The Relation Between Post-Operative Surgical Site Infection and Time to Start Adjuvant Treatment in Ovarian and Uterine Cancers
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Study Design and Population
2.2. Definitions
2.3. Statistical Analysis
3. Results
3.1. Overall Population
3.2. SSI and Adjuvant Treatment
3.3. Impact of SSI on Recurrence and Overall Survival
3.4. SSI and Disease Recurrence in Patients with Uterine Cancer
3.5. SSI and Disease Recurrence in Patients with Ovarian Cancer
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Mahner, S.; Eulenburg, C.; Staehle, A.; Wegscheider, K.; Reuss, A.; Pujade-Lauraine, E.; Harter, P.; Ray-Coquard, I.; Pfisterer, J.; du Bois, A. Prognostic impact of the time interval between surgery and chemotherapy in advanced ovarian cancer: Analysis of prospective randomised phase III trials. Eur. J. Cancer 2013, 49, 142–149. [Google Scholar] [CrossRef]
- Tran, C.W.; McGree, M.E.; Weaver, A.L.; Martin, J.R.; Lemens, M.A.; Cliby, W.A.; Dowdy, S.C.; Bakkum-Gamez, J.N. Surgical site infection after primary surgery for epithelial ovarian cancer: Predictors and impact on survival. Gynecol. Oncol. 2015, 136, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Tewari, K.S.; Java, J.J.; Eskander, R.N.; Monk, B.J.; Burger, R.A.; Eskander, R.N. Early initiation of chemotherapy following complete resection of advanced ovarian cancer associated with improved survival: NRG Oncology/Gynecologic Oncology Group study. Ann. Oncol. 2015, 27, 114–121. [Google Scholar] [CrossRef]
- Nagel, C.; Backes, F.; Hade, E.; Cohn, D.; Eisenhauer, E.; O’MAlley, D.; Fowler, J.; Copeland, L.; Salani, R. Effect of chemotherapy delays and dose reductions on progression free and overall survival in the treatment of epithelial ovarian cancer. Gynecol. Oncol. 2012, 124, 221–224. [Google Scholar] [CrossRef]
- Szymankiewicz, M.; Dziobek, K.; Sznajdorwska, M.; Wicherek, L.; Dutsch-Wicherek, M. An analysis of the influence of infection on overall survival rates, following modified posterior pelvic exenteration for advanced ovarian cancer. Ginekol. Pol. 2018, 89, 618–626. [Google Scholar] [CrossRef]
- UsÓn, P.L.Z., Jr.; Bugano, D.D.G.; França, M.S.; Antunes, Y.P.P.V.; Taranto, P.; Kaliks, R.A.; Del Giglio, A. Does Time-to-Chemotherapy Impact the Outcomes of Resected Ovarian Cancer? Meta-analysis of Randomized and Observational Data. Int. J. Gynecol. Cancer 2017, 27, 274–280. [Google Scholar] [CrossRef]
- Seagle, B.-L.L.; Butler, S.K.; Strohl, A.E.; Nieves-Neira, W.; Shahabi, S. Chemotherapy delay after primary debulking surgery for ovarian cancer. Gynecol. Oncol. 2017, 144, 260–265. [Google Scholar] [CrossRef]
- Hofstetter, G.; Concin, N.; Braicu, I.; Chekerov, R.; Sehouli, J.; Cadron, I.; Van Gorp, T.; Trillsch, F.; Mahner, S.; Ulmer, H.; et al. The time interval from surgery to start of chemotherapy significantly impacts prognosis in patients with advanced serous ovarian carcinoma—Analysis of patient data in the prospective OVCAD study. Gynecol. Oncol. 2013, 131, 15–20. [Google Scholar] [CrossRef]
- de Lissovoy, G.; Fraeman, K.; Hutchins, V.; Murphy, D.; Song, D.; Vaughn, B.B. Surgical site infection: Incidence and impact on hospital utilization and treatment costs. Am. J. Infect. Control 2009, 37, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Merkow, R.P.; Ju, M.H.; Chung, J.W.; Hall, B.L.; Cohen, M.E.; Williams, M.V.; Tsai, T.C.; Ko, C.Y.; Bilimoria, K.Y. Underlying Reasons Associated With Hospital Readmission Following Surgery in the United States. JAMA 2015, 313, 483–495. [Google Scholar] [CrossRef]
- O’dOnnell, R.L.; Angelopoulos, G.; Beirne, J.P.; Biliatis, I.; Bolton, H.; Bradbury, M.; Craig, E.; Gajjar, K.; Mackintosh, M.L.; MacNab, W.; et al. Impact of surgical site infection (SSI) following gynaecological cancer surgery in the UK: A trainee-led multicentre audit and service evaluation. BMJ Open 2019, 9, e024853. [Google Scholar] [CrossRef] [PubMed]
- Castro, B.G.R.; dos Reis, R.; Cintra, G.F.; Sousa, M.M.d.A.; Vieira, M.d.A.; Andrade, C.E.M.d.C. Predictive Factors for Surgical Morbidities and Adjuvant Chemotherapy Delay for Advanced Ovarian Cancer Patients Treated by Primary Debulking Surgery or Interval Debulking Surgery. Int. J. Gynecol. Cancer 2018, 28, 1520–1528. [Google Scholar] [CrossRef]
- Van Nguyen, J.M.; Sadeghi, M.; Gien, L.T.; Covens, A.; Kupets, R.; Nathens, A.B.; Vicus, D. Impact of a preventive bundle to reduce surgical site infections in gynecologic oncology. Gynecol. Oncol. 2019, 152, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Bakkum-Gamez, J.N.; Dowdy, S.C.; Borah, B.J.; Haas, L.R.; Mariani, A.; Martin, J.R.; Weaver, A.L.; McGree, M.E.; Cliby, W.A.; Podratz, K.C. Predictors and costs of surgical site infections in patients with endometrial cancer. Gynecol. Oncol. 2013, 130, 100–106. [Google Scholar] [CrossRef]
- Kamboj, M.; Childers, T.; Sugalski, J.; Antonelli, D.; Bingener-Casey, J.; Cannon, J.; Cluff, K.; Davis, K.A.; Dellinger, E.P.; Dowdy, S.C.; et al. Risk of Surgical Site Infection (SSI) following Colorectal Resection Is Higher in Patients With Disseminated Cancer: An NCCN Member Cohort Study. Infect. Control Hosp. Epidemiol. 2018, 39, 555–562. [Google Scholar] [CrossRef]
- Moukarzel, L.A.; Nguyen, N.; Zhou, Q.; Iasonos, A.; Schiavone, M.B.; Ramesh, B.; Chi, D.S.; Sonoda, Y.; Abu-Rustum, N.R.; Mueller, J.J.; et al. Association of bowel preparation with surgical-site infection in gynecologic oncology surgery: Post-hoc analysis of a randomized controlled trial. Gynecol. Oncol. 2022, 168, 100–106. [Google Scholar] [CrossRef]
- Schiavone, M.B.; Moukarzel, L.; Leong, K.; Zhou, Q.C.; Afonso, A.M.; Iasonos, A.; Roche, K.L.; Leitao, M.M.; Chi, D.S.; Abu-Rustum, N.R.; et al. Surgical site infection reduction bundle in patients with gynecologic cancer undergoing colon surgery. Gynecol. Oncol. 2017, 147, 115–119. [Google Scholar] [CrossRef]
- Kohut, A.; Orfanelli, T.; Poggio, J.L.; Gibbon, D.; De Meritens, A.B.; Richard, S. Morbidity and Mortality Risk Assessment in Gynecologic Oncology Surgery Using the American College of Surgeons National Surgical Quality Improvement Program Database. Int. J. Gynecol. Cancer 2018, 28, 840–847. [Google Scholar] [CrossRef]
- Horan, T.C.; Gaynes, R.P.; Martone, W.J.; Jarvis, W.R.; Emori, T.G. CDC definitions of nosocomial surgical site infections, 1992: A modification of CDC definitions of surgical wound infections. Am. J. Infect. Control 1992, 20, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Berríos-Torres, S.I.; Umscheid, C.A.; Bratzler, D.W.; Leas, B.; Stone, E.C.; Kelz, R.R.; Reinke, C.E.; Morgan, S.; Solomkin, J.S.; Mazuski, J.E.; et al. Centers for Disease Control and Prevention Guideline for the Prevention of Surgical Site Infection, 2017. JAMA Surg. 2017, 152, 784–791. [Google Scholar] [CrossRef]
- Mahdi, H.; Gojayev, A.; Buechel, M.; Knight, J.; SanMarco, J.; Lockhart, D.; Michener, C.; Moslemi-Kebria, M.; Marco, J.S. Surgical Site Infection in Women Undergoing Surgery for Gynecologic Cancer. Int. J. Gynecol. Cancer 2014, 24, 779–786. [Google Scholar] [CrossRef]
- Pop-Vicas, A.; Musuuza, J.S.; Schmitz, M.; Al-Niaimi, A.; Safdar, N. Incidence and risk factors for surgical site infection post-hysterectomy in a tertiary care center. Am. J. Infect. Control 2017, 45, 284–287. [Google Scholar] [CrossRef]
- León-Castillo, A.; de Boer, S.M.; Powell, M.E.; Mileshkin, L.R.; Mackay, H.J.; Leary, A.; Nijman, H.W.; Singh, N.; Pollock, P.M.; Bessette, P.; et al. Molecular Classification of the PORTEC-3 Trial for High-Risk Endometrial Cancer: Impact on Prognosis and Benefit From Adjuvant Therapy. J. Clin. Oncol. 2020, 38, 3388–3397. [Google Scholar] [CrossRef]
- Gadducci, A.; Sartori, E.; Landoni, F.; Zola, P.; Maggino, T.; Maggioni, A.; Cosio, S.; Frassi, E.; LaPresa, M.T.; Fuso, L.; et al. Relationship Between Time Interval From Primary Surgery to the Start of Taxane- Plus Platinum-Based Chemotherapy and Clinical Outcome of Patients With Advanced Epithelial Ovarian Cancer: Results of a Multicenter Retrospective Italian Study. J. Clin. Oncol. 2005, 23, 751–758. [Google Scholar] [CrossRef]
- Creutzberg, C.L.; van Putten, W.L.; Koper, P.C.; Lybeert, M.L.; Jobsen, J.J.; Wárlám-Rodenhuis, C.C.; De Winter, K.A.; Lutgens, L.C.; van den Bergh, A.C.; van de Steen-Banasik, E.; et al. Surgery and postoperative radiotherapy versus surgery alone for patients with stage-1 endometrial carcinoma: Multicentre randomised trial. Lancet 2000, 355, 1404–1411. [Google Scholar] [CrossRef]
- Keys, H.M.; Roberts, J.A.; Brunetto, V.L.; Zaino, R.J.; Spirtos, N.M.; Bloss, J.D.; Pearlman, A.; Maiman, M.A.; Bell, J.G. A phase III trial of surgery with or without adjunctive external pelvic radiation therapy in intermediate risk endometrial adenocarcinoma: A Gynecologic Oncology Group study. Gynecol. Oncol. 2004, 92, 744–751. [Google Scholar] [CrossRef] [PubMed]
- Nout, R.A.; Smit, V.T.; Putter, H.; Jürgenliemk-Schulz, I.M.; Jobsen, J.J.; Lutgens, L.C.; van der Steen-Banasik, E.; Mens, J.; Slot, A.; Kroese, M.S.; et al. Vaginal brachytherapy versus pelvic external beam radiotherapy for patients with endometrial cancer of high-intermediate risk (PORTEC-2): An open-label, non-inferiority, randomised trial. Lancet 2010, 375, 816–823. [Google Scholar] [CrossRef]
- Wortman, B.G.; Creutzberg, C.L.; Putter, H.; Jürgenliemk-Schulz, I.M.; Jobsen, J.J.; Lutgens, L.C.H.W.; van der Steen-Banasik, E.M.; Mens, J.W.M.; Slot, A.; Stenfert Kroese, M.C.; et al. Ten-year results of the PORTEC-2 trial for high-intermediate risk endometrial carcinoma: Improving patient selection for adjuvant therapy. Br. J. Cancer 2018, 119, 1067–1074. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, A.; Modh, A.; Burmeister, C.; Buekers, T.; Elshaikh, M. Does Interval between Hysterectomy and Start of Radiation Treatment Influence Survival in Early Stage Endometrial Carcinoma? A National Cancer Database Analysis. Int. J. Radiat. Oncol. 2017, 99, E292. [Google Scholar] [CrossRef]
- O’MAlley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; Acosta, A.D.J.; Miller, W.H.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients With Microsatellite Instability–High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef] [PubMed]
- Powell, M.; Bjørge, L.; Willmott, L.; Novák, Z.; Black, D.; Gilbert, L.; Sharma, S.; Valabrega, G.; Landrum, L.; Gropp-Meier, M.; et al. Overall survival in patients with endometrial cancer treated with dostarlimab plus carboplatin–paclitaxel in the randomized ENGOT-EN6/GOG-3031/RUBY trial. Ann. Oncol. 2024, 35, 728–738. [Google Scholar] [CrossRef] [PubMed]
Total | Patients Without SSI | Patients with SSI | p-Value | |
---|---|---|---|---|
Number of patients | 371 (100%) | 333 (89.8%) | 38 (10.2) | |
Median BMI (kg/m2) (range) | 27.9 (14.8–51.9) | 27.3 (14.8–50.8) | 32.9 (18.4–51.9) | 0.002 |
Diabetes mellitus | 0.691 | |||
Yes | 57 (15.4%) | 52 (15.6%) | 5 (13.2%) | |
No | 314 (84.6%) | 281 (84.4%) | 33 (86.8%) | |
Smoking | 0.004 | |||
Yes | 17 (4.6%) | 11 (3.3%) | 6 (15.8%) | |
No | 354 (95.4%) | 322 (96.7%) | 32 (84.2%) | |
Median follow-up years (range) | 4.1 (0.1–7.6) | 4.3 (0.1–7.6) | 3.3 (0.1–6.7) | 0.238 |
Type of gynecological cancer | 0.562 | |||
Ovarian | 133 (35.8%) | 121 (36.3%) | 12 (31.6%) | |
Uterine | 238(64.2%) | 212 (63.7%) | 26 (68.4%) | |
Grade | 0.089 | |||
1 | 31 (8.4%) | 30 (9.0%) | 1 (2.6%) | |
2 | 74 (19.9%) | 70 (21.0%) | 4 (10.5%) | |
3 | 263 (70.9%) | 230 (69.1%) | 33 (86.9%) | |
Unknown | 3 (0.8%) | 3 (0.9%) | 0 (0%) | |
Lymph vascular space invasion | 0.923 | |||
Yes | 159 (43.0%) | 142 (42.8%) | 17 (44.7%) | |
No | 157 (42.4%) | 142 (2.8%) | 15 (39.5%) | |
Unknown | 54 (14.6%) | 48 (14.5%) | 6 (15.8%) | |
Route of surgery | <0.001 | |||
Laparotomy | 213 (57.4%) | 180 (54.1%) | 33 (86.8%) | |
Laparoscopy | 158 (42.6%) | 153 (45.9%) | 5 (13.2%) | |
Median estimated blood loss (mL) | 200 (50–11,000) | 200 (50–11,000) | 500 (50–4500) | 0.007 |
ASA | 0.001 | |||
1 | 9 (2.4%) | 8 (2.4%) | 1 (2.6%) | |
2 | 68 (18.3%) | 63 (18.9%) | 5 (13.2%) | |
3 | 245 (66.0%) | 225 (67.6%) | 20 (52.6%) | |
4 | 48 (12.9%) | 37 (11.1%) | 11 (28.9%) | |
5 | 1 (0.3%) | 0 | 1 (2.6%) | |
Bowel resection | 0.080 | |||
Yes | 46 (12.4%) | 38 (11.4%) | 8 (21.1%) | |
No | 325 (87.6%) | 295 (88.6%) | 30 (78.9%) | |
Intraoperative complications | 0.003 | |||
Yes | 21 (5.7%) | 14 (4.2%) | 7 (18.4%) | |
No | 350 (94.3%) | 319 (95.8%) | 31 (81.6%) | |
Median Length of hospital stay (days) | 3.0 (0–101) | 3.0 (0–17) | 5.0 (0–101) | <0.001 |
Reoperation < 30 days | <0.001 | |||
Yes | 7 (1.9%) | 2 (0.6%) | 5 (13.2%) | |
No | 364 (98.1%) | 331 (99.4%) | 33 (86.8%) | |
Readmission < 30 days | <0.001 | |||
Yes | 24 (6.5%) | 14 (4.2%) | 10 (26.3%) | |
No | 347 (93.5%) | 319 (95.8)% | 28 (73.7%) |
Total | Patients Without SSI | Patients with SSI | p-Value | |
---|---|---|---|---|
Adjuvant treatment | 0.447 | |||
Yes | 243 (65.5%) | 216 (64.9%) | 27 (71.1%) | |
No | 128 (34.5%) | 117 (35.1%) | 11 (28.9%) | |
Type of adjuvant treatment | 0.193 | |||
Chemotherapy | 128 (52.7%) | 110 (50.9%) | 18 (66.7%) | |
Radiotherapy | 71 (29.2%) | 67 (31.0%) | 4 (14.8%) | |
Chemotherapy + radiotherapy | 44 (18.1%) | 39 (18.1%) | 5 (18.5%) | |
Median time to adjuvant treatment (days) | 44.0 (13–160) | 45.0 (13–160) | 42.0 (27–158) | 0.441 |
Median time to adjuvant treatment per therapy type (days) | <0.001 | |||
Chemotherapy | 39.0 (17–93) | 39.0 (17–72) | 42.0 (27–93) | 0.383 |
Radiotherapy | 61.0 (38–126) | 61.0 (38–126) | 79.5 (48–125) | 0.547 |
Chemotherapy + radiotherapy | 42.0 (13–160) | 42.0 (13–160) | 42.0 (31–158) | 0.914 |
Median time to adjuvant treatment per primary malignancy (days) | <0.001 | |||
Ovarian | 39.0 (17–72) | 39.0 (17–72) | 36.5 (27–56) | 0.843 |
Uterine | 52.0 (13–160) | 52.0 (13–160) | 48.0 (31–158) | 0.832 |
p-Value | Odds Ratio | 95% CI | |
---|---|---|---|
BMI < 30 kg/m2 vs. >30/kg/m2 | <0.001 | 4.544 | 2.065–9.996 |
Smoking | 0.003 | 6.513 | 1.932–21.956 |
Route of surgery (laparoscopy vs. laparotomy) | 0.003 | 0.211 | 0.077–0.581 |
Bowel resection | 0.209 | 1.861 | 0.706–4.906 |
Recurrence | Total | Patients Without SSI | Patients with SSI | p-Value |
---|---|---|---|---|
Yes | 153 (40.3%) | 133(38.9%) | 20 (52.6%) | 0.091 |
No | 227 (59.7%) | 209(61.1%) | 18 (47.4%) | |
Median time to recurrence (days) | 449.5 (38–1920) | 447.0 (38–1920) | 581.5 (70–1446) | 0.810 |
Number of recurrences per primary tumor | ||||
Ovarian | 0.891 | |||
Yes | 69 (51.9%) | 63 (52.1%) | 6 (50.0%) | |
No | 64 (48.1%) | 58 (47.9%) | 6 (50.0%) | |
Uterine | 0.018 | |||
Yes | 79 (33.2%) | 65 (30.7%) | 14 (53.8%) | |
No | 159 (66.8%) | 147 (69.3%) | 12 (46.2%) |
Total | Patients Without SSI | Patients with SSI | p-Value | |
---|---|---|---|---|
Ovarian Cancer | 0.868 | |||
Alive without disease | 68 (51.1%) | 61 (50.4%) | 7 (58.3%) | |
Alive with disease | 51 (38.3%) | 47 (38.8%) | 4 (33.3%) | |
Death | 14 (10.5%) | 13 (10.7%) | 1 9(8.3%) | |
Uterine Cancer | 0.039 | |||
Alive without disease | 159 (66.8%) | 147 (69.3%) | 12 (66.8%) | |
Alive with disease | 60 (25.2%) | 51 (34.6%) | 9 (34.6%) | |
Death | 19 (8.0%) | 14 (6.6%) | 5 (19.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornel, K.M.C.; Nguyen, J.M.V.; Gien, L.T.; Covens, A.; Vicus, D. The Relation Between Post-Operative Surgical Site Infection and Time to Start Adjuvant Treatment in Ovarian and Uterine Cancers. Curr. Oncol. 2025, 32, 474. https://doi.org/10.3390/curroncol32080474
Cornel KMC, Nguyen JMV, Gien LT, Covens A, Vicus D. The Relation Between Post-Operative Surgical Site Infection and Time to Start Adjuvant Treatment in Ovarian and Uterine Cancers. Current Oncology. 2025; 32(8):474. https://doi.org/10.3390/curroncol32080474
Chicago/Turabian StyleCornel, Karlijn M. C., Julie My Van Nguyen, Lilian T. Gien, Allan Covens, and Danielle Vicus. 2025. "The Relation Between Post-Operative Surgical Site Infection and Time to Start Adjuvant Treatment in Ovarian and Uterine Cancers" Current Oncology 32, no. 8: 474. https://doi.org/10.3390/curroncol32080474
APA StyleCornel, K. M. C., Nguyen, J. M. V., Gien, L. T., Covens, A., & Vicus, D. (2025). The Relation Between Post-Operative Surgical Site Infection and Time to Start Adjuvant Treatment in Ovarian and Uterine Cancers. Current Oncology, 32(8), 474. https://doi.org/10.3390/curroncol32080474