Predictive Factors of Response to Neoadjuvant Chemotherapy (NACT) and Immune Checkpoint Inhibitors in Early-Stage Triple-Negative Breast Cancer Patients (TNBC)
Simple Summary
Abstract
1. Introduction
2. Methods
3. Results
3.1. Tissue-Based Biomarkers
3.1.1. Tumor-Infiltrating Lymphocyte (TILs) and Other Immune Factors
3.1.2. Protein 53 (p53) Mutation
3.1.3. Ki67
3.2. Liquid Biopsy Biomarkers
3.2.1. Circulating Tumor Cells (CTCs)
3.2.2. Circulating Tumor DNA (ctDNA) and Cell-Free DNA (cfDNA)
3.2.3. Platelet–Lymphocyte Ratio (PLR) and Neutrophil–Lymphocyte Ratio (NLR)
4. Discussion
- -
- When should TILs be measured? Definitive results about the prospective use of baseline TILs values are still lacking.
- -
- How can TIL variation be monitored? It is still not yet clear when, during the course of neoadjuvant treatment, a second biopsy should be performed to allow for a correct and proper evaluation, as well as how this evaluation correlates with main outcomes.
- -
- Optimal cut-off values still lacks validation.
- -
- An evaluation of how it is associated with other tissue biomarkers is completely absent in the literature and probably deserves more of a focus.
5. Conclusions
6. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Dyba, T.; Randi, G.; Bray, F.; Martos, C.; Giusti, F.; Nicholson, N.; Gavin, A.; Flego, M.; Neamtiu, L.; Dimitrova, N.; et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 2021, 157, 308–347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S.C. Triple-negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer Res. 2020, 22, 61. [Google Scholar] [CrossRef]
- Dietze, E.C.; Sistrunk, C.; Miranda-Carboni, G.; O’regan, R.; Seewaldt, V.L. Triple-negative breast cancer in African-American women: Disparities versus biology. Nat. Rev. Cancer 2015, 15, 248–254. [Google Scholar] [CrossRef]
- Tsai, J.; Bertoni, D.; Hernandez-Boussard, T.; Telli, M.L.; Wapnir, I.L. Lymph Node Ratio Analysis after Neoadjuvant Chemotherapy Is Prognostic in Hormone Receptor-Positive and Triple-Negative Breast Cancer. Ann. Surg. Oncol. 2016, 23, 3310–3316. [Google Scholar] [CrossRef]
- Singh, S.; Numan, A.; Agrawal, N.; Tambuwala, M.M.; Singh, V.; Kesharwani, P. Role of Immune Checkpoint Inhibitors in the Revolutionization of Advanced Melanoma Care. Int. Immunopharmacol. 2020, 83, 106417. [Google Scholar] [CrossRef]
- Curigliano, G.; Burstein, H.J.; Winer, E.P.; Gnant, M.; Dubsky, P.; Loibl, S.; Colleoni, M.; Regan, M.M.; Piccart-Gebhart, M.; Senn, H.J.; et al. De-escalating and escalating treatments for early-stage breast cancer: The St. Gallen International Expert Consensus Conference on the Primary Therapy of Early Breast Cancer 2017. Ann Oncol. 2017, 28, 1700–1712, Erratum in: Ann Oncol. 2018, 29, 2153. https://doi.org/10.1093/annonc/mdx806. Erratum in: Ann Oncol. 2019, 30, 1181. https://doi.org/10.1093/annonc/mdy537. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dent, R.; Trudeau, M.; Pritchard, K.I.; Hanna, W.M.; Kahn, H.K.; Sawka, C.A.; Lickley, L.A.; Rawlinson, E.; Sun, P.; Narod, S.A. Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin. Cancer Res. 2007, 13 Pt 1, 4429–4434. [Google Scholar] [CrossRef] [PubMed]
- Galli, F.; Aguilera, J.V.; Palermo, B.; Markovic, S.N.; Nisticò, P.; Signore, A. Relevance of immune cell and tumor microenvironment imaging in the new era of immunotherapy. J. Exp. Clin. Cancer Res. 2020, 39, 89. [Google Scholar] [CrossRef]
- Taefehshokr, N.; Baradaran, B.; Baghbanzadeh, A.; Taefehshokr, S. Promising approaches in cancer immunotherapy. Immunobiology 2020, 225, 151875. [Google Scholar] [CrossRef]
- LAG3 Expression in Triple Negative Breast Cancer; ClinicalTrials.gov ID NCT06259162; Sponsor Samsung Medical Center; Information Provided by JI-YEON, KIM, Samsung Medical Center (Responsible Party); Last Update Posted 2024-02-14. Available online: https://clinicaltrials.gov/ (accessed on 30 March 2025).
- Denkert, C.; Loibl, S.; Noske, A.; Roller, M.; Müller, B.M.; Komor, M.; Budczies, J.; Darb-Esfahani, S.; Kronenwett, R.; Hanusch, C.; et al. Tumor-associated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J. Clin. Oncol. 2010, 28, 105–113, Erratum in J. Clin. Oncol. 2010, 28, 708. [Google Scholar] [CrossRef] [PubMed]
- Dieci, M.V.; Criscitiello, C.; Goubar, A.; Viale, G.; Conte, P.; Guarneri, V.; Ficarra, G.; Mathieu, M.C.; Delaloge, S.; Curigliano, G.; et al. Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: A retrospective multicenter study. Ann. Oncol. 2014, 25, 611–618, Erratum in Ann. Oncol. 2015, 26, 1518. https://doi.org/10.1093/annonc/mdv241. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Asano, Y.; Kashiwagi, S.; Goto, W.; Takada, K.; Takahashi, K.; Hatano, T.; Takashima, T.; Tomita, S.; Motomura, H.; Ohsawa, M.; et al. Prediction of Treatment Response to Neoadjuvant Chemotherapy in Breast Cancer by Subtype Using Tumor-infiltrating Lymphocytes. Anticancer. Res. 2018, 38, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.; Wang, Z.; Qu, X.; Zhang, Z. Prognostic Value of Tumor-Infiltrating Lymphocytes in Patients with Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. BMC Cancer 2020, 20, 179. [Google Scholar] [CrossRef]
- Denkert, C.; von Minckwitz, G.; Darb-Esfahani, S.; Lederer, B.; Heppner, B.I.; Weber, K.E.; Budczies, J.; Huober, J.; Klauschen, F.; Furlanetto, J.; et al. Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: A pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol. 2018, 19, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, T.; Velaga, R.; Masuda, N.; Kawaguchi, K.; Kawaguchi, S.; Takada, M.; Maeshima, Y.; Tanaka, S.; Kikawa, Y.; Kadoya, T.; et al. Genomic and transcriptomic profiling of pre- and postneoadjuvant chemotherapy triple negative breast cancer tumors. Cancer Sci. 2024, 115, 3928–3942. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pan, Y.; Yuan, Y.; Liu, G.; Wei, Y. P53 and Ki-67 as prognostic markers in triple-negative breast cancer patients. PloS ONE 2017, 12, e0172324. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Faur, I.F.; Dobrescu, A.; Clim, I.A.; Pasca, P.; Prodan-Barbulescu, C.; Tarta, C.; Neamtu, A.A.; Brebu, D.; Neamtu, C.; Rosu, M.; et al. The Predictive Role of Serum Lipid Levels, p53 and ki-67, According to Molecular Subtypes in Breast Cancer: A Randomized Clinical Study. Int. J. Mol. Sci. 2024, 25, 3911. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Darb-Esfahani, S.; Denkert, C.; Stenzinger, A.; Salat, C.; Sinn, B.; Schem, C.; Endris, V.; Klare, P.; Schmitt, W.; Blohmer, J.U.; et al. Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy. Oncotarget 2016, 7, 67686–67698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lehmann-Che, J.; André, F.; Desmedt, C.; Mazouni, C.; Giacchetti, S.; Turpin, E.; Espié, M.; Plassa, L.F.; Marty, M.; Bertheau, P.; et al. Cyclophosphamide dose intensification may circumvent anthracycline resistance of p53 mutant breast cancers. Oncologist 2010, 15, 246–252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, M.B.; Zhu, Y.Q.; Xu, J.Y.; Wang, L.Q.; Liu, C.Y.; Ji, Z.Y.; Lu, P.H. Value of TP53 status for predicting response to neoadjuvant chemotherapy in breast cancer: A meta-analysis. PLoS ONE 2012, 7, e39655. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uxa, S.; Castillo-Binder, P.; Kohler, R.; Stangner, K.; Müller, G.A.; Engeland, K. Ki-67 gene expression. Cell Death Differ. 2021, 28, 3357–3370. [Google Scholar] [CrossRef]
- Wang, R.X.; Chen, S.; Jin, X.; Shao, Z.M. Value of Ki-67 expression in triple-negative breast cancer before and after neoadjuvant chemotherapy with weekly paclitaxel plus carboplatin. Sci. Rep. 2016, 6, 30091. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keam, B.; Im, S.A.; Lee, K.H.; Han, S.W.; Oh, D.Y.; Kim, J.H.; Lee, S.H.; Han, W.; Kim, D.W.; Kim, T.Y.; et al. Ki-67 can be used for further classification of triple negative breast cancer into two subtypes with different response and prognosis. Breast Cancer Res. 2011, 13, R22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Zong, B.; Yu, Y.; Wang, Y.; Tang, Z.; Chen, R.; Huang, M.; Liu, S. Ki67 Index Changes and Tumor-Infiltrating Lymphocyte Levels Impact the Prognosis of Triple-Negative Breast Cancer Patients With Residual Disease After Neoadjuvant Chemotherapy. Front. Oncol. 2021, 11, 668610. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rais, G.; Mokfi, R.; Boutaggount, F.; Maskrout, M.; Bennour, S.; Senoussi, C.; Rais, F. Assessment of the Predictive Role of Ki-67 in Breast Cancer Patients’ Responses to Neoadjuvant Chemotherapy. Eur. J. Breast Health 2024, 20, 199–206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Masuda, H.; Masuda, N.; Kodama, Y.; Ogawa, M.; Karita, M.; Yamamura, J.; Tsukuda, K.; Doihara, H.; Miyoshi, S.; Mano, M.; et al. Predictive factors for the effectiveness of neoadjuvant chemotherapy and prognosis in triple-negative breast cancer patients. Cancer Chemother. Pharmacol. 2011, 67, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Kawate, T.; Iwaya, K.; Kikuchi, R.; Kaise, H.; Oda, M.; Sato, E.; Hiroi, S.; Matsubara, O.; Kohno, N. DJ-1 protein expression as a predictor of pathological complete remission after neoadjuvant chemotherapy in breast cancer patients. Breast Cancer Res. Treat. 2013, 139, 51–59. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute at the National Institute of Health (NIH). Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/liquid-biopsy (accessed on 30 March 2025).
- Cristofanilli, M.; Budd, G.T.; Ellis, M.J.; Stopeck, A.; Matera, J.; Miller, M.C.; Reuben, J.M.; Doyle, G.V.; Allard, W.J.; Terstappen, L.W.; et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N. Engl. J. Med. 2004, 351, 781–791. [Google Scholar] [CrossRef] [PubMed]
- Bidard, F.-C.; Peeters, D.J.; Fehm, T.; Nolé, F.; Gisbert-Criado, R.; Mavroudis, D.; Grisanti, S.; Generali, D.; A Garcia-Saenz, J.; Stebbing, J.; et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: A pooled analysis of individual patient data. Lancet Oncol. 2014, 15, 406–414. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Hancock, B.A.; Solzak, J.P.; Brinza, D.; Scafe, C.; Miller, K.D.; Radovich, M. Next-generation sequencing of circulating tumor DNA to predict recurrence in triple-negative breast cancer patients with residual disease after neoadjuvant chemotherapy. NPJ Breast Cancer 2017, 3, 24. [Google Scholar] [CrossRef]
- Radovich, M.; Jiang, G.; Hancock, B.A.; Chitambar, C.; Nanda, R.; Falkson, C.; Lynce, F.C.; Gallagher, C.; Isaacs, C.; Blaya, M.; et al. Association of Circulating Tumor DNA and Circulating Tumor Cells After Neoadjuvant Chemotherapy With Disease Recurrence in Patients With Triple-Negative Breast Cancer: Preplanned Secondary Analysis of the BRE12-158 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 1410–1415. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cavallone, L.; Aguilar-Mahecha, A.; Lafleur, J.; Brousse, S.; Aldamry, M.; Roseshter, T.; Lan, C.; Alirezaie, N.; Bareke, E.; Majewski, J.; et al. Prognostic and predictive value of circulating tumor DNA during neoadjuvant chemotherapy for triple negative breast cancer. Sci. Rep. 2020, 10, 14704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, S.; Oh, S.Y.; Kim, S.H.; Lee, J.H.; Kim, M.C.; Kim, K.H.; Kim, H.-J. Prognostic Significance of Neutrophil Lymphocyte Ratio and Platelet Lymphocyte Ratio in Advanced Gastric Cancer Patients Treated with FOLFOX Chemotherapy. BMC Cancer 2013, 13, 350. [Google Scholar] [CrossRef]
- Jung, M.R.; Park, Y.K.; Jeong, O.; Seon, J.W.; Ryu, S.Y.; Kim, D.Y.; Kim, Y.J. Elevated Preoperative Neutrophil to Lymphocyte Ratio Predicts Poor Survival Following Resection in Late Stage Gastric Cancer. J. Surg. Oncol. 2011, 104, 504–510. [Google Scholar] [CrossRef]
- Kwon, H.-C.; Kim, S.H.; Oh, S.Y.; Lee, S.; Lee, J.H.; Choi, H.-J.; Park, K.-J.; Roh, M.S.; Kim, S.-G.; Kim, H.-J.; et al. Clinical Significance of Preoperative Neutrophil-Lymphocyte Versus Platelet-Lymphocyte Ratio in Patients with Operable Colorectal Cancer. Biomarkers 2012, 17, 216–222. [Google Scholar] [CrossRef]
- Kemal, Y.; Yucel, I.; Ekiz, K.; Demirag, G.; Yilmaz, B.; Teker, F.; Ozdemir, M. Elevated Serum Neutrophil to Lymphocyte and Platelet to Lymphocyte Ratios Could be Useful in Lung Cancer Diagnosis. Asian Pac. J. Cancer Prev. APJCP 2014, 15, 2651–2654. [Google Scholar] [CrossRef]
- Chen, G.; Zhu, L.; Yang, Y.; Long, Y.; Li, X.; Wang, Y. Prognostic Role of Neutrophil to Lymphocyte Ratio in Ovarian Cancer: A Meta-Analysis. Technol. Cancer Res. Treat 2018, 17, 1533033818791500. [Google Scholar] [CrossRef]
- Smith, R.A.; Bosonnet, L.; Raraty, M.; Sutton, R.; Neoptolemos, J.P.; Campbell, F.; Ghaneh, P. Preoperative Platelet-Lymphocyte Ratio Is an Independent Significant Prognostic Marker in Resected Pancreatic Ductal Adenocarcinoma. Am. J. Surg. 2009, 197, 466–472. [Google Scholar] [CrossRef]
- Asano, Y.; Kashiwagi, S.; Onoda, N.; Noda, S.; Kawajiri, H.; Takashima, T.; Ohsawa, M.; Kitagawa, S.; Hirakawa, K.; Lafrenie, R.M. Platelet-Lymphocyte Ratio as a Useful Predictor of the Therapeutic Effect of Neoadjuvant Chemotherapy in Breast Cancer. PloS ONE 2016, 11, e0153459. [Google Scholar] [CrossRef]
- Lusho, S.; Durando, X.; Mouret-Reynier, M.A.; Kossai, M.; Lacrampe, N.; Molnar, I.; Penault-Llorca, F.; Radosevic-Robin, N.; Abrial, C. Platelet-to-Lymphocyte Ratio Is Associated With Favorable Response to Neoadjuvant Chemotherapy in Triple Negative Breast Cancer: A Study on 120 Patients. Front. Oncol. 2021, 11, 678315. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chae, S.; Kang, K.M.; Kim, H.J.; Kang, E.; Park, S.Y.; Kim, J.H.; Kim, S.H.; Kim, S.W.; Kim, E.K. Neutrophil-lymphocyte ratio predicts response to chemotherapy in triple-negative breast cancer. Curr. Oncol. 2018, 25, e113–e119. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172, Erratum in Lancet 2019, 393, 986. https://doi.org/10.1016/S0140-6736(18)32772-7. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Stecklein, S.R.; Yoder, R.; Staley, J.M.; Schwensen, K.; O’dEa, A.; Nye, L.; Satelli, D.; Crane, G.; Madan, R.; et al. Clinical and Biomarker Findings of Neoadjuvant Pembrolizumab and Carboplatin Plus Docetaxel in Triple-Negative Breast Cancer: NeoPACT Phase 2 Clinical Trial. JAMA Oncol. 2024, 10, 227–235. [Google Scholar] [CrossRef]
- Schmid, P.; Cortes, J.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Pembrolizumab for Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2020, 382, 810–821. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Dent, R.; Pusztai, L.; McArthur, H.; Kümmel, S.; Bergh, J.; Denkert, C.; Park, Y.H.; Hui, R.; et al. Event-free Survival with Pembrolizumab in Early Triple-Negative Breast Cancer. N. Engl. J. Med. 2022, 386, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Pusztai, L.; Denkert, C.; O’Shaughnessy, J.; Cortes, J.; Dent, R.; McArthur, H.; Kümmel, S.; Bergh, J.; Park, Y.H.; Hui, R.; et al. Event-free survival by residual cancer burden with pembrolizumab in early-stage TNBC: Exploratory analysis from KEYNOTE-522. Ann. Oncol. 2024, 35, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Schmid, P.; Cortes, J.; Dent, R.; McArthur, H.; Pusztai, L.; Kümmel, S.; Denkert, C.; Park, Y.H.; Hui, R.; Harbeck, N.; et al. Overall Survival with Pembrolizumab in Early-Stage Triple-Negative Breast Cancer. N. Engl. J. Med. 2024, 391, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Untch, M.; Burchardi, N.; Huober, J.; Sinn, B.V.; Blohmer, J.U.; Grischke, E.M.; Furlanetto, J.; Tesch, H.; Hanusch, C.; et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study. Ann. Oncol. 2019, 30, 1279–1288, Erratum in Ann Oncol. 2022, 33, 743–744. https://doi.org/10.1016/j.annonc.2022.04.003. [Google Scholar] [CrossRef] [PubMed]
- Loibl, S.; Schneeweiss, A.; Huober, J.; Braun, M.; Rey, J.; Blohmer, J.-U.; Furlanetto, J.; Zahm, D.-M.; Hanusch, C.; Thomalla, J.; et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann. Oncol. 2022, 33, 1149–1158. [Google Scholar] [CrossRef] [PubMed]
- Gianni, L.; Huang, C.S.; Egle, D.; Bermejo, B.; Zamagni, C.; Thill, M.; Anton, A.; Zambelli, S.; Bianchini, G.; Russo, S.; et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Ann. Oncol. 2022, 33, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Cascone, T.; Awad, M.M.; Spicer, J.D.; He, J.; Lu, S.; Sepesi, B.; Tanaka, F.; Taube, J.M.; Cornelissen, R.; Havel, L.; et al. Perioperative Nivolumab in Resectable Lung Cancer. N. Engl. J. Med. 2024, 390, 1756–1769. [Google Scholar] [CrossRef]
- Spicer, J.D.; Garassino, M.C.; Wakelee, H.; Liberman, M.; Kato, T.; Tsuboi, M.; Lee, S.-H.; Chen, K.-N.; Dooms, C.; Majem, M.; et al. Neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab compared with neoadjuvant chemotherapy alone in patients with early-stage non-small-cell lung cancer (KEYNOTE-671): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2024, 404, 1240–1252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heymach, J.V.; Mitsudomi, T.; Harpole, D.; Aperghis, M.; Jones, S.; Mann, H.; Fouad, T.M.; Reck, M. Design and Rationale for a Phase III, Double-Blind, Placebo-Controlled Study of Neoadjuvant Durvalumab + Chemotherapy Followed by Adjuvant Durvalumab for the Treatment of Patients With Resectable Stages II and III non-small-cell Lung Cancer: The AEGEAN Trial. Clin. Lung Cancer 2022, 23, e247–e251. [Google Scholar] [CrossRef] [PubMed]
Study | Type of Study | Staging | pCR | 5-Year Overall Survival | Type of Breast Cancer (BC) | DFS | Cut-Off Definition for High TILs | ||
---|---|---|---|---|---|---|---|---|---|
Denkert et al. (2009) [11] | Cohort | High TILs | Low TILs | NR | all | NR | - | ||
T2-4; N0-3; M0 | 42% (training cohort) 40% (validation cohort) | 3% (training cohort) 7% (validation cohort) | |||||||
Dieci et al. (2013) [12] | Retrospective multicenter | I-II-III- unknown | NR | High TILs | Low TILs | TNBC | NR | 60% (either it-TILs or str-TILs) | |
91% | 55% | ||||||||
Asano et al. (2018) [13] | Retrospective | High TILs | Low TILs | NR | TNBC HER2BC HRBC | NR | 10% | ||
IIA, IIB, IIIA | 46 (26 TNBC; 9 HER2BC; 4 HRBC) | 21 (2 TNBC; 9 HER2BC 17 HRBC) | |||||||
Gao et al. (2020) [14] | Systematic review and meta-analysis | - | NR | NR | TNBC | High TILs vs. Low TILs | Different in each type of study | ||
Hazard ratio (HR) = 0.66%; 95% CI = 0.57–0.76 |
Study | Type and Stage of BC | NACT Regimen | Cut-Off of Ki-67 | pCR |
---|---|---|---|---|
Wang et al.; 2016 [23] | 280 TNBC patients; Stage: II–III | Paclitaxel–Carboplatin | Low: <20% Median: 20–50% High: >50% | Low Ki-67: 14.1% Median Ki-67: 29.4% High Ki-67: 58.3% |
Keam et al.; 2011 [24] | 105 TNBC patients; Stage: II–III | Docetaxel–Doxorubicin | ≥10% High Ki-67 | Ki-67 ≥ 10% → pCR: 13.3% Ki-67 < 10% → pCR: 0 |
Raise et al.; 2024 [26] | 187 BC patients | Anthracycline based + Taxane | >35% | pCR = 75 patients, out of whom 64 had high Ki-67 |
Masuda et al.; 2011 [27] | 33 TNBC patients; any T + N0-N2 | Epirubicin + Cyclophosphamide + Taxane | ≥50% → High <50% → Low | High Ki-67 → pCR = 50%. Low Ki-67 → pCR = 15%. |
Study | Stage of the Disease | Assessed Criteria | DDFS (in 24 Months) | DFS | PFS | OS |
---|---|---|---|---|---|---|
Cristofanilli et al. (2004) [30] | metastatic breast cancer (mBC) | Baseline CTC * 5/7.5 mL | - | - | 2.7 (months) | 10.1 (months) |
metastatic breast cancer (mBC) | Baseline CTC < 5/7.5 mL | - | - | 7 (months) | 18 (months) | |
Bidard FC et al. (2014) [31] | metastatic breast cancer (mBC) | Baseline CTC * 5/7.5 mL vs. CTC < 5/7.5 mL | - | - | HR = 1.92 (95%CI = 1.73–2.14) | HR = 2.78 (95%CI = 2.42–3.19) |
YH et al. (2014) [32] | early-stage TNBC | ctDNA-positive | - | In 10 months | - | - |
0 | ||||||
early-stage TNBC | ctDNA-negative | - | In 10 months | - | - | |
>75% | ||||||
Radovich et al. (2020) [33] | early-stage TNBC | ctDNA-positive | 56% | 24 months | - | 24 months |
50% | 57% | |||||
early-stage TNBC | ctDNA-negative | 81% | 76% | - | 80% | |
early-stage TNBC | ctDNA-positive, CTC-positive | 52% | 54% | - | 50% | |
early-stage TNBC | ctDNA-negative; CTC-negative | 89% | 80% | - | 85% |
Study | Treatment | Population | pCR Rates | 3-yr EFS (%) | OS (%) |
---|---|---|---|---|---|
KN-522 (Schmid, 2020; Schmid, 2022; Schmid, 2024) [46,47,49] | Taxol + Carbo → EC vs. Taxol + Carbo + Pembro → EC + Pembro | Stage II–III | 51.2% vs. 64.8% | 76.8% vs. 84.5% | 81.7% vs. 86.6% |
GeparNuevo (Loibl, 2019; Loibl, 2022) [50,51] | Nab-Paclitaxel → EC vs. Nab-Paclitaxel + Durvalumab → EC + Durvalumab | cT1b-cT4a Any N | 53% vs. 44% | 77.2% vs. 85.6% | 83.5% vs. 95.2% |
neoTRIP (Gianni, 2022) [52] | Nab-Paclitaxel vs. Nab-Paclitaxel + Atezolizumab | cT1c-cT4d N1 if cT1c or ant N in other T stages | 44.4% vs. 48.6% | Not yet reported | Not yet reported |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ardakani, K.Y.; Pepe, F.F.; Capici, S.; Clementi, T.D.; Cazzaniga, M.E. Predictive Factors of Response to Neoadjuvant Chemotherapy (NACT) and Immune Checkpoint Inhibitors in Early-Stage Triple-Negative Breast Cancer Patients (TNBC). Curr. Oncol. 2025, 32, 387. https://doi.org/10.3390/curroncol32070387
Ardakani KY, Pepe FF, Capici S, Clementi TD, Cazzaniga ME. Predictive Factors of Response to Neoadjuvant Chemotherapy (NACT) and Immune Checkpoint Inhibitors in Early-Stage Triple-Negative Breast Cancer Patients (TNBC). Current Oncology. 2025; 32(7):387. https://doi.org/10.3390/curroncol32070387
Chicago/Turabian StyleArdakani, Khashayar Yazdanpanah, Francesca Fulvia Pepe, Serena Capici, Thoma Dario Clementi, and Marina Elena Cazzaniga. 2025. "Predictive Factors of Response to Neoadjuvant Chemotherapy (NACT) and Immune Checkpoint Inhibitors in Early-Stage Triple-Negative Breast Cancer Patients (TNBC)" Current Oncology 32, no. 7: 387. https://doi.org/10.3390/curroncol32070387
APA StyleArdakani, K. Y., Pepe, F. F., Capici, S., Clementi, T. D., & Cazzaniga, M. E. (2025). Predictive Factors of Response to Neoadjuvant Chemotherapy (NACT) and Immune Checkpoint Inhibitors in Early-Stage Triple-Negative Breast Cancer Patients (TNBC). Current Oncology, 32(7), 387. https://doi.org/10.3390/curroncol32070387