547. [Google Scholar] [CrossRef]
- Ligibel, J.A.; Alfano, C.M.; Courneya, K.S.; Demark-Wahnefried, W.; Burger, R.A.; Chlebowski, R.T.; Fabian, C.J.; Gucalp, A.; Hershman, D.L.; Hudson, M.M.; et al. American Society of Clinical Oncology position statement on obesity and cancer. J. Clin. Oncol. 2014, 32, 3568–3574. [Google Scholar] [CrossRef]
- Park, J.; Morley, T.S.; Kim, M.; Clegg, D.J.; Scherer, P.E. Obesity and cancer--mechanisms underlying tumour progression and recurrence. Nat. Rev. Endocrinol. 2014, 10, 455–465. [Google Scholar] [PubMed]
- Mukai, K.; Tsai, M.; Saito, H.; Galli, S.J. Mast cells as sources of cytokines, chemokines, and growth factors. Immunol. Rev. 2018, 282, 121–150. [Google Scholar] [CrossRef] [PubMed]
- Cancello, R.; Tordjman, J.; Poitou, C.; Guilhem, G.; Bouillot, J.L.; Hugol, D.; Coussieu, C.; Basdevant, A.; Bar Hen, A.; Bedossa, P.; et al. Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006, 55, 1554–1561. [Google Scholar] [CrossRef]
- Quail, D.F.; Dannenberg, A.J. The obese adipose tissue microenvironment in cancer development and progression. Nat. Rev. Endocrinol. 2019, 15, 139–154. [Google Scholar] [CrossRef]
- Neuhouser, M.L.; Aragaki, A.K.; Prentice, R.L.; Manson, J.E.; Chlebowski, R.; Carty, C.L.; Ochs-Balcom, H.M.; Thomson, C.A.; Caan, B.J.; Tinker, L.F.; et al. Overweight, Obesity, and Postmenopausal Invasive Breast Cancer Risk: A Secondary Analysis of the Women’s Health Initiative Randomized Clinical Trials. JAMA Oncol. 2015, 1, 611–621. [Google Scholar] [CrossRef]
- Kang, H.; Kim, I.; Park, H.; Ahn, W.; Kim, S.K.; Lee, S. Prognostic value of body composition measures in breast cancer patients treated with chemotherapy. Sci. Rep. 2024, 14, 23309. [Google Scholar] [CrossRef]
- Peretz, S.Y.; Kessner, R.; Bar, Y.; Sonnenblick, A.; Lerner, S.; Deutsch-Lukatsky, A.; Popuri, K.; Beg, M.F.; Shachar, S.S. Body composition metrics as a determinant of trastuzumab deruxtecan related toxicity and response. NPJ Breast Cancer 2025, 11, 38. [Google Scholar] [CrossRef]
- Pahk, K.; Joung, C.; Kim, S. Visceral fat metabolic activity evaluated by preoperative 18F-FDG PET/CT significantly affects axillary lymph node metastasis in postmenopausal luminal breast cancer. Sci. Rep. 2020, 10, 1348. [Google Scholar] [CrossRef]
- Miao, S.; Jia, H.; Huang, W.; Cheng, K.; Zhou, W.; Wang, R. Subcutaneous fat predicts bone metastasis in breast cancer: A novel multimodality-based deep learning model. Cancer Biomark. 2024, 39, 171–185. [Google Scholar] [CrossRef] [PubMed]
- James, A.D.; Schiller, H.; Marvalin, C.; Jin, Y.; Borell, H.; Roffel, A.F.; Glaenzel, U.; Ji, Y.; Camenisch, G. An integrated assessment of the ADME properties of the CDK4/6 Inhibitor ribociclib utilizing preclinical in vitro, in vivo, and human ADME data. Pharmacol. Res. Perspect. 2020, 8, e00599. [Google Scholar] [CrossRef] [PubMed]
- Ellero, S.; Chakhtoura, G.; Barreau, C.; Langouët, S.; Benelli, C.; Penicaud, L.; Beaune, P.; de Waziers, I. Xenobiotic-metabolizing cytochromes p450 in human white adipose tissue: Expression and induction. Drug Metab. Dispos. 2010, 38, 679–686. [Google Scholar] [CrossRef]
- Çağlayan, D.; Koçak, M.Z.; Geredeli, Ç.; Atcı, M.M.; Tatlı, A.M.; Göksu, S.S.; Eryılmaz, M.K.; Araz, M.; Artaç, M. The impact of body mass index on the progression-free survival of CDK 4/6 inhibitors in metastatic breast cancer patients. Future Oncol. 2024, 20, 3099–3105. [Google Scholar] [CrossRef] [PubMed]
- Kripa, E.; Rizzo, V.; Galati, F.; Moffa, G.; Cicciarelli, F.; Catalano, C.; Pediconi, F. Do body composition parameters correlate with response to targeted therapy in ER+/HER2- metastatic breast cancer patients? Role of sarcopenia and obesity. Front. Oncol. 2022, 12, 987012. [Google Scholar] [CrossRef]
- Yücel, K.B.; Aydos, U.; Sütcüoglu, O.; Kılıç, A.C.K.; Özdemir, N.; Özet, A.; Yazıcı, O. Visceral obesity and sarcopenia as predictors of efficacy and hematological toxicity in patients with metastatic breast cancer treated with CDK 4/6 inhibitors. Cancer Chemother. Pharmacol. 2024, 93, 497–507. [Google Scholar] [CrossRef] [PubMed]
- Poltronieri, T.S.; Pérsico, R.S.; Viana, L.V. Body adipose tissue depots and treatment outcomes for women with breast cancer: A systematic review. Clin. Nutr. 2024, 43, 1033–1042. [Google Scholar] [CrossRef] [PubMed]
- Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860–867. [Google Scholar] [CrossRef] [PubMed]
n: 73 | |
---|---|
Age, median (IQR) | 56 (44–68.5) |
De novo metastasis, n (%) | 34 (46.5%) |
Number of postmenopausal patients n (%) | 35 (47.9%) |
Body mass index, median (IQR) | 28.05 (25.3–31.2%) |
İnvasive ductal carcinoma, n (%) | 61(83.6%) |
İnvasive lobular carcinoma, n (%) | 8 (10.9%) |
İnvasive mixed carcinoma, n (%) | 4 (5.5%) |
Bone metastasis, n (%) | 57 (78%) |
Liver metastasis, n (%) | 10 (13.6%) |
Lung metastasis, n (%) | 24 (32.8%) |
Lymph node metastasis, n (%) | 43 (58.9%) |
Ribociclib with letrozole, n (%) | 45 (61.6%) |
Ribociclib with fulvestrant, n (%) | 28 (38.4%) |
Univariable Analysis HR (95% CI) | p | Multivariable Analysis HR (%95 CI) | p | |
---|---|---|---|---|
Age (≥65 vs. <65) | 1.28 (0.45–3.67) | 0.635 | ||
BMI (≥25 vs. <25 kg/m2) | 1.35 (0.45–4.01) | 0.590 | ||
Menopausal status (+ vs. −) | 0.72 (0.26–1.99) | 0.528 | ||
De- novo metastasis (+ vs. −) | 1.33 (0.53–3.35) | 0.541 | ||
Endocrine partner drug | 0.94 (0.34–2.60) | 0.910 | ||
SAT suvmean (≥0.27 vs. <0.27) | 2.09 (0.81–5.33) | 0.123 | 3.15 (1.06–9.32) | 0.038 |
SAT volume (≥234.6 vs. <234.6 | 2.59 (1.008–6.67) | 0.048 | 4.96 (1.34–18.2) | 0.016 |
SAT index (≥90.1 vs. <90.1) | 2.06 (0.81–5.24) | 0.129 | 2.42 (0.22–26.0) | 0.465 |
VAT suvmean (≥0.72 vs. <0.72) | 0.93 (0.37–2.35) | 0.887 | ||
VAT volume (≥132 vs. <132) | 1.32 (0.52–3.31) | 0.555 | ||
VAT index (≥52.8 vs. <52.8) | 1.31 (0.52–3.31) | 0.555 | ||
SMI (≥41 vs. <41) | 0.75 (0.22–2.49) | 0.639 | ||
SMD (≥31 vs. <31) | 0.68 (0.27–1.73) | 0.426 | ||
AMG (≥135.5 vs. <135.5) | 0.79 (0.30–2.05) | 0.633 |
n: 73 | Adverse Events | p | Dose Reduction | p |
---|---|---|---|---|
Age (≥65 vs. <65) | 9 (47.4%) vs. 18 (33.3%) | 0.276 | 10 (52.6%) vs. 11 (20.4%) | 0.008 |
BMI (≥25 vs. <25 kg/m2) | 19 (34.5%) vs. 8 (47.1%) | 0.352 | 15 (27.3%) vs. 6 (35.3%) | 0.525 |
SAT suvmean (≥0.27 vs. <0.27) | 9 (23.1%) vs. 18 (52.9%) | 0.008 | 12 (30.8%) vs. 9 (26.5%) | 0.686 |
SAT volume (≥234.6 vs. <234.6) | 12 (32.4%) vs. 15 (41.7%) | 0.414 | 11 (29.7%) vs. 10 (27.8%) | 0.854 |
SAT index (≥90.1 vs. <90.1) | 12 (32.4%) vs. 15 (41.7%) | 0.414 | 10 (27%) vs. 11 (30.6%) | 0.739 |
VAT suvmean (≥0.72 vs. <0.72) | 10 (25.6%) vs. 17 (50%) | 0.032 | 13 (33.3%) vs. 8 (23.5%) | 0.356 |
VAT volume (≥132 vs. <132) | 11 (29.7%) vs. 16 (44.4%) | 0.193 | 9 (24.3%) vs. 12 (33.3%) | 0.395 |
VAT index (≥52.8 vs. <52.8) | 11 (29.7%) vs. 16 (44.4%) | 0.193 | 9 (24.3%) vs. 12 (33.3%) | 0.395 |
SMI (≥41 vs. <41) | 21 (35.0%) vs. 6 (46.2%) | 0.450 | 18 (30%) vs. 3 (23.1%) | 0.617 |
SMD (≥31 vs. <31) | 14 (35.9%) vs. 13 (38.2%) | 0.836 | 8 (20.5%) vs. 13 (38.2%) | 0.095 |
AMG (≥135.5 vs. <135.5) | 13 (34.1%) vs. 12 (32.4%) | 0.811 | 8 (21.6%) vs. 12 (32.4%) | 0.222 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oruç, A.; Erol, M.; Şahin, Ö.; Karakurt Eryılmaz, M.; Araz, M.; Artaç, M. Impact of Body Composition on Progression-Free Survival in Patients with Metastatic Breast Cancer Treated with Ribociclib. Curr. Oncol. 2025, 32, 510. https://doi.org/10.3390/curroncol32090510
Oruç A, Erol M, Şahin Ö, Karakurt Eryılmaz M, Araz M, Artaç M. Impact of Body Composition on Progression-Free Survival in Patients with Metastatic Breast Cancer Treated with Ribociclib. Current Oncology. 2025; 32(9):510. https://doi.org/10.3390/curroncol32090510
Chicago/Turabian StyleOruç, Ahmet, Mustafa Erol, Özlem Şahin, Melek Karakurt Eryılmaz, Murat Araz, and Mehmet Artaç. 2025. "Impact of Body Composition on Progression-Free Survival in Patients with Metastatic Breast Cancer Treated with Ribociclib" Current Oncology 32, no. 9: 510. https://doi.org/10.3390/curroncol32090510
APA StyleOruç, A., Erol, M., Şahin, Ö., Karakurt Eryılmaz, M., Araz, M., & Artaç, M. (2025). Impact of Body Composition on Progression-Free Survival in Patients with Metastatic Breast Cancer Treated with Ribociclib. Current Oncology, 32(9), 510. https://doi.org/10.3390/curroncol32090510