Critical Review of Hearing Rehabilitation in Pediatric Oncology: Specific Considerations and Barriers
Simple Summary
Abstract
1. Introduction
2. Treatment Modalities for Childhood Cancers and the Pathophysiology of Their Impact on Hearing (Figure 1)
2.1. Overview of Ototoxic Treatments in Pediatric Oncology
2.2. Cisplatin-Induced Ototoxicity
2.3. Radiation Therapy and Effects on the Inner Ear
2.4. Risk Mitigation and Prevention
3. Effects of Oncologic Therapies on the Temporal Bone: Insights into Bone Mineral Density and Candidate Biomarkers of Temporal Bone Metabolisms in Pediatric Patients
4. Types of Hearing Implants and Considerations for Implant Osseointegration (Figure 2)
4.1. Bone Conduction Hearing Devices: Indications and Options
4.2. Cochlear Implants in Pediatric Oncology
4.3. MRI-Related Considerations for Hearing Implants
5. Impact of Chemotherapy, Radiotherapy, and Chemoradiation on the Auditory System
6. Potential Future Directions for Research
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
QoL | quality of life |
RT | radiation therapy |
OME | otitis media with effusion |
CNS | central nervous system |
ALL | acute lymphoblastic leukemia |
BMD | bone mineral density |
LS | lumbar spine |
DXA | dual energy x-ray absorptiometry |
CS | corticosteroids |
PBT | proton beam radiotherapy |
ROS | reactive oxygen species |
CI | cochlear implant |
BCHD | bone conduction hearing devices |
MRI | magnetic resonance imaging |
References
- CDC; United States Cancer Statistics (USCS). United States Cancer Statistics. 10 June 2025. Available online: https://www.cdc.gov/united-states-cancer-statistics/index.html (accessed on 21 July 2025).
- National Childhood Cancer Registry Explorer (NCCR*Explorer). Available online: https://nccrexplorer.ccdi.cancer.gov/ (accessed on 4 February 2024).
- Freedman, J.L.; Beeler, D.M.; Bowers, A.; Bradford, N.; Cheung, Y.T.; Davies, M.; Dupuis, L.L.; Elgarten, C.W.; Jones, T.M.; Jubelirer, T.; et al. Supportive Care in Pediatric Oncology: Opportunities and Future Directions. Cancers 2023, 15, 5549. [Google Scholar] [CrossRef] [PubMed]
- Strebel, S.; Baust, K.; Grabow, D.; Byrne, J.; Langer, T.; Am Zehnhoff-Dinnesen, A.; Kuonen, R.; Weiss, A.; Kepak, T.; Kruseova, J.; et al. Auditory complications among childhood cancer survivors and health-related quality of life: A PanCareLIFE study. J. Cancer Surviv. 2023, 19, 162–173. [Google Scholar] [CrossRef]
- Late Effects of Treatment for Childhood Cancer (PDQ®)—NCI. 23 April 2004. Available online: https://www.cancer.gov/types/childhood-cancers/late-effects-hp-pdq (accessed on 28 June 2025).
- Yoshinaga-Itano, C.; Sedey, A.L.; Coulter, D.K.; Mehl, A.L. Language of early- and later-identified children with hearing loss. Pediatrics 1998, 102, 1161–1171. [Google Scholar] [CrossRef]
- Bass, J.K.; Liu, W.; Banerjee, P.; Brinkman, T.M.; Mulrooney, D.A.; Gajjar, A.; Pappo, A.S.; Merchant, T.E.; Armstrong, G.T.; Srivastava, D.; et al. Association of Hearing Impairment With Neurocognition in Survivors of Childhood Cancer. JAMA Oncol. 2020, 6, 1363–1371. [Google Scholar] [CrossRef]
- Hall, M.L.; Eigsti, I.-M.; Bortfeld, H.; Lillo-Martin, D. Executive Function in Deaf Children: Auditory Access and Language Access. J. Speech Lang. Hear. Res. 2018, 61, 1970–1988. [Google Scholar] [CrossRef]
- de Jong, T.J.; van der Schroeff, M.P.; Stapersma, L.; Vroegop, J.L. A systematic review on the impact of auditory functioning and language proficiency on psychosocial difficulties in children and adolescents with hearing loss. Int. J. Audiol. 2024, 63, 675–685. [Google Scholar] [CrossRef]
- Lieu, J.E.C. Unilateral hearing loss in children: Speech-language and school performance. B-ENT 2013, (Suppl. 21), 107–115. [Google Scholar] [PubMed] [PubMed Central]
- Lieu, J.E.C.; Kenna, M.; Anne, S.; Davidson, L. Hearing Loss in Children: A Review. JAMA 2020, 324, 2195–2205. [Google Scholar] [CrossRef]
- Fellinger, J.; Holzinger, D.; Pollard, R. Mental health of deaf people. Lancet 2012, 379, 1037–1044. [Google Scholar] [CrossRef]
- Phillips, O.R.; Baguley, D.M.; Pearson, S.E.; Akeroyd, M.A. The long-term impacts of hearing loss, tinnitus and poor balance on the quality of life of people living with and beyond cancer after platinum-based chemotherapy: A literature review. J. Cancer Surviv. 2023, 17, 40–58. [Google Scholar] [CrossRef] [PubMed]
- Olusanya, B.O.; Neumann, K.J.; Saunders, J.E. The global burden of disabling hearing impairment: A call to action. Bull. World Health Organ. 2014, 92, 367–373. [Google Scholar] [CrossRef] [PubMed]
- WHO. Deafness and Hearing Loss. February 2017. Available online: https://www.who.int/news-room/fact-sheets/detail/deafness-and-hearing-loss (accessed on 8 June 2025).
- CDC. Treatment and Intervention for Hearing Loss. Hearing Loss in Children; 16 May 2024. Available online: https://www.cdc.gov/hearing-loss-children/treatment/index.html (accessed on 30 June 2025).
- Keilty, D.; Khandwala, M.; Liu, Z.A.; Papaioannou, V.; Bouffet, E.; Hodgson, D.; Yee, R.; Cushing, S.; Laperriere, N.; Ahmed, S.; et al. Hearing Loss After Radiation and Chemotherapy for CNS and Head-and-Neck Tumors in Children. J. Clin. Oncol. 2021, 39, 3813–3821. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Board on Health Care Services; Committee on Childhood Cancers and Disability. Childhood Cancer and Functional Impacts Across the Care Continuum; Aiuppa, L., Cartaxo, T., Spicer, C.M., Volberding, P.A., Eds.; National Academies Press (US): Washington, DC, USA, 2020. Available online: http://www.ncbi.nlm.nih.gov/books/NBK569409/ (accessed on 8 June 2025).
- Lamb, B.W.; Taylor, C.; Lamb, J.N.; Strickland, S.L.; Vincent, C.; Green, J.S.A.; Sevdalis, N. Facilitators and barriers to teamworking and patient centeredness in multidisciplinary cancer teams: Findings of a national study. Ann. Surg. Oncol. 2013, 20, 1408–1416. [Google Scholar] [CrossRef]
- Graetz, D.E.; Chen, Y.; Devidas, M.; Antillon-Klussmann, F.; Fu, L.; Quintero, K.; Fuentes-Alabi, S.L.; Gassant, P.Y.; Kaye, E.C.; Baker, J.N.; et al. Interdisciplinary care of pediatric oncology patients: A survey of clinicians in Central America and the Caribbean. Pediatr. Blood Cancer 2023, 70, e30244. [Google Scholar] [CrossRef]
- Helms, L.; Guimera, A.E.; Janeway, K.A.; Bailey, K.M. Innovations in Cancer Treatment of Children. Pediatrics 2023, 152, e2023061539. [Google Scholar] [CrossRef]
- Leite, R.A.; Vosgrau, J.S.; Neto, L.C.; Santos, N.P.; Matas, S.L.d.A.; Filho, V.O.; Matas, C.G. Brainstem auditory pathway of children with acute lymphoid leukemia on chemotherapy with methotrexate. Arq. Neuro-Psiquiatr. 2020, 78, 63–69. [Google Scholar] [CrossRef]
- Shuper, A.; Stark, B.; Kornreich, L.; Cohen, I.J.; Avrahami, G.; Yaniv, I. Methotrexate-related neurotoxicity in the treatment of childhood acute lymphoblastic leukemia. Isr. Med. Assoc. J. 2002, 4, 1050–1053. [Google Scholar] [PubMed]
- Nader, M.-E.; Gidley, P.W. Challenges of Hearing Rehabilitation after Radiation and Chemotherapy. J. Neurol. Surg. B Skull Base 2019, 80, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Cancer in Children and Adolescents—NCI. 29 August 2024. Available online: https://www.cancer.gov/types/childhood-cancers/child-adolescent-cancers-fact-sheet (accessed on 15 July 2025).
- Cohen-Cutler, S.; Wong, K.; Mena, V.; Sianto, K.; Wright, M.A.; Olch, A.; Orgel, E. Hearing Loss Risk in Pediatric Patients Treated with Cranial Irradiation and Cisplatin-Based Chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 1488–1495. [Google Scholar] [CrossRef]
- Hua, C.; Bass, J.K.; Khan, R.; Kun, L.E.; Merchant, T.E. Hearing loss after radiotherapy for pediatric brain tumors: Effect of cochlear dose. Int. J. Radiat. Oncol. Biol. Phys. 2008, 72, 892–899. [Google Scholar] [CrossRef]
- Huang, Y.; Zhou, H.; An, F.; Zhao, A.; Wu, J.; Wang, M.; Luo, J. The relevance of ototoxicity induced by radiotherapy. Radiat. Oncol. 2023, 18, 95. [Google Scholar] [CrossRef]
- Murphy, B.; Jackson, A.; Bass, J.K.; Tsang, D.S.; Ronckers, C.M.; Kremer, L.; Baliga, S.; Olch, A.; Zureick, A.H.; Jee, K.-W.; et al. Modeling the Risk of Hearing Loss From Radiation Therapy in Childhood Cancer Survivors: A PENTEC Comprehensive Review. Int. J. Radiat. Oncol. Biol. Phys. 2023, 119, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Types of Cancer Treatment—NCI. 31 July 2017. Available online: https://www.cancer.gov/about-cancer/treatment/types (accessed on 21 January 2024).
- Ad, K.; Hj, P. Mode of DNA binding of cis-platinum(II) antitumor drugs: A base sequence-dependent mechanism is proposed. Cancer Treat. Rep. 1979, 63, 1445–1452. [Google Scholar]
- Breglio, A.M.; Rusheen, A.E.; Shide, E.D.; Fernandez, K.A.; Spielbauer, K.K.; McLachlin, K.M.; Hall, M.D.; Amable, L.; Cunningham, L.L. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat. Commun. 2017, 8, 1654. [Google Scholar] [CrossRef]
- Marullo, R.; Werner, E.; Degtyareva, N.; Moore, B.; Altavilla, G.; Ramalingam, S.S.; Doetsch, P.W. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions. PLoS ONE 2013, 8, e81162. [Google Scholar] [CrossRef]
- Xue, D.-F.; Pan, S.-T.; Huang, G.; Qiu, J.-X. ROS enhances the cytotoxicity of cisplatin by inducing apoptosis and autophagy in tongue squamous cell carcinoma cells. Int. J. Biochem. Cell Biol. 2020, 122, 105732. [Google Scholar] [CrossRef]
- Mukherjea, D.; Jajoo, S.; Whitworth, C.; Bunch, J.R.; Turner, J.G.; Rybak, L.P.; Ramkumar, V. Short Interfering RNA against Transient Receptor Potential Vanilloid 1 Attenuates Cisplatin-Induced Hearing Loss in the Rat. J. Neurosci. 2008, 28, 13056–13065. [Google Scholar] [CrossRef]
- Karasawa, T.; Steyger, P.S. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity. Toxicol. Lett. 2015, 237, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Paken, J.; Govender, C.D.; Pillay, M.; Sewram, V. A Review of Cisplatin-Associated Ototoxicity. Semin. Hear. 2019, 40, 108–121. [Google Scholar] [CrossRef]
- Chirtes, F.; Albu, S. Prevention and Restoration of Hearing Loss Associated with the Use of Cisplatin. BioMed Res. Int. 2014, 2014, 925485. [Google Scholar] [CrossRef]
- Callejo, A.; Sedó-Cabezón, L.; Domènech Juan, I.; Llorens, J. Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies. Toxics 2015, 3, 268–293. [Google Scholar] [CrossRef]
- Prayuenyong, P.; Baguley, D.M.; Kros, C.J.; Steyger, P.S. Preferential Cochleotoxicity of Cisplatin. Front. Neurosci. 2021, 15, 695268. [Google Scholar] [CrossRef] [PubMed]
- Rybak, L.P.; Whitworth, C.A.; Mukherjea, D.; Ramkumar, V. Mechanisms of cisplatin-induced ototoxicity and prevention. Hear. Res. 2007, 226, 157–167. [Google Scholar] [CrossRef]
- Maruyama, A.; Kawashima, Y.; Fukunaga, Y.; Makabe, A.; Nishio, A.; Tsutsumi, T. Susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on sensory mechanoelectrical transduction channels both Ex Vivo and In Vivo. Hear. Res. 2024, 447, 109013. [Google Scholar] [CrossRef]
- Beurg, M.; Cui, R.; Goldring, A.C.; Ebrahim, S.; Fettiplace, R.; Kachar, B. Variable number of TMC1-dependent mechanotransducer channels underlie tonotopic conductance gradients in the cochlea. Nat. Commun. 2018, 9, 2185. [Google Scholar] [CrossRef]
- Sha, S.-H.; Taylor, R.; Forge, A.; Schacht, J. Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals. Hear. Res. 2001, 155, 1–8. [Google Scholar] [CrossRef]
- Engel, J.; Braig, C.; Rüttiger, L.; Kuhn, S.; Zimmermann, U.; Blin, N.; Sausbier, M.; Kalbacher, H.; Münkner, S.; Rohbock, K.; et al. Two classes of outer hair cells along the tonotopic axis of the cochlea. Neuroscience 2006, 143, 837–849. [Google Scholar] [CrossRef]
- Moke, D.J.; Luo, C.; Millstein, J.; Knight, K.R.; Rassekh, S.R.; Brooks, B.; Ross, C.J.D.; Wright, M.; Mena, V.; Rushing, T.; et al. Prevalence and risk factors for cisplatin-induced hearing loss in children, adolescents, and young adults: A multi-institutional North American cohort study. Lancet Child. Adolesc. Health 2021, 5, 274–283. [Google Scholar] [CrossRef]
- Zuur, C.L.; Simis, Y.J.; Lansdaal, P.E.; Hart, A.A.; Rasch, C.R.; Schornagel, J.H.; Dreschler, W.A.; Balm, A.J. Risk factors of ototoxicity after cisplatin-based chemo-irradiation in patients with locally advanced head-and-neck cancer: A multivariate analysis. Int. J. Radiat. Oncol. Biol. Phys. 2007, 68, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Biro, K.; Noszek, L.; Prekopp, P.; Nagyiványi, K.; Géczi, L.; Gaudi, I.; Bodrogi, I. Characteristics and risk factors of cisplatin-induced ototoxicity in testicular cancer patients detected by distortion product otoacoustic emission. Oncology 2006, 70, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Hearing Loss in Cancer Patients. AAO-HNS Bulletin, 15 March 2024. Available online: https://bulletin.entnet.org/clinical-patient-care/article/22889518/hearing-loss-in-cancer-patients (accessed on 26 July 2025).
- Bertolini, P.; Lassalle, M.; Mercier, G.; Raquin, M.A.; Izzi, G.; Corradini, N.; Hartmann, O. Platinum compound-related ototoxicity in children: Long-term follow-up reveals continuous worsening of hearing loss. J. Pediatr. Hematol. Oncol. 2004, 26, 649–655. [Google Scholar] [CrossRef]
- Knight, K.R.G.; Kraemer, D.F.; Neuwelt, E.A. Ototoxicity in children receiving platinum chemotherapy: Underestimating a commonly occurring toxicity that may influence academic and social development. J. Clin. Oncol. 2005, 23, 8588–8596. [Google Scholar] [CrossRef]
- Chattaraj, A.; Syed, M.P.; Low, C.A.; Owonikoko, T.K. Cisplatin-Induced Ototoxicity: A Concise Review of the Burden, Prevention, and Interception Strategies. JCO Oncol. Pract. 2023, 19, 278–283. [Google Scholar] [CrossRef]
- Tan, W.J.T.; Vlajkovic, S.M. Molecular Characteristics of Cisplatin-Induced Ototoxicity and Therapeutic Interventions. Int. J. Mol. Sci. 2023, 24, 16545. [Google Scholar] [CrossRef]
- Lee, D.S.; Schrader, A.; Warchol, M.; Sheets, L. Cisplatin exposure acutely disrupts mitochondrial bioenergetics in the zebrafish lateral-line organ. Hear. Res. 2022, 426, 108513. [Google Scholar] [CrossRef]
- Hagleitner, M.M.; Coenen, M.J.H.; Patino-Garcia, A.; de Bont, E.S.J.M.; Gonzalez-Neira, A.; Vos, H.I.; van Leeuwen, F.N.; Gelderblom, H.; Hoogerbrugge, P.M.; Guchelaar, H.-J.; et al. Influence of Genetic Variants in TPMT and COMT Associated with Cisplatin Induced Hearing Loss in Patients with Cancer: Two New Cohorts and a Meta-Analysis Reveal Significant Heterogeneity between Cohorts. PLoS ONE 2014, 9, e115869. [Google Scholar] [CrossRef] [PubMed]
- Deptuła, M.; Zieliński, J.; Wardowska, A.; Pikuła, M. Wound healing complications in oncological patients: Perspectives for cellular therapy. Adv. Dermatol. Allergol. 2019, 36, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Desoize, B.; Madoulet, C. Particular aspects of platinum compounds used at present in cancer treatment. Crit. Rev. Oncol. Hematol. 2002, 42, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, Y.; Nakai, Y.; Esaki, Y.; Ikeoka, H.; Koshimo, H.; Onoyama, Y. Acute effects of irradiation on middle ear mucosa. Ann. Otol. Rhinol. Laryngol. 1988, 97, 173–178. [Google Scholar] [CrossRef]
- Elwany, S. Delayed ultrastructural radiation induced changes in the human mesotympanic middle ear mucosa. J. Laryngol. Otol. 1985, 99, 343–353. [Google Scholar] [CrossRef]
- Magnuson, K.; Franzén, L.; Henriksson, R.; Gustafsson, H.; Hellström, S. Structural changes in the middle ear tissues of the rat after fractionated irradiation. Eur. Arch. Otorhinolaryngol. 1993, 250, 92–96. [Google Scholar] [CrossRef]
- Walker, G.V.; Ahmed, S.; Allen, P.; Gidley, P.W.; Woo, S.Y.; DeMonte, F.; Chang, E.L.; Mahajan, A. Radiation-induced middle ear and mastoid opacification in skull base tumors treated with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e819–e823. [Google Scholar] [CrossRef]
- Wang, B.; Wei, J.; Meng, L.; Wang, H.; Qu, C.; Chen, X.; Xin, Y.; Jiang, X. Advances in pathogenic mechanisms and management of radiation-induced fibrosis. Biomed. Pharmacother. 2020, 121, 109560. [Google Scholar] [CrossRef]
- Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-induced fibrosis: Mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol. 2015, 141, 1985–1994. [Google Scholar] [CrossRef]
- Venkatesulu, B.P.; Mahadevan, L.S.; Aliru, M.L.; Yang, X.; Bodd, M.H.; Singh, P.K.; Yusuf, S.W.; Abe, J.-I.; Krishnan, S. Radiation-Induced Endothelial Vascular Injury: A Review of Possible Mechanisms. JACC Basic. Transl. Sci. 2018, 3, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Najafi, M.; Fardid, R.; Hadadi, G.; Fardid, M. The mechanisms of radiation-induced bystander effect. J. Biomed. Phys. Eng. 2014, 4, 163–172. [Google Scholar] [PubMed]
- Jereczek-Fossa, B.A.; Zarowski, A.; Milani, F.; Orecchia, R. Radiotherapy-induced ear toxicity. Cancer Treat. Rev. 2003, 29, 417–430. [Google Scholar] [CrossRef] [PubMed]
- Million, R.R.; Parsons, J.T.; Mendenhall, W.M. Effect of radiation on normal tissues in the head and neck. Bone, cartilage, and soft tissue. Front. Radiat. Ther. Oncol. 1989, 23, 221–237; discussion 251–254. [Google Scholar]
- Wright, H.L.; Moots, R.J.; Bucknall, R.C.; Edwards, S.W. Neutrophil function in inflammation and inflammatory diseases. Rheumatology 2010, 49, 1618–1631. [Google Scholar] [CrossRef]
- Shi, X. Resident macrophages in the cochlear blood-labyrinth barrier and their renewal via migration of bone-marrow-derived cells. Cell Tissue Res. 2010, 342, 21–30. [Google Scholar] [CrossRef]
- Schwarz, Y.; Manogaran, M.; Daniel, S.J. Ventilation tubes in middle ear effusion post-nasopharyngeal carcinoma radiation: To insert or not? Laryngoscope 2016, 126, 2649–2651. [Google Scholar] [CrossRef]
- Richard, C.; Baker, E.; Wood, J. Special Considerations for Tympanoplasty Type I in the Oncological Pediatric Population: A Case-Control Study. Front. Surg. 2022, 9, 844810. [Google Scholar] [CrossRef]
- Morrissey, D.; Grigg, R. Incidence of osteoradionecrosis of the temporal bone. ANZ J. Surg. 2011, 81, 876–879. [Google Scholar] [CrossRef]
- Merchant, T.E. Clinical controversies: Proton therapy for pediatric tumors. Semin. Radiat. Oncol. 2013, 23, 97–108. [Google Scholar] [CrossRef] [PubMed]
- Gaito, S.; Hwang, E.J.; France, A.; Aznar, M.C.; Burnet, N.; Crellin, A.; Holtzman, A.L.; Indelicato, D.J.; Timmerman, B.; Whitfield, G.A.; et al. Outcomes of Patients Treated in the UK Proton Overseas Programme: Central Nervous System Group. Clin. Oncol. 2023, 35, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Fortin, D.; Tsang, D.; Ng, A.; Laperriere, N.; Hodgson, D.C. Monte Carlo-driven predictions of neurocognitive and hearing impairments following proton and photon radiotherapy for pediatric brain-tumor patients. J. Neurooncol. 2017, 135, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Merchant, T.E.; Hoehn, M.E.; Khan, R.B.; Sabin, N.D.; Klimo, P.; Boop, F.A.; Wu, S.; Li, Y.; Burghen, E.A.; Jurbergs, N.; et al. Proton therapy and limited surgery for paediatric and adolescent patients with craniopharyngioma (RT2CR): A single-arm, phase 2 study. Lancet Oncol. 2023, 24, 523–534. [Google Scholar] [CrossRef]
- Paulino, A.C.; Lobo, M.; Teh, B.S.; Okcu, M.F.; South, M.; Butler, E.B.; Su, J.; Chintagumpala, M. Ototoxicity after intensity-modulated radiation therapy and cisplatin-based chemotherapy in children with medulloblastoma. Int. J. Radiat. Oncol. Biol. Phys. 2010, 78, 1445–1450. [Google Scholar] [CrossRef]
- Scoccianti, S.; Detti, B.; Gadda, D.; Greto, D.; Furfaro, I.; Meacci, F.; Simontacchi, G.; Di Brina, L.; Bonomo, P.; Giacomelli, I.; et al. Organs at risk in the brain and their dose-constraints in adults and in children: A radiation oncologist’s guide for delineation in everyday practice. Radiother. Oncol. 2015, 114, 230–238. [Google Scholar] [CrossRef]
- Grewal, S.; Merchant, T.; Reymond, R.; McInerney, M.; Hodge, C.; Shearer, P. Auditory late effects of childhood cancer therapy: A report from the Children’s Oncology Group. Pediatrics 2010, 125, e938–e950. [Google Scholar] [CrossRef]
- Packer, R.J.; Gurney, J.G.; Punyko, J.A.; Donaldson, S.S.; Inskip, P.D.; Stovall, M.; Yasui, Y.; Mertens, A.C.; Sklar, C.A.; Nicholson, H.S.; et al. Long-term neurologic and neurosensory sequelae in adult survivors of a childhood brain tumor: Childhood cancer survivor study. J. Clin. Oncol. 2003, 21, 3255–3261. [Google Scholar] [CrossRef] [PubMed]
- Wells, E.M.; Ullrich, N.J.; Seidel, K.; Leisenring, W.; Sklar, C.A.; Armstrong, G.T.; Diller, L.; King, A.; Krull, K.R.; Neglia, J.P.; et al. Longitudinal assessment of late-onset neurologic conditions in survivors of childhood central nervous system tumors: A Childhood Cancer Survivor Study report. Neuro Oncol. 2018, 20, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Guillaume, D.J.; Knight, K.; Marquez, C.; Kraemer, D.F.; Bardo, D.M.E.; Neuwelt, E.A. Cerebrospinal fluid shunting and hearing loss in patients treated for medulloblastoma: Clinical article. J. Neurosurg. Pediatr. 2012, 9, 421–427. [Google Scholar] [CrossRef]
- Landier, W. Ototoxicity and cancer therapy. Cancer 2016, 122, 1647–1658. [Google Scholar] [CrossRef]
- Azzam, P.; Mroueh, M.; Francis, M.; Daher, A.A.; Zeidan, Y.H. Radiation-induced neuropathies in head and neck cancer: Prevention and treatment modalities. Ecancermedicalscience 2020, 14, 1133. [Google Scholar] [CrossRef] [PubMed]
- Plimpton, S.R.; Stence, N.; Hemenway, M.; Hankinson, T.C.; Foreman, N.; Liu, A.K. Cerebral radiation necrosis in pediatric patients. Pediatr. Hematol. Oncol. 2015, 32, 78–83. [Google Scholar] [CrossRef]
- Dillard, L.K.; Martinez, R.X.; Perez, L.L.; Fullerton, A.M.; Chadha, S.; McMahon, C.M. Prevalence of aminoglycoside-induced hearing loss in drug-resistant tuberculosis patients: A systematic review. J. Infect. 2021, 83, 27–36. [Google Scholar] [CrossRef]
- Streefkerk, N.; Masroor, A.; Geller, J.I.; van Grotel, M.; Ansari, M.; Bouffet, E.; Bleyer, A.; Fresnau, B.; Sullivan, M.; Huitema, A.D.R.; et al. Local application of sodium thiosulfate as an otoprotectant for cisplatin-exposed patients—A narrative literature review to explore the potential benefit for children with cancer. EJC Paediatr. Oncol. 2025, 5, 100211. [Google Scholar] [CrossRef]
- van As, J.W.; van den Berg, H.; van Dalen, E.C. Medical interventions for the prevention of platinum-induced hearing loss in children with cancer. Cochrane Database Syst. Rev. 2019, 5, CD009219. [Google Scholar] [CrossRef]
- Freyer, D.R.; Brock, P.R.; Chang, K.W.; Dupuis, L.L.; Epelman, S.; Knight, K.; Mills, D.; Phillips, R.; Potter, E.; Risby, D.; et al. Prevention of cisplatin-induced ototoxicity in children and adolescents with cancer: A clinical practice guideline. Lancet Child Adolesc. Health 2020, 4, 141–150. [Google Scholar] [CrossRef]
- Freyer, D.R.; Brock, P.; Knight, K.; Reaman, G.; Cabral, S.; Robinson, P.D.; Sung, L. Interventions for cisplatin-induced hearing loss in children and adolescents with cancer. Lancet Child Adolesc. Health 2019, 3, 578–584. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research. FDA Approves Sodium Thiosulfate to Reduce the Risk of Ototoxicity Associated with Cisplatin in Pediatric Patients with Localized, Non-Metastatic Solid Tumors. FDA. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-sodium-thiosulfate-reduce-risk-ototoxicity-associated-cisplatin-pediatric-patients (accessed on 24 February 2024).
- Window KSSO in a New Window O in a New Window O in a New. FDA Approval Marks New Era for Preventing Cisplatin Induced Hearing Loss. Children’s Hospital Los Angeles. Available online: https://www.chla.org/blog/experts/research-and-breakthroughs/fda-approval-marks-new-era-preventing-cisplatin-induced-hearing (accessed on 27 July 2025).
- Mithal, N.P.; Almond, M.K.; Evans, K.; Hoskin, P.J. Reduced bone mineral density in long-term survivors of medulloblastoma. Br. J. Radiol. 1993, 66, 814–816. [Google Scholar] [CrossRef]
- Warner, J.T.; Evans, W.D.; Webb, D.K.H.; Bell, W.; Gregory, J.W. Relative Osteopenia after Treatment for Acute Lymphoblastic Leukemia. Pediatr. Res. 1999, 45, 544–551. [Google Scholar] [CrossRef]
- Petraroli, M.; D’Alessio, E.; Ausili, E.; Barini, A.; Caradonna, P.; Riccardi, R.; Caldarelli, M.; Rossodivita, A. Bone mineral density in survivors of childhood brain tumours. Childs Nerv. Syst. 2007, 23, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Odame, I.; Duckworth, J.; Talsma, D.; Beaumont, L.; Furlong, W.; Webber, C.; Barr, R. Osteopenia, physical activity and health-related quality of life in survivors of brain tumors treated in childhood. Pediatr. Blood Cancer 2006, 46, 357–362. [Google Scholar] [CrossRef]
- Pietilä, S.; Sievänen, H.; Ala-Houhala, M.; Koivisto, A.-M.; Liisa Lenko, H.; Mäkipernaa, A. Bone mineral density is reduced in brain tumour patients treated in childhood. Acta Paediatr. 2006, 95, 1291–1297. [Google Scholar] [CrossRef]
- van Atteveld, J.E.; Pluijm, S.M.F.; Ness, K.K.; Hudson, M.M.; Chemaitilly, W.; Kaste, S.C.; Robison, L.L.; Neggers, S.J.C.M.M.; Yasui, Y.; van den Heuvel-Eibrink, M.M.; et al. Prediction of Low and Very Low Bone Mineral Density Among Adult Survivors of Childhood Cancer. J. Clin. Oncol. 2019, 37, 2217–2225. [Google Scholar] [CrossRef] [PubMed]
- Remes, T.M.; Arikoski, P.M.; Lähteenmäki, P.M.; Arola, M.O.; Pokka, T.M.-L.; Riikonen, V.P.; Sirkiä, K.H.; Rantala, H.M.J.; Harila-Saari, A.H.; Ojaniemi, M.K. Bone mineral density is compromised in very long-term survivors of irradiated childhood brain tumor. Acta Oncol. 2018, 57, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Smoll, N.R.; Brady, Z.; Scurrah, K.J.; Lee, C.; Berrington de González, A.; Mathews, J.D. Computed tomography scan radiation and brain cancer incidence. Neuro Oncol. 2023, 25, 1368–1376. [Google Scholar] [CrossRef]
- Xiao, Y.; Lv, L.; Xu, Z.; Zhou, L.; Lin, Y.; Lin, Y.; Guo, J.; Chen, J.; Ou, Y.; Lin, L.; et al. Correlation between peri-implant bone mineral density and primary implant stability based on artificial intelligence classification. Sci. Rep. 2024, 14, 3009. [Google Scholar] [CrossRef]
- Anderson, K.D.; Ko, F.C.; Fullam, S.; Virdi, A.S.; Wimmer, M.A.; Sumner, D.R.; Ross, R.D. The Relative Contribution of Bone Microarchitecture and Matrix Composition to Implant Fixation Strength in Rats. J. Orthop. Res. 2022, 40, 862–870. [Google Scholar] [CrossRef]
- Bosshardt, D.D.; Chappuis, V.; Buser, D. Osseointegration of titanium, titanium alloy and zirconia dental implants: Current knowledge and open questions. Periodontol. 2000 2017, 73, 22–40. [Google Scholar] [CrossRef]
- Abu Alfaraj, T.; Al-Madani, S.; Alqahtani, N.S.; Almohammadi, A.A.; Alqahtani, A.M.; AlQabbani, H.S.; Bajunaid, M.K.; Alharthy, B.A.; Aljalfan, N. Optimizing Osseointegration in Dental Implantology: A Cross-Disciplinary Review of Current and Emerging Strategies. Cureus 2023, 15, e47943. [Google Scholar] [CrossRef]
- Kiringoda, R.; Lustig, L.R. A meta-analysis of the complications associated with osseointegrated hearing aids. Otol. Neurotol. 2013, 34, 790–794. [Google Scholar] [CrossRef]
- Larsson, A.; Wigren, S.; Andersson, M.; Ekeroth, G.; Flynn, M.; Nannmark, U. Histologic evaluation of soft tissue integration of experimental abutments for bone anchored hearing implants using surgery without soft tissue reduction. Otol. Neurotol. 2012, 33, 1445–1451. [Google Scholar] [CrossRef]
- Wilkie, M.D.; Lightbody, K.A.; Salamat, A.A.; Chakravarthy, K.M.; Luff, D.A.; Temple, R.H. Stability and survival of bone-anchored hearing aid implant systems in post-irradiated patients. Eur. Arch. Otorhinolaryngol. 2015, 272, 1371–1376. [Google Scholar] [CrossRef]
- Seibel, M.J. Biochemical Markers of Bone Turnover Part I: Biochemistry and Variability. Clin. Biochem. Rev. 2005, 26, 97–122. [Google Scholar]
- Yang, L.; Grey, V. Pediatric reference intervals for bone markers. Clin. Biochem. 2006, 39, 561–568. [Google Scholar] [CrossRef]
- Rauchenzauner, M.; Schmid, A.; Heinz-Erian, P.; Kapelari, K.; Falkensammer, G.; Griesmacher, A.; Finkenstedt, G.; Högler, W. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J. Clin. Endocrinol. Metab. 2007, 92, 443–449. [Google Scholar] [CrossRef]
- Eapen, E.; Grey, V.; Don-Wauchope, A.; Atkinson, S.A. Bone Health in Childhood: Usefulness of Biochemical Biomarkers. eJIFCC 2008, 19, 123–136. [Google Scholar]
- Zhang, Y.; Zhang, J.; Huang, X.; Yu, X.; Li, Y.; Yu, F.; Zhou, W. Variation of Bone Turnover Markers in Childhood and Adolescence. Int. J. Clin. Pract. 2023, 2023, e5537182. [Google Scholar] [CrossRef]
- Hartmann, K.; Koenen, M.; Schauer, S.; Wittig-Blaich, S.; Ahmad, M.; Baschant, U.; Tuckermann, J.P. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol. Rev. 2016, 96, 409–447. [Google Scholar] [CrossRef]
- Ehrhart, N.; Eurell, J.A.C.; Tommasini, M.; Constable, P.D.; Johnson, A.L.; Feretti, A. Effect of cisplatin on bone transport osteogenesis in dogs. Am. J. Vet. Res. 2002, 63, 703–711. [Google Scholar] [CrossRef]
- Frost, H.M. On Our Age-Related Bone Loss: Insights from a New Paradigm. J. Bone Miner. Res. 1997, 12, 1539–1546. [Google Scholar] [CrossRef]
- Yao, Z.; Murali, B.; Ren, Q.; Luo, X.; Faget, D.V.; Cole, T.; Ricci, B.; Thotala, D.; Monahan, J.; van Deursen, J.M.; et al. Therapy-Induced Senescence Drives Bone Loss. Cancer Res. 2020, 80, 1171–1182. [Google Scholar] [CrossRef]
- Zidrou, C.; Kapetanou, A.; Rizou, S. The effect of drugs on implant osseointegration- A narrative review. Injury 2023, 54, 110888. [Google Scholar] [CrossRef]
- Al-Mahalawy, H.; Marei, H.F.; Abuohashish, H.; Alhawaj, H.; Alrefaee, M.; Al-Jandan, B. Effects of cisplatin chemotherapy on the osseointegration of titanium implants. J. Craniomaxillofac Surg. 2016, 44, 337–346. [Google Scholar] [CrossRef]
- Matheus, H.R.; Ervolino, E.; Faleiros, P.L.; Novaes, V.C.N.; Theodoro, L.H.; Garcia, V.G.; de Almeida, J.M. Cisplatin chemotherapy impairs the peri-implant bone repair around titanium implants: An in vivo study in rats. J. Clin. Periodontol. 2018, 45, 241–252. [Google Scholar] [CrossRef]
- Kovács, A.F. Influence of chemotherapy on endosteal implant survival and success in oral cancer patients. Int. J. Oral. Maxillofac. Surg. 2001, 30, 144–147. [Google Scholar] [CrossRef]
- Stenfelt, S.; Goode, R.L. Bone-conducted sound: Physiological and clinical aspects. Otol. Neurotol. 2005, 26, 1245–1261. [Google Scholar] [CrossRef]
- van Zyl, C.; Rogers, C.; Kuschke, S. Outcomes and device use in children with bone-conduction hearing devices in South Africa. S. Afr. J. Commun. Disord. 2024, 71, 1005. [Google Scholar] [CrossRef]
- Doshi, J.; Banga, R.; Child, A.; Lawrence, R.; Reid, A.; Proops, D.; McDermott, A.-L. Quality-of-life outcomes after bone-anchored hearing device surgery in children with single-sided sensorineural deafness. Otol. Neurotol. 2013, 34, 100–103. [Google Scholar] [CrossRef]
- Röösli, C.; Dobrev, I.; Pfiffner, F. Transcranial attenuation in bone conduction stimulation. Hear. Res. 2022, 419, 108318. [Google Scholar] [CrossRef]
- Wheeler, L.R.; Tharpe, A.M. Young Children’s Attitudes Toward Peers Who Wear Hearing Aids. Am. J. Audiol. 2020, 29, 110–119. [Google Scholar] [CrossRef]
- Brinkman, D.; Hill, R.; Hone, S.; Kieran, S. Bone-anchored hearing aids: Percutaneous versus transcutaneous attachments—A health economics comparison in paediatric patients. Int. J. Pediatr. Otorhinolaryngol. 2023, 175, 111773. [Google Scholar] [CrossRef]
- Casazza, G.C.; Kesser, B.W. Modern Advances in Bone Conduction–Hearing Devices. Curr. Otorhinolaryngol. Rep. 2022, 10, 370–376. [Google Scholar] [CrossRef]
- Šikolová, S.; Urík, M.; Hošnová, D.; Kruntorád, V.; Bartoš, M.; Motyka, O.; Jabandžiev, P. Two Bonebridge bone conduction hearing implant generations: Audiological benefit and quality of hearing in children. Eur. Arch. Otorhinolaryngol. 2022, 279, 3387–3398. [Google Scholar] [CrossRef]
- Casselman, J.W.; Ars, B.; Van de Heyning, P.; Koekelkoren, E. Preoperative computed tomography in patients requiring a bone-anchored hearing aid. Eur. Arch. Otorhinolaryngol. 1995, 252, 401–404. [Google Scholar] [CrossRef]
- Takumi, Y.; Suzuki, N.; Moteki, H.; Kobayashi, K.; Usami, S. Pre-Baha operation three dimensional computed tomography with markers for determining optimal implant site. Laryngoscope 2008, 118, 1824–1826. [Google Scholar] [CrossRef]
- Pauwels, R.; Jacobs, R.; Singer, S.R.; Mupparapu, M. CBCT-based bone quality assessment: Are Hounsfield units applicable? Dentomaxillofac Radiol. 2015, 44, 20140238. [Google Scholar] [CrossRef]
- Al-Jamal, M.F.J.; Al-Jumaily, H.A. Can the Bone Density Estimated by CBCT Predict the Primary Stability of Dental Implants? A New Measurement Protocol. J. Craniofac Surg. 2021, 32, e171–e174. [Google Scholar] [CrossRef]
- Calon, T.G.A.; Johansson, M.L.; van den Burg, E.L.; Janssen, A.M.L.; van Hoof, M.; Stokroos, R.J. The Use of Cone Beam Computed Tomography in Assessing the Insertion of Bone Conduction Hearing Implants. Front. Surg. 2017, 4, 38. [Google Scholar] [CrossRef]
- Vautrin, A.; Thierrin, R.; Wili, P.; Klingler, S.; Chappuis, V.; Varga, P.; Zysset, P. Prediction of Dental Implants Primary Stability With Cone Beam Computed Tomography-Based Homogenized Finite Element Analysis. Clin. Implant. Dent. Relat. Res. 2025, 27, e70016. [Google Scholar] [CrossRef]
- Richard, C.; Courbon, G.; Laroche, N.; Prades, J.M.; Vico, L.; Malaval, L. Inner ear ossification and mineralization kinetics in human embryonic development—Microtomographic and histomorphological study. Sci. Rep. 2017, 7, 4825. [Google Scholar] [CrossRef]
- Richard, C.; Laroche, N.; Malaval, L.; Dumollard, J.M.; Martin, C.; Peoch, M.; Vico, L.; Prades, J.M. New insight into the bony labyrinth: A microcomputed tomography study. Auris Nasus Larynx 2010, 37, 155–161. [Google Scholar] [CrossRef]
- Choi, K.Y.; Lee, S.-W.; In, Y.; Kim, M.S.; Kim, Y.D.; Lee, S.-Y.; Lee, J.-W.; Koh, I.J. Dual-Energy CT-Based Bone Mineral Density Has Practical Value for Osteoporosis Screening around the Knee. Medicina 2022, 58, 1085. [Google Scholar] [CrossRef]
- Wesarg, S.; Kirschner, M.; Becker, M.; Erdt, M.; Kafchitsas, K.; Khan, M.F. Dual-energy CT-based assessment of the trabecular bone in vertebrae. Methods Inf. Med. 2012, 51, 398–405. [Google Scholar] [CrossRef]
- Gerdes, T.; Salcher, R.B.; Schwab, B.; Lenarz, T.; Maier, H. Comparison of Audiological Results Between a Transcutaneous and a Percutaneous Bone Conduction Instrument in Conductive Hearing Loss. Otol. Neurotol. 2016, 37, 685–691. [Google Scholar] [CrossRef]
- Shapiro, S.; Ramadan, J.; Cassis, A. BAHA Skin Complications in the Pediatric Population: Systematic Review with Meta-analysis. Otol. Neurotol. 2018, 39, 865–873. [Google Scholar] [CrossRef]
- den Besten, C.A.; Monksfield, P.; Bosman, A.; Skarzynski, P.H.; Green, K.; Runge, C.; Wigren, S.; Blechert, J.I.; Flynn, M.C.; Mylanus, E.A.M.; et al. Audiological and clinical outcomes of a transcutaneous bone conduction hearing implant: Six-month results from a multicentre study. Clin. Otolaryngol. 2019, 44, 144–157. [Google Scholar] [CrossRef]
- Willenborg, K.; Avallone, E.; Maier, H.; Lenarz, T.; Busch, S. A New Active Osseointegrated Implant System in Patients with Single-Sided Deafness. Audiol. Neurotol. 2022, 27, 83–92. [Google Scholar] [CrossRef]
- Nassiri, A.M.; Messina, S.A.; Benson, J.C.; Lane, J.I.; McGee, K.P.; Trzasko, J.D.; Carlson, M.L. Magnetic Resonance Imaging Artifact Associated With Transcutaneous Bone Conduction Implants: Cholesteatoma and Vestibular Schwannoma Surveillance. Otolaryngol. Head Neck Surg. 2024, 170, 187–194. [Google Scholar] [CrossRef]
- Gurney, J.G.; Tersak, J.M.; Ness, K.K.; Landier, W.; Matthay, K.K.; Schmidt, M.L. Children’s Oncology Group Hearing loss, quality of life, and academic problems in long-term neuroblastoma survivors: A report from the Children’s Oncology Group. Pediatrics 2007, 120, e1229–e1236. [Google Scholar] [CrossRef]
- Alzhrani, F.; Alahmari, M.S.; Al Jabr, I.K.; Garadat, S.N.; Hagr, A.A. Cochlear Implantation in Children with Otitis Media. Indian. J. Otolaryngol. Head Neck Surg. 2019, 71 (Suppl. 2), 1266–1271. [Google Scholar] [CrossRef]
- Generous, A. Giving Survivors of Childhood Cancer a Chance at Hearing. St. Jude Research. Available online: https://www.stjude.org/research/progress/2025/giving-survivors-of-childhood-cancer-chance-at-hearing.html (accessed on 27 July 2025).
- Ryu, N.-G.; Moon, I.J.; Chang, Y.S.; Kim, B.K.; Chung, W.-H.; Cho, Y.-S.; Hong, S.H. Cochlear Implantation for Profound Hearing Loss After Multimodal Treatment for Neuroblastoma in Children. Clin. Exp. Otorhinolaryngol. 2015, 8, 329–334. [Google Scholar] [CrossRef]
- Bharadwaja, S.; Patnaik, U.; Sahoo, L.; Raghavan, D.; Mathur, Y.; Badal, S.; Srivastava, K. Role of Pre-Operative High-Resolution Computed Tomography for Surgical Planning in Patients Undergoing Cochlear Implantation—An Observational Study. Indian. J. Otolaryngol. Head Neck Surg. 2024, 76, 1630–1636. [Google Scholar] [CrossRef]
- Health Class C for Device and Regulation. Cochlear Implants and MRI Safety. FDA. Available online: https://www.fda.gov/medical-devices/cochlear-implants/cochlear-implants-and-mri-safety (accessed on 27 July 2025).
- The Current State of Implantable Hearing Devices and MRI Compatibility. AAO-HNS Bulletin, 15 March 2024. Available online: https://bulletin.entnet.org/clinical-patient-care/article/22889513/the-current-state-of-implantable-hearing-devices-and-mri-compatibility (accessed on 27 July 2025).
- Berry, J.M.; Tansey, J.B.; Wu, L.; Choudhri, A.; Yawn, R.J.; MacDonald, C.B.; Richard, C. A Systematic Review of Cochlear Implant-Related Magnetic Resonance Imaging Artifact: Implications for Clinical Imaging. Otol. Neurotol. 2024, 45, 204–214. [Google Scholar] [CrossRef]
- Arndt, S.; Kromeier, J.; Berlis, A.; Maier, W.; Laszig, R.; Aschendorff, A. Imaging procedures after bone-anchored hearing aid implantation. Laryngoscope 2007, 117, 1815–1818. [Google Scholar] [CrossRef]
- Bass, J.K.; Warren, S.E.; Dillard, S.G.; Peeples, A.L.; Li, K.; Jones, S.; Hua, C.-H.; Xie, L.; Liu, S.; Ness, K.K.; et al. Eligibility for Cochlear Implant Candidacy Evaluation in Childhood Cancer Survivors. JAMA Oncol. 2025, 11, 794–796. [Google Scholar] [CrossRef]
- Shi, M.; Wang, Y.; Yang, H.; Lai, C.; Yu, J.; Sun, Y. High doses of radiation cause cochlear immunological stress and sensorineural hearing loss. Heliyon 2024, 10, e37223. [Google Scholar] [CrossRef]
- Rybak, L.P. Neurochemistry of the peripheral and central auditory system after ototoxic drug exposure: Implications for tinnitus. Int. Tinnitus J. 2005, 11, 23–30. [Google Scholar]
- Firoozabad, L.A.; Cheraghi, S.; Farahani, S.; Nikoofar, A.; Rezaeijo, S.M.; Bakhshandeh, M.; Paydar, R. Prediction of auditory brain stem responses damage in patients with head-and-neck cancers receiving radiotherapy using the functional assays of normal tissue complication probability models. J. Cancer Res. Ther. 2024, 20, 802. [Google Scholar] [CrossRef]
- Vosgrau, J.S.; Silva, L.A.F.; Filho, V.O.; Matas, C.G. A longitudinal study of the peripheral and central auditory pathways in individuals with acute lymphoid leukemia. Clinics 2023, 78, 100234. [Google Scholar] [CrossRef]
- Leach, W. Irradiation of the ear. J. Laryngol. Otol. 1965, 79, 870–880. [Google Scholar] [CrossRef]
- Hoistad, D.L.; Ondrey, F.G.; Mutlu, C.; Schachern, P.A.; Paparella, M.M.; Adams, G.L. Histopathology of human temporal bone after cis-platinum, radiation, or both. Otolaryngol. Head Neck Surg. 1998, 118, 825–832. [Google Scholar] [CrossRef]
- Bohne, B.A.; Marks, J.E.; Glasgow, G.P. Delayed effects of ionizing radiation on the ear. Laryngoscope 1985, 95, 818–828. [Google Scholar] [CrossRef]
- Gamble, J.E.; Peterson, E.A.; Chandler, J.R. Radiation Effects on the Inner Ear. Arch. Otolaryngol. 1968, 88, 156–161. [Google Scholar] [CrossRef]
- Tokimoto, T.; Kanagawa, K. Effects of X-Ray irradiation on hearing in guinea pigs. Acta Oto-Laryngol. 1985, 100, 266–272. [Google Scholar] [CrossRef]
- Winther, F.Ø. X-Ray irradiation of the inner ear of the guinea pig. Early degenerative changes in the cochlea. Acta Oto-Laryngol. 1969, 68, 98–117. [Google Scholar] [CrossRef]
- Rubin, P. The Franz Buschke lecture: Late effects of chemotherapy and radiation therapy: A new hypothesis. Int. J. Radiat. Oncol. Biol. Phys. 1984, 10, 5–34. [Google Scholar] [CrossRef]
- Gaidamakin, N.A.; Ushakov, I.B. State of synapses of the cortex of cerebral hemispheres on gamma-irradiation. Neurosci. Behav. Physiol. 1989, 19, 483–488. [Google Scholar] [CrossRef]
- Parihar, V.K.; Limoli, C.L. Cranial irradiation compromises neuronal architecture in the hippocampus. Proc. Natl. Acad. Sci. USA 2013, 110, 12822–12827. [Google Scholar] [CrossRef]
- Mujica-Mota, M.A.; Lehnert, S.; Devic, S.; Gasbarrino, K.; Daniel, S.J. Mechanisms of radiation-induced sensorineural hearing loss and radioprotection. Hear. Res. 2014, 312, 60–68. [Google Scholar] [CrossRef]
- Grau, C.; Moller, K.; Overgaard, M.; Overgaard, J.; Elbrond, O. Sensori-neural hearing loss in patients treated with irradiation for nasopharyngeal carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 723–728. [Google Scholar] [CrossRef]
- Grau, C.; Møler, K.; Overgaard, M.; Overgaard, J.; Elbønd, O. Auditory brain stem responses in patients after radiation therapy for nasopharyngeal carcinoma. Cancer 1992, 70, 2396–2401. [Google Scholar] [CrossRef]
- Kroczka, S.; Stepien, K.; Witek-Motyl, I.; Kwiecinska, K.; Kapusta, E.; Biedron, A.; Skorek, P.; Skoczen, S. Clinical utility of complex assessment with evoked potentials in acute lymphoblastic leukemia survivors: Comparison of various treatment protocols. BMC Cancer 2021, 21, 150. [Google Scholar] [CrossRef]
- Anteunis, L.J.; Wanders, S.L.; Hendriks, J.J.; Langendijk, J.A.; Manni, J.J.; de Jong, J.M. A prospective longitudinal study on radiation-induced hearing loss. Am. J. Surg. 1994, 168, 408–411. [Google Scholar] [CrossRef]
- Liu, Z.; Luo, Y.; Guo, R.; Yang, B.; Shi, L.; Sun, J.; Guo, W.; Gong, S.; Jiang, X.; Liu, K. Head and neck radiotherapy causes significant disruptions of cochlear ribbon synapses and consequent sensorineural hearing loss. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 2022, 173, 207–214. [Google Scholar] [CrossRef]
- Deans, M.R.; Peterson, J.M.; Wong, G.W. Mammalian Otolin: A Multimeric Glycoprotein Specific to the Inner Ear that Interacts with Otoconial Matrix Protein Otoconin-90 and Cerebellin-1. PLoS ONE 2010, 5, e12765. [Google Scholar] [CrossRef]
- Doğan, M.; Şahin, M.; Kurtulmuş, Y. Otolin-1, as a Potential Marker for Inner Ear Trauma after Mastoidectomy. J. Int. Adv. Otol. 2019, 15, 200–203. [Google Scholar] [CrossRef]
- Gomaa, N.A.; Jimoh, Z.; Campbell, S.; Zenke, J.K.; Szczepek, A.J. Biomarkers for Inner Ear Disorders: Scoping Review on the Role of Biomarkers in Hearing and Balance Disorders. Diagnostics 2020, 11, 42. [Google Scholar] [CrossRef]
- Richard, C.; Jeanvoine, A.; Stark, A.R.; Hague, K.; Kjeldsen, C.; Maitre, N.L. Randomized Trial to Increase Speech Sound Differentiation in Infants Born Preterm. J. Pediatr. 2022, 241, 103–108.e3. [Google Scholar] [CrossRef]
- Morlet, T.; Valania, J.; Walter, C.; Morini, G.; O’Reilly, R.C.; Parkes, W.; Pritchett, C. Cortical Auditory Evoked Potential Testing in Children With Auditory Neuropathy Spectrum Disorder. Am. J. Audiol. 2023, 33, 171–182. [Google Scholar] [CrossRef]
- Ponton, C.W.; Eggermont, J.J.; Kwong, B.; Don, M. Maturation of human central auditory system activity: Evidence from multi-channel evoked potentials. Clin. Neurophysiol. 2000, 111, 220–236. [Google Scholar] [CrossRef]
- Fisch, L. Integrated development and maturation of the hearing system. A critical review article. Br. J. Audiol. 1983, 17, 137–154. [Google Scholar] [CrossRef]
- Litovsky, R. Development of the auditory system. Handb. Clin. Neurol. 2015, 129, 55–72. [Google Scholar] [CrossRef]
- Rüttiger, L.; Zimmermann, U.; Knipper, M. Biomarkers for Hearing Dysfunction: Facts and Outlook. ORL J. Otorhinolaryngol. Relat. Spec. 2017, 79, 93–111. [Google Scholar] [CrossRef]
- Agung, K.; Purdy, S.C.; McMahon, C.M.; Newall, P. The use of cortical auditory evoked potentials to evaluate neural encoding of speech sounds in adults. J. Am. Acad. Audiol. 2006, 17, 559–572. [Google Scholar] [CrossRef]
- Mostafa, I.Z.; Shabana, M.I.; El Shennawy, A.M.; Weheiba, H.M. Assessing the applications of cortical auditory evoked potentials as a biomarker in children with hearing aids. Egypt. J. Otolaryngol. 2014, 30, 38–42. [Google Scholar] [CrossRef]
- Bellier, L.; Veuillet, E.; Vesson, J.-F.; Bouchet, P.; Caclin, A.; Thai-Van, H. Speech Auditory Brainstem Response through hearing aid stimulation. Hear. Res. 2015, 325, 49–54. [Google Scholar] [CrossRef]
- Muldoon, L.L.; Pagel, M.A.; Kroll, R.A.; Brummett, R.E.; Doolittle, N.D.; Zuhowski, E.G.; Egorin, M.J.; Neuwelt, E.A. Delayed administration of sodium thiosulfate in animal models reduces platinum ototoxicity without reduction of antitumor activity. Clin. Cancer Res. 2000, 6, 309–315. [Google Scholar]
- Harned, T.M.; Kalous, O.; Neuwelt, A.; Loera, J.; Ji, L.; Iovine, P.; Sposto, R.; Neuwelt, E.A.; Reynolds, C.P. Sodium thiosulfate administered six hours after cisplatin does not compromise antineuroblastoma activity. Clin. Cancer Res. 2008, 14, 533–540. [Google Scholar] [CrossRef]
- Brock, P.R.; Maibach, R.; Childs, M.; Rajput, K.; Roebuck, D.; Sullivan, M.J.; Laithier, V.; Ronghe, M.; Dall’Igna, P.; Hiyama, E.; et al. Sodium Thiosulfate for Protection from Cisplatin-Induced Hearing Loss. N. Engl. J. Med. 2018, 378, 2376–2385. [Google Scholar] [CrossRef]
- Szeto, B.; Chiang, H.; Valentini, C.; Yu, M.; Kysar, J.W.; Lalwani, A.K. Inner ear delivery: Challenges and opportunities. Laryngoscope Investig. Otolaryngol. 2019, 5, 122–131. [Google Scholar] [CrossRef]
- Liu, S.S.; Yang, R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front. Neurosci. 2022, 16, 867453. [Google Scholar] [CrossRef]
- Vitry, S.; Mendia, C.; Maudoux, A.; El-Amraoui, A. Advancing precision ear medicine: Leveraging animal models for disease insights and therapeutic innovations. Mamm. Genome 2025, 36, 417–443. [Google Scholar] [CrossRef]
- Ondrejová, B.; Rajťúková, V.; Šavrtková, K.; Galajdová, A.; Živčák, J.; Hudák, R. Analysis of MRI Artifacts Induced by Cranial Implants in Phantom Models. Healthcare 2025, 13, 803. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Courbon, G.; Lugnier, L.; Bass, J.K.; Merchant, T.E.; Morlet, T.; Richard, C. Critical Review of Hearing Rehabilitation in Pediatric Oncology: Specific Considerations and Barriers. Curr. Oncol. 2025, 32, 509. https://doi.org/10.3390/curroncol32090509
Courbon G, Lugnier L, Bass JK, Merchant TE, Morlet T, Richard C. Critical Review of Hearing Rehabilitation in Pediatric Oncology: Specific Considerations and Barriers. Current Oncology. 2025; 32(9):509. https://doi.org/10.3390/curroncol32090509
Chicago/Turabian StyleCourbon, Guillaume, Laurie Lugnier, Johnnie K. Bass, Thomas E. Merchant, Thierry Morlet, and Celine Richard. 2025. "Critical Review of Hearing Rehabilitation in Pediatric Oncology: Specific Considerations and Barriers" Current Oncology 32, no. 9: 509. https://doi.org/10.3390/curroncol32090509
APA StyleCourbon, G., Lugnier, L., Bass, J. K., Merchant, T. E., Morlet, T., & Richard, C. (2025). Critical Review of Hearing Rehabilitation in Pediatric Oncology: Specific Considerations and Barriers. Current Oncology, 32(9), 509. https://doi.org/10.3390/curroncol32090509